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Microprocessor Based on the Minimal Hardware Principle 

A project of the new RISC microprocessor architecture is proposed on the basis of the minimal 
hardware principle (the MHP RISC processor) targeted on effective parallelization. The notion 
of instruction group is postulated which is formed by the smart compiler. The header instruc-
tion of the group points out how many instructions should be issued in parallel. The concept of 
the flux as a composite of instruction stream and data flow, supported by certain flux hardware, 
and used for parallelization on higher levels is developed. Formats of typical instructions and 
their usage are explained on examples. A new method for the loop control which is applicable 
to loops with the increasing/decreasing numeric loop variable, and also, a new method for the 
branch parallelization are proposed. The proposed architecture does not contain simultaneous 
multithreading, register renaming, instruction reordering, out-of-order execution, speculative 
execution, superscalar execution, delayed branch, branch prediction which all require much 
hardware. These all are substituted by the notion of instruction group, concept of flux, special 
instructions, and strong compiler support. 

K e y w o r d s:  microprocessor,  parallelism,  comparisons,  loop  control,  branch  paralleli-
zation. 

Introduction. Parallelization and low power consumption are the main trends 
in the contemporary microprocessor architecture, and various approaches are 
implemented to realize it. There are a lot of publications, monographs, and 
manuals on these problems, e. g. [1—5]. Within a single processor (uniproces-
sor) a substantial raise in throughput is achieved due to simultaneous multi-
threading (SMT), register renaming, instruction reordering, out-of-order exe-
cution, speculative execution, superscalar execution, delayed branch, branch 
prediction which all require much hardware. Some of these approaches indi-
rectly improve parallelization. A particular case of a uniprocessor architecture 
is the very long instruction word (VLIW) architecture which has been success-
ful for the specialized processors for image and graphical data processing etc, 
but failed as the general purpose processor architecture. All above-listed fa-
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cilities and units are very complex hardware that means larger transistor count, 
and energy consumption. 

A project of the new microprocessor architecture is proposed based of the 
minimal hardware principle (the MHP RISC processor) which overcomes the 
mentioned shortcomings. The over-listed hardware is removed and substituted 
by other more simple facilities, and specially designed instructions. The main 
means are the notion of the instruction group, and the concept of the flux. The 
instruction group is formed by the smart compiler. The header instruction of the 
group points out with its 4-bit field how many instructions up to 16 should be 
issued in parallel. For internal instructions of the group the mentioned field is 
zero. The flux is a composite consisting of instruction stream and data flow, 
supported by certain flux hardware, that includes the register file, program 
counter, stack with stack register, program state record (word) etc. The strong 
compiler support is necessary, resembling that for the VLIW architecture, 
though essentially simpler. The uniprocessor must have several fluxes and mul-
tiple functional units. Fluxes borrow functional units from their processor pool. 
Pipelining is preserved. Time sharing (multitasking) remains. Cache memory, 
interrupt mechanisms, I/O and the like are without perceptible changes. 

The proposed microprocessor architecture may be provided with accelera-
tors that use their native instruction sets, and process data in parallel on multi-
ple registers organized as vectors. Also the GPUs may be attached. There are 
no problems with allocation of multiple uniprocessor cores on a single die. 

The proposed processor has the register file containing hardware 32 64-bit 
registers. The registers are enumerated r0, r1, r2, …, r31, thus pointing out the 
absolute register positions (addresses) in the register file, i. e. the sequential 
numbers of registers. The designations R1, R2, R3, and R4 reference the regis-
ter fields in the instruction formats. There are the following register data 
types: 64-bit integer, 64-bit floating point, 128-bit floating point (optionally). 
The bit/byte/dibyte data types may occupy one register, two or four concate-
nated registers, i. e. occupying 64, 128, or 256 bits of space, the last two data 
types being optional. 

Instruction group. One of the basic notions of the proposed micropro-
cessor architecture is the notion of the instruction group. The first instruction 
of the group is the header grouping instruction, other instructions are internal 
ones. The header grouping instruction in each group points out with its special 
4-bit “parallelizing” operand field F0 (Fig. 1) how many instructions up to 16 
should be issued in parallel including the header instruction. For other instruc-
tions of the group the mentioned field is zero. A group may contain one in-
struction only (one-instruction group) in which the F0 field is zero. The two-
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instruction instruction group has the header instruction with F0 equal to one. 
The instruction group containing 16 instructions has the F0 field equal to 15. 
The most of the instructions have field F0, in particular the arithmetic, logical, 
and move instructions. Of course, the header grouping instruction performs its 
basic role to execute arithmetic or logical operation. The rest of instructions 
are, generally, instructions for transfer of control. Thus, availability of a head-
er grouping instruction is guaranteed. 

It is proposed to form instruction groups by the smart compiler. The com-
piler explores the large enough fragments (windows) of the source program 
code, and extracts all possible parallelism. The compiler secures the absence 
of interdependencies between data inside each group and between groups. The 
smart compiler reforms the source program text by reordering the source in-
structions. The formed instruction groups may be enclosed in parentheses. It is 
the instruction level parallelism (ILP) maintained both by the compiler and 
hardware. The actual effect of parallelization depends on the availability of 
multiple functional units. Thus, in the case of shortage of functional units the 
issue of a group may happen in two or more machine cycles. Distantly the 
proposed approach resembles a peculiar VLIW processor with variable num-
ber, one to four, of operative fields [6]. 

Concept of flux. The flux is defined as a composite that includes the 
software and hardware components. From the program point of view the flux 
is a stream of instructions and the flow of processed data [7]. These streams 
and flows are maintained by the flux hardware that includes the register file, 
the register with the program status record (PSR), and the instruction buffer. 
The PSR contains: program counter register (1); stack pointer register with 
address of the stack in the main computer memory (2); various state and inter-
rupt flags (3). For effective work the uniprocessor should have at least two 
fluxes, i. e. the processor should be the multi-flux one. The main computer 
memory and pipelined functional units are reckoned as common resource for 
all fluxes, and are used on request. Fluxes may have either individual L1 in-
struction caches, or a common L1 instruction cache for the whole uniproces-
sor. A flux looks like a partial processor. Also a flux may be defined as a 
channel, or window, in which a program or process executes, using a register 
file and PSR, and borrowing the necessary functional units from their pool. 

The maximal number of fluxes in a uniprocessor may not be larger than 
eight – the width of datapaths is a limiting factor. The hardware discerns flux-
es through their 2-, or 3-bit flux distinctive labels. The functional units re-
member from which ux data to process are received, and to which flux the 
results should be returned. A flux maintains either a single program process, 
or a number of processes in the time-sharing mode. Also the pieces  of  a  pro- 
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Opcode F0 R1s R2s R3s R4d 

8 4 5 5 5 5 

a 
Opcode F0 F1s R2s R3s R4s R5d 

8 4 4 4 4 4 4 

b 

Fig. 1.  General  instruction format:  four 5-bit fields for registers (a),  five 4-bit fields  
for registers (b) 

perly designed program may execute in different fluxes in parallel, interac-ting 
between each other. This is maintained by the operating system. The further 
parallelization may be expanded by using multiple cores. The fluxes are at pro-
grammer's disposal, securing the full access to them by means of the OS, and 
the programmer may set access to the necessary flux in a specified core. 

Each ux is provided with an instruction buffer as a small and very fast 
intermediate storage where the instruction groups are accumulated to issue 
them into functional units in parallel. The instruction buffer has at least two 
instruction slots, each slot accumulates an instruction group with up to 16 in-
structions. The flux control unit fills the first slot and simultaneously sched-
ules the instruction group from the second slot onto the functional units. Then 
the slots change their purpose. Instructions came into buffer in a sequential 
stream, but output of instructions is performed in groups. The hardware con-
trols the completeness of issued instruction groups. The concept of the flux 
only remotely resembles the notion of multithreading [8, 9]. 

Instruction formats. All instructions are fixed 4-byte length, i. e. are 
half-word, they may have different numbers of operand fields. The basic for-
mat has four register operands with 5-bit register operands, thus, the register 
file has 32 registers, whereas the second format has five register operands with 
five 4-bit registers. Further only the former format is considered. It should be 
mentioned that 4-bit field F0 for the grouping of instructions may not be con-
sidered as an “expense” of bits, for this field arises naturally as an “surplus” 
over bits for the operation code and registers. Fig. 1 shows the mentioned two 
instruction formats (numerals mean the widths of operand fields). 

The Opcode occupies the 8-bit operation code field. The 4-bit operand F0 
in the header instruction with value 1 to 15 points out the number of instruc-
tions in the instruction group in addition to the header instruction; for internal 
instructions of the instruction group field F0 is equal to zero. Registers R1s, 
R2s, and R3s are used mainly as source registers, register R4d is a destination 
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register. These register fields contain the ordinal numbers of registers r0 to r31 
in the register file. Fields may merge to give place for immediate constants 
sometimes including the field F0. 

The 8-bit operation code field means 256 instructions in the instruction 
set. In actual fact, there are more instructions, e. g. there are about 150 multi-
media instructions. To overcome this contradiction it is rational to implement 
several instruction sets in one microprocessor, and an instructions that switch 
instruction sets. An additional instruction set may include a subset of the most 
used instructions, plus, e. g. multimedia extension instructions or vector in-
structions. For distinction instructions from different instruction sets must 
have a suffix in their internal representation. The 2-bit suffix manages with 
four instruction sets. 

Examples of instructions. Here are some examples of characteristic in-
structions with particular formats. Arithmetic instruction for combined multi-
ply and add is very useful in two cases:  

1) scalar multiplication of the two arrays (vectors) for floating point data;  
2) evaluation of the current integer index for two-dimensional array.  
The evaluation formula has the appearance: R4d = R4d + R2s * R3s, 

where the summation is algebraic. Register R1s is not used, registers R2s and 
R3s are source registers, register R4d is the destination register which accu-
mulates all multiplied pairs.  

Frequently arithmetic operations go in chains, and some operation suc-
ceeds one on just computed data. It is reckoned that this occurs for about four-
in-ten of arithmetic operations. Therefore, it is reasonable to implement in-
structions which performs two arithmetic operations in consecutive order. 
Such instructions use four-operand format. The instructions compute the float-
ing point numbers. Barely it is necessary to deal with the integer numbers. 
These instructions economize two machine cycles for the write into and read 
from the registers. The intermediate result is held in the functional unit, and is 
not accessible. The operands R1s, R2s, and R3s are the source registers; the 
operand R4d is the destination register. Variants of the instructions perfor-
mances are the following:  

R4d = R1s * (R2s + R3s); R4d = R1s * (R2s – R3s); 

R4d = R2s * R3s + R1s; R4d = R2s * R3s – R1s; 

R4d = R1s + R2s + R3s; R4d = R1s + R2s – R3s; R4d = R1s – R2s – R3s. 

As it is seen the arithmetic operations are three, or four-operand. The two-
operand arithmetic instructions are not  present  in  the  proposed  architecture, 
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Fig. 2. Arithmetic instructions with an immediate constant as an operand 

i. e. a source register is not used as a destination one. For the integer division 
the operand R1s is used for the remainder. 

Arithmetic instructions with an immediate constant as an operand use 
merged fields except the field for destination register (Fig. 2). 

The Opcode sets one of two arithmetic operations: addition or multiplica-
tion. The source operands are the 19-bit immediate constants, integer, or float-
ing point. Register R4d which at first is the source one, after the operation be-
comes the destination register. The floating point immediate constant has the 
standard 64-bit structure (one bit for sign, eight bits for exponent) but with 
mantissa cut to 10 bits. When the immediate constant is -1 the multiplication 
operation changes the sign of the data in the destination register to the oppo-
site. When the immediate constant is zero the multiplication operation zeros 
the destination register.  

There are eight logical instructions: logical addition (OR), logical multi-
plication (AND), logical exclusive OR (XOR), logical inversion (LINV), logi-
cal shift right (LSR), logical shift left (LSL), logical rotate right LRR), logical 
rotate left (LRL). The most of instructions are four-operand. The first four in-
structions use register R1s for the mask. The logical operation are performed 
on the 64-bit data in registers. 

The Jump instruction has merged 24-bit constant displacement operand 
that is able to transfer unconditional control in the range -8388607 to 8388608 
in the 4-byte instruction length measure. The zero value is not permitted. The 
displacement is added algebraically to the program counter (PC). When the 
jump instruction does not cover the larger address space the long jump instruc-
tion is used in which the R4 register contains a base value filled in by the 
compiler. The 19-bit constant displacement operand embraces the range -
262143 to 262144. The zero value is meaningful. The R4d register and the 
displacement are added algebraically to the PC. 

Comparisons and branches. The comparison instruction compares two 
magnitudes, m1 and m2, of the same data type. The result of comparison is 
yielded by the hardware. It is so called logical result of comparison, and it is 
contained in two 1-bit logical condition flags N and Z in the PSR. The branch-
es are classified into general branches with condition flags Z and N, and loop 
branches purposed to control loop operations with condition flags NL and ZL. 
Designations R3m1 and R4m2 stand for registers R3 and R4 containing com-
pared magnitudes. 

Opcode 19-bit Immediate constant R4d 

8 19 5 
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If two compared magnitudes m1 and m2 are equal, then logical flag 
Z = '1'b, otherwise Z = '0'b. If the first magnitude m1 is less than the second 
magnitude m2, then flag N = '1'b, otherwise N = '0'b, i. e. magnitude m1 is 
greater than magnitude m2. Both flags Z and N are mutually dependable. The 
same is for logical flags ZL and NL. The logical results of comparison of two 
magnitudes are shown in the Table 1. 

The comparison of the integer numbers, or the bit or byte strings does not 
evoke any problems. Comparison of floating point numbers may produce a 
“not number” resulting difference, located in the narrow inaccessible neigh-
borhood of the zero. In such a case it is proposed to take the compared magni-
tudes as equal. That will help to realize many algorithms based on floating 
point numbers.  

To use the logical result of a comparison for transfer of control the notion 
of comparison expression (CE) and its value is introduced. The value is calcu-
lated, and is either true or false, predetermining the further operations in a 
program. There are 6 options to calculate, and accordingly to fulfill the neces-
sary transfer of control. The options are interpreted by the programmer, and 
are used to select single of two branch paths stipulated by the algorithm, thus, 
changing the instruction stream. The options are shown in Table 2. Some op-
tions are supported by the logical operations OR, or AND when it is necessary 
to use both logical condition flags. The given material concerning comparison 
is in compliance with the IEEE-754 standard. 

Table 1. Meanings of the Z and N logical flags after comparison 

Logical results of Z and N flags Interpretations 

Z = '1'b AND N = '0'b m1 is equal (=) to m2 
Z = '0'b AND N = '1'b m1 is less than (<) m2 

Z = '0'b AND N = '0'b m1 is greater then (>) m2 
 

Table 2. Interpretation of the logical condition flags 

No Logical expression with Z and N flags Interpretations 

1 Z = '1'b m1 is equal (=) to m2 
2 N = '1'b m1 is less (<) than to m2 
3 Z = '1'b or N = '1'b  
4 Z = '0'b and N = '0'b m1 is greater (>) than m2 
5 Z = '1'b or N = '0'b  
6 Z = '0'b m1 is not equal ( ) to m2 
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  Fig. 3. Pure comparison instruction format 

        Fig. 4. Comparison and branch instruction format 

There are pure comparison instructions among others, i. e. instructions 
without the accompanied transfer of control. They compare three register 
types: 64-bit integer, 64-bit floating point, or 128-bit floating point. The com-
pared data must be of the same data type, otherwise the nonsensical and not 
controlled situation arises. The instruction intended for ordinary comparison 
fills in the logical flags Z and N, the instruction intended for the loop control 
fills the logical flags ZL and NL in the PSR. Such instructions have the format 
shown on Fig. 3. 

The comparison instructions format combined with the transfer of control is 
shown on Fig. 4. For each of register data types there are different instructions. 

The instructions perform comparison of two magnitudes with subsequent 
transfer of control. The r3m1 and r4m2 are registers with the compared mag-
nitudes of the same data type. The CE field contains the reference on the 3-bit 
comparison expression. The 11-bit Displacement operand contains an imme-
diate constant in the range 1023 to 1024 in the instruction measure to add to 
the program counter. If the result of comparison stipulated by the condition 
operand CE is true, then the control is made by using 11-bit Displacement, 
otherwise the transfer to the next instruction takes place.  

Instruction format for the conditional transfer of control directly stipulated 
by the comparison expression (CE) is shown on Fig. 4. 

If the result of comparison stipulated by the comparison expression CE is 
true, then the transfer of control is made by using 21-bit Displacement in the 
range 1048575 to 1048576, the measure is given in the number of instruc-
tions; otherwise the transfer to the next instruction takes place. The Displace-
ment is added to the program counter. 

A method of loop control. The proposed method is applicable to loops 
with the loop structure like: for i = ms to me step st; <loop body>; endfor; i. e. 
where the increasing/decreasing numeric loop variable (parameter) is used. 
The loop control is realized with the help of the two instructions shown on 
Fig. 4, and on Fig. 5. The loop condition evaluation is made by the instruction 
on Fig. 6. 

Opcode F0 Not used R3m1 R4m2 

8 4 10 5 5 

Opcode CE 11-bit Displacement R3m1 R4m2 

8 3 11 5 5 
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The registers R3ms and R4me contain the comparable magnitudes ms and 
me with the start and end values. The register R2st contains the step parameter 
of the loop. Before the comparison register with R2st step is added algebrai-
cally to the register R3ms. The instruction may be placed in any location of 
the loop body, but so that several other instructions were before the end of the 
loop body. This provides for the logical result of comparison becomes known 
at the end of the loop. Logical result of comparison fills in the loop condition 
flags ZL and NL. The flags ZL and NL are assigned the initial values before 
the loop. The increase/decrease of the loop parameter takes place at the end of 
the loop as usual. The comparison instruction may execute concurrently with 
other instructions being a member of the instruction group, and the field F0 
may be used for the header grouping instruction. For comparable magnitudes 
of different types (integer, 64-bit and 128-bit floating point) different instruc-
tions are provided for.  

The instruction for the conditional transfer of control (see Fig. 5), directly 
stipulated by the comparison expression, is located at the end of the loop 
body. It secures the transfer of control to the beginning of the loop, or to go 
out of the loop. The described case of the loop is where the condition evalua-
tion is made at the end of the loop body. Other kinds of loop made such a test 
at the beginning of the loop body. Then the instruction for the conditional 
transfer of control is the first instruction of the loop body, and the comparison 
instruction may be placed as the next. The smart compiler organizes described 
loop constructs. 

Parallelization of branches. The parallelization of branches means avoi-
dance of delays caused when the resolving branch condition occurs. It is pro-
posed to merge the instructions of initial parts of two branch paths in the inter-
leaving stratified manner to create a combined instruction stream to execute in 
parallel economizing machine cycles [7]. After the resolving of the branch 
condition the transfer of control to the rest of the true branch path takes place. 
The method is illustrated on Fig. 7. 

Opcode CE 21-bit Displacement 

8 3 21 

Fig. 5. Instruction format for conditional transfer of control stipulated by the com-
parison expression  

Opcode F0 Not used R2st R3ms R4me 

8 4 5 5 5 5 

Fig. 6. Structure of comparison instruction for loop control with usage of step pa-
rameter 
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Front stream Branch path 1 Branch path 2 End 
stream 

 

1, 2, 3, 4, b 5, 6, 7, 8, 9, 10, 11, 12, j 13, 14, 15, 16, 17, 18, 19,  20, 21, ... 

 
           Split point 

                               
                                               Convergence point 
        a 

 
Front stream Combined 

stream 
Rest of branch  

path 1 
Rest of branch 

path 2 
End 

stream 
 

1, 2, 3, 4, ci 5, 13, 6, 14, tc 7, 8, 9, 10, 11, 12,  j 15, 16, 17, 18, 19,  20, 21, ... 

 

 

                         Split point                                                                                       Convergence point 
           b 

Fig. 7. Exemplary scheme of parallelization of branched instruction stream: a – traditional 
form of the split of instruction stream in two branch paths; b – transformed instruction stream 
having combined instruction stream. Designations: cb is compare and branch instruction; j is 
jump instruction transferring control after the last instruction of branch path 1 to convergence 
point; ci is condition instruction that fills the condition flags only; tc is transfer of control in-
struction using comparison flags. Numerals are the serial numbers of instructions. Front 
stream – the initial flow of branching instructions; End stream – finishing stream after bran-
ching; Branch path 1, 2 – two alternative branch paths; Split point – point of branching; Con-
vergence point – point of confluence; Combined stream – stratified instruction stream; Rest of 
branch path 1, 2 – the rest of the instructions in the two alternative branches after removing 
some of the initial instructions. 

Traditional structure of the branch construct is shown in Fig. 7, a. The 
front instruction stream ending with the compare and branch instruction is 
split into two paths which are located in the memory one after another. When 
the branch condition is resolved the transfer of control takes place either to the 
branch path 1, or to the branch path 2, the choice being defined by the algo-
rithm. The jump instruction in the end of the branch path 1 transfers control to 
the convergence point, to the non-split end stream. The split point is a location 
in the non-split instruction stream after the instruction which causes the 
branch (e. g., comparison one). The convergence point is a location before the 
instruction to which both branches transfer the control after the branching is 
fulfilled. These definitions are abstractions for convenient description of the 
branch occurrence. 
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A drawback of the described branch construct is a delay after the compar-
ison instruction. Contemporary microprocessors have a special complex hard-
ware which inserts some other instructions just after the split point, thus 
avoiding processor stalls. 

It is proposed new branch construct to parallelize branches. This is shown 
as an example on Fig. 7, b. The front instruction stream is completed with the 
pure comparison instruction without transfer of control which fills the condi-
tion flags in the PSR to use in the sequel. Further the combined instruction 
stream follows, which consists of some initial instructions from two branch 
paths merged in the interleaving manner. The combined stream is created by 
the smart compiler. The last instruction of the combined stream is the transfer 
of control instruction that uses the information from the condition flags left by 
the pure comparison instruction after the logical result of comparison is solved 
and known. After that the transfer of control is carried out either to the rest of 
the branch path 1, or to the rest of the branch path 2, and further to the con-
vergence point, i. e. to the end stream. Instructions in the combined stream 
should be mutually independent, and not change the variables which secure 
correctness of the algorithm programmed. This is verified by the compiler. 

The advantages of the proposed method are avoidance of pipeline stalls, 
utilization of the general register file only, and usage of the same program 
counter. The instructions of the combined instruction stream, comparison in-
struction, and instruction for transfer of control may be members of instruction 
groups, executing in parallel. The proposed method is the deterred branch ap-
proach, and is different from the well known delayed branch approach. No 
special hardware is needed. There are some peculiarities, e. g., the instructions 
like s = s + a * b are not permitted in the combined instruction stream as they 
may violate the correctness of the algorithm. 

Conclusion 
The proposed project of the general purpose microprocessor architecture is a 
deep deviation from the habitual guidelines and principles of processor de-
signing, overcoming much stereotypes. For the sake of it the notion of the in-
struction group is developed, the groups being formed by the smart compiler. 
The instruction group permits to extract all possible parallelism from the large 
source program text instruction window, and to execute it in parallel. The con-
cept of the flux, which is developed as a composite that includes the software 
and hardware components within the scope of the uniprocessor, permits con-
venient execution several program streams concurrently. The fluxes are at 
programmer's disposal securing the full access to them by means of the OS. 
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The minimal hardware principle is postulated on which the proposed 
microprocessor architecture is founded. The architecture does not use SMT, 
register renaming, instruction reordering, out-of-order execution, speculative 
execution, superscalar execution, delayed branch, branch prediction which all 
require very complex hardware units. These all are substituted by the notion of 
instruction group, concept of flux, specially designed instructions, and all this 
gives a considerable economy of hardware. 

The method of loop control, applicable to loops where the numeric loop 
variable is used, replaces the widely used branch prediction in contemporary 
processors, and needs no additional hardware. The method of the paralleliza-
tion of ordinary branches ensures a sort of linearization of the instruction 
stream avoiding extra machine cycles.  

The proposed microprocessor architecture ensures less hardware, higher 
performance, less power, less cost, no vulnerabilities, it secures effective par-
allelization both on the instruction set level, and on the higher levels. 
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