
ISSN 0204—3572. 6 77 77

doi: https://doi.org/10.15407/emodel.41.06.077
UDC 004.165+004.2+004.27

V.K. Dobrovolskyi, Ph.D., independent CPU architect
(Kyiv, Ukraine, . (+38) 0982798517; e-mail: vol.dobrovol@gmail.com)

Microprocessor Based on the Minimal Hardware Principle

A project of the new RISC microprocessor architecture is proposed on the basis of the minimal
hardware principle (the MHP RISC processor) targeted on effective parallelization. The notion
of instruction group is postulated which is formed by the smart compiler. The header instruc-
tion of the group points out how many instructions should be issued in parallel. The concept of
the flux as a composite of instruction stream and data flow, supported by certain flux hardware,
and used for parallelization on higher levels is developed. Formats of typical instructions and
their usage are explained on examples. A new method for the loop control which is applicable
to loops with the increasing/decreasing numeric loop variable, and also, a new method for the
branch parallelization are proposed. The proposed architecture does not contain simultaneous
multithreading, register renaming, instruction reordering, out-of-order execution, speculative
execution, superscalar execution, delayed branch, branch prediction which all require much
hardware. These all are substituted by the notion of instruction group, concept of flux, special
instructions, and strong compiler support.

K e y w o r d s: microprocessor, parallelism, comparisons, loop control, branch paralleli-
zation.

Introduction. Parallelization and low power consumption are the main trends
in the contemporary microprocessor architecture, and various approaches are
implemented to realize it. There are a lot of publications, monographs, and
manuals on these problems, e. g. [1—5]. Within a single processor (uniproces-
sor) a substantial raise in throughput is achieved due to simultaneous multi-
threading (SMT), register renaming, instruction reordering, out-of-order exe-
cution, speculative execution, superscalar execution, delayed branch, branch
prediction which all require much hardware. Some of these approaches indi-
rectly improve parallelization. A particular case of a uniprocessor architecture
is the very long instruction word (VLIW) architecture which has been success-
ful for the specialized processors for image and graphical data processing etc,
but failed as the general purpose processor architecture. All above-listed fa-

© Dobrovolskyi V.K., 2019

V.K. Dobrovolskyi

78 ISSN 0204-3572. Electronic. Modeling 6

cilities and units are very complex hardware that means larger transistor count,
and energy consumption.

A project of the new microprocessor architecture is proposed based of the
minimal hardware principle (the MHP RISC processor) which overcomes the
mentioned shortcomings. The over-listed hardware is removed and substituted
by other more simple facilities, and specially designed instructions. The main
means are the notion of the instruction group, and the concept of the flux. The
instruction group is formed by the smart compiler. The header instruction of the
group points out with its 4-bit field how many instructions up to 16 should be
issued in parallel. For internal instructions of the group the mentioned field is
zero. The flux is a composite consisting of instruction stream and data flow,
supported by certain flux hardware, that includes the register file, program
counter, stack with stack register, program state record (word) etc. The strong
compiler support is necessary, resembling that for the VLIW architecture,
though essentially simpler. The uniprocessor must have several fluxes and mul-
tiple functional units. Fluxes borrow functional units from their processor pool.
Pipelining is preserved. Time sharing (multitasking) remains. Cache memory,
interrupt mechanisms, I/O and the like are without perceptible changes.

The proposed microprocessor architecture may be provided with accelera-
tors that use their native instruction sets, and process data in parallel on multi-
ple registers organized as vectors. Also the GPUs may be attached. There are
no problems with allocation of multiple uniprocessor cores on a single die.

The proposed processor has the register file containing hardware 32 64-bit
registers. The registers are enumerated r0, r1, r2, …, r31, thus pointing out the
absolute register positions (addresses) in the register file, i. e. the sequential
numbers of registers. The designations R1, R2, R3, and R4 reference the regis-
ter fields in the instruction formats. There are the following register data
types: 64-bit integer, 64-bit floating point, 128-bit floating point (optionally).
The bit/byte/dibyte data types may occupy one register, two or four concate-
nated registers, i. e. occupying 64, 128, or 256 bits of space, the last two data
types being optional.

Instruction group. One of the basic notions of the proposed micropro-
cessor architecture is the notion of the instruction group. The first instruction
of the group is the header grouping instruction, other instructions are internal
ones. The header grouping instruction in each group points out with its special
4-bit “parallelizing” operand field F0 (Fig. 1) how many instructions up to 16
should be issued in parallel including the header instruction. For other instruc-
tions of the group the mentioned field is zero. A group may contain one in-
struction only (one-instruction group) in which the F0 field is zero. The two-

Microprocessor Based on the Minimal Hardware Principle

ISSN 0204—3572.

instruction instruction group has the header instruction with F0 equal to one.
The instruction group containing 16 instructions has the F0 field equal to 15.
The most of the instructions have field F0, in particular the arithmetic, logical,
and move instructions. Of course, the header grouping instruction performs its
basic role to execute arithmetic or logical operation. The rest of instructions
are, generally, instructions for transfer of control. Thus, availability of a head-
er grouping instruction is guaranteed.

It is proposed to form instruction groups by the smart compiler. The com-
piler explores the large enough fragments (windows) of the source program
code, and extracts all possible parallelism. The compiler secures the absence
of interdependencies between data inside each group and between groups. The
smart compiler reforms the source program text by reordering the source in-
structions. The formed instruction groups may be enclosed in parentheses. It is
the instruction level parallelism (ILP) maintained both by the compiler and
hardware. The actual effect of parallelization depends on the availability of
multiple functional units. Thus, in the case of shortage of functional units the
issue of a group may happen in two or more machine cycles. Distantly the
proposed approach resembles a peculiar VLIW processor with variable num-
ber, one to four, of operative fields [6].

Concept of flux. The flux is defined as a composite that includes the
software and hardware components. From the program point of view the flux
is a stream of instructions and the flow of processed data [7]. These streams
and flows are maintained by the flux hardware that includes the register file,
the register with the program status record (PSR), and the instruction buffer.
The PSR contains: program counter register (1); stack pointer register with
address of the stack in the main computer memory (2); various state and inter-
rupt flags (3). For effective work the uniprocessor should have at least two
fluxes, i. e. the processor should be the multi-flux one. The main computer
memory and pipelined functional units are reckoned as common resource for
all fluxes, and are used on request. Fluxes may have either individual L1 in-
struction caches, or a common L1 instruction cache for the whole uniproces-
sor. A flux looks like a partial processor. Also a flux may be defined as a
channel, or window, in which a program or process executes, using a register
file and PSR, and borrowing the necessary functional units from their pool.

The maximal number of fluxes in a uniprocessor may not be larger than
eight – the width of datapaths is a limiting factor. The hardware discerns flux-
es through their 2-, or 3-bit flux distinctive labels. The functional units re-
member from which ux data to process are received, and to which flux the
results should be returned. A flux maintains either a single program process,
or a number of processes in the time-sharing mode. Also the pieces of a pro-

V.K. Dobrovolskyi

80 ISSN 0204-3572. Electronic. Modeling 6

Opcode F0 R1s R2s R3s R4d

8 4 5 5 5 5

a
Opcode F0 F1s R2s R3s R4s R5d

8 4 4 4 4 4 4

b

Fig. 1. General instruction format: four 5-bit fields for registers (a), five 4-bit fields
for registers (b)

perly designed program may execute in different fluxes in parallel, interac-ting
between each other. This is maintained by the operating system. The further
parallelization may be expanded by using multiple cores. The fluxes are at pro-
grammer's disposal, securing the full access to them by means of the OS, and
the programmer may set access to the necessary flux in a specified core.

Each ux is provided with an instruction buffer as a small and very fast
intermediate storage where the instruction groups are accumulated to issue
them into functional units in parallel. The instruction buffer has at least two
instruction slots, each slot accumulates an instruction group with up to 16 in-
structions. The flux control unit fills the first slot and simultaneously sched-
ules the instruction group from the second slot onto the functional units. Then
the slots change their purpose. Instructions came into buffer in a sequential
stream, but output of instructions is performed in groups. The hardware con-
trols the completeness of issued instruction groups. The concept of the flux
only remotely resembles the notion of multithreading [8, 9].

Instruction formats. All instructions are fixed 4-byte length, i. e. are
half-word, they may have different numbers of operand fields. The basic for-
mat has four register operands with 5-bit register operands, thus, the register
file has 32 registers, whereas the second format has five register operands with
five 4-bit registers. Further only the former format is considered. It should be
mentioned that 4-bit field F0 for the grouping of instructions may not be con-
sidered as an “expense” of bits, for this field arises naturally as an “surplus”
over bits for the operation code and registers. Fig. 1 shows the mentioned two
instruction formats (numerals mean the widths of operand fields).

The Opcode occupies the 8-bit operation code field. The 4-bit operand F0
in the header instruction with value 1 to 15 points out the number of instruc-
tions in the instruction group in addition to the header instruction; for internal
instructions of the instruction group field F0 is equal to zero. Registers R1s,
R2s, and R3s are used mainly as source registers, register R4d is a destination

Microprocessor Based on the Minimal Hardware Principle

ISSN 0204—3572.

register. These register fields contain the ordinal numbers of registers r0 to r31
in the register file. Fields may merge to give place for immediate constants
sometimes including the field F0.

The 8-bit operation code field means 256 instructions in the instruction
set. In actual fact, there are more instructions, e. g. there are about 150 multi-
media instructions. To overcome this contradiction it is rational to implement
several instruction sets in one microprocessor, and an instructions that switch
instruction sets. An additional instruction set may include a subset of the most
used instructions, plus, e. g. multimedia extension instructions or vector in-
structions. For distinction instructions from different instruction sets must
have a suffix in their internal representation. The 2-bit suffix manages with
four instruction sets.

Examples of instructions. Here are some examples of characteristic in-
structions with particular formats. Arithmetic instruction for combined multi-
ply and add is very useful in two cases:

1) scalar multiplication of the two arrays (vectors) for floating point data;
2) evaluation of the current integer index for two-dimensional array.
The evaluation formula has the appearance: R4d = R4d + R2s * R3s,

where the summation is algebraic. Register R1s is not used, registers R2s and
R3s are source registers, register R4d is the destination register which accu-
mulates all multiplied pairs.

Frequently arithmetic operations go in chains, and some operation suc-
ceeds one on just computed data. It is reckoned that this occurs for about four-
in-ten of arithmetic operations. Therefore, it is reasonable to implement in-
structions which performs two arithmetic operations in consecutive order.
Such instructions use four-operand format. The instructions compute the float-
ing point numbers. Barely it is necessary to deal with the integer numbers.
These instructions economize two machine cycles for the write into and read
from the registers. The intermediate result is held in the functional unit, and is
not accessible. The operands R1s, R2s, and R3s are the source registers; the
operand R4d is the destination register. Variants of the instructions perfor-
mances are the following:

R4d = R1s * (R2s + R3s); R4d = R1s * (R2s – R3s);

R4d = R2s * R3s + R1s; R4d = R2s * R3s – R1s;

R4d = R1s + R2s + R3s; R4d = R1s + R2s – R3s; R4d = R1s – R2s – R3s.

As it is seen the arithmetic operations are three, or four-operand. The two-
operand arithmetic instructions are not present in the proposed architecture,

V.K. Dobrovolskyi

82 ISSN 0204-3572. Electronic. Modeling 6

Fig. 2. Arithmetic instructions with an immediate constant as an operand

i. e. a source register is not used as a destination one. For the integer division
the operand R1s is used for the remainder.

Arithmetic instructions with an immediate constant as an operand use
merged fields except the field for destination register (Fig. 2).

The Opcode sets one of two arithmetic operations: addition or multiplica-
tion. The source operands are the 19-bit immediate constants, integer, or float-
ing point. Register R4d which at first is the source one, after the operation be-
comes the destination register. The floating point immediate constant has the
standard 64-bit structure (one bit for sign, eight bits for exponent) but with
mantissa cut to 10 bits. When the immediate constant is -1 the multiplication
operation changes the sign of the data in the destination register to the oppo-
site. When the immediate constant is zero the multiplication operation zeros
the destination register.

There are eight logical instructions: logical addition (OR), logical multi-
plication (AND), logical exclusive OR (XOR), logical inversion (LINV), logi-
cal shift right (LSR), logical shift left (LSL), logical rotate right LRR), logical
rotate left (LRL). The most of instructions are four-operand. The first four in-
structions use register R1s for the mask. The logical operation are performed
on the 64-bit data in registers.

The Jump instruction has merged 24-bit constant displacement operand
that is able to transfer unconditional control in the range -8388607 to 8388608
in the 4-byte instruction length measure. The zero value is not permitted. The
displacement is added algebraically to the program counter (PC). When the
jump instruction does not cover the larger address space the long jump instruc-
tion is used in which the R4 register contains a base value filled in by the
compiler. The 19-bit constant displacement operand embraces the range -
262143 to 262144. The zero value is meaningful. The R4d register and the
displacement are added algebraically to the PC.

Comparisons and branches. The comparison instruction compares two
magnitudes, m1 and m2, of the same data type. The result of comparison is
yielded by the hardware. It is so called logical result of comparison, and it is
contained in two 1-bit logical condition flags N and Z in the PSR. The branch-
es are classified into general branches with condition flags Z and N, and loop
branches purposed to control loop operations with condition flags NL and ZL.
Designations R3m1 and R4m2 stand for registers R3 and R4 containing com-
pared magnitudes.

Opcode 19-bit Immediate constant R4d

8 19 5

Microprocessor Based on the Minimal Hardware Principle

ISSN 0204—3572. 83

If two compared magnitudes m1 and m2 are equal, then logical flag
Z = '1'b, otherwise Z = '0'b. If the first magnitude m1 is less than the second
magnitude m2, then flag N = '1'b, otherwise N = '0'b, i. e. magnitude m1 is
greater than magnitude m2. Both flags Z and N are mutually dependable. The
same is for logical flags ZL and NL. The logical results of comparison of two
magnitudes are shown in the Table 1.

The comparison of the integer numbers, or the bit or byte strings does not
evoke any problems. Comparison of floating point numbers may produce a
“not number” resulting difference, located in the narrow inaccessible neigh-
borhood of the zero. In such a case it is proposed to take the compared magni-
tudes as equal. That will help to realize many algorithms based on floating
point numbers.

To use the logical result of a comparison for transfer of control the notion
of comparison expression (CE) and its value is introduced. The value is calcu-
lated, and is either true or false, predetermining the further operations in a
program. There are 6 options to calculate, and accordingly to fulfill the neces-
sary transfer of control. The options are interpreted by the programmer, and
are used to select single of two branch paths stipulated by the algorithm, thus,
changing the instruction stream. The options are shown in Table 2. Some op-
tions are supported by the logical operations OR, or AND when it is necessary
to use both logical condition flags. The given material concerning comparison
is in compliance with the IEEE-754 standard.

Table 1. Meanings of the Z and N logical flags after comparison

Logical results of Z and N flags Interpretations

Z = '1'b AND N = '0'b m1 is equal (=) to m2
Z = '0'b AND N = '1'b m1 is less than (<) m2

Z = '0'b AND N = '0'b m1 is greater then (>) m2

Table 2. Interpretation of the logical condition flags

No Logical expression with Z and N flags Interpretations

1 Z = '1'b m1 is equal (=) to m2
2 N = '1'b m1 is less (<) than to m2
3 Z = '1'b or N = '1'b
4 Z = '0'b and N = '0'b m1 is greater (>) than m2
5 Z = '1'b or N = '0'b
6 Z = '0'b m1 is not equal () to m2

V.K. Dobrovolskyi

84 ISSN 0204-3572. Electronic. Modeling 6

 Fig. 3. Pure comparison instruction format

 Fig. 4. Comparison and branch instruction format

There are pure comparison instructions among others, i. e. instructions
without the accompanied transfer of control. They compare three register
types: 64-bit integer, 64-bit floating point, or 128-bit floating point. The com-
pared data must be of the same data type, otherwise the nonsensical and not
controlled situation arises. The instruction intended for ordinary comparison
fills in the logical flags Z and N, the instruction intended for the loop control
fills the logical flags ZL and NL in the PSR. Such instructions have the format
shown on Fig. 3.

The comparison instructions format combined with the transfer of control is
shown on Fig. 4. For each of register data types there are different instructions.

The instructions perform comparison of two magnitudes with subsequent
transfer of control. The r3m1 and r4m2 are registers with the compared mag-
nitudes of the same data type. The CE field contains the reference on the 3-bit
comparison expression. The 11-bit Displacement operand contains an imme-
diate constant in the range 1023 to 1024 in the instruction measure to add to
the program counter. If the result of comparison stipulated by the condition
operand CE is true, then the control is made by using 11-bit Displacement,
otherwise the transfer to the next instruction takes place.

Instruction format for the conditional transfer of control directly stipulated
by the comparison expression (CE) is shown on Fig. 4.

If the result of comparison stipulated by the comparison expression CE is
true, then the transfer of control is made by using 21-bit Displacement in the
range 1048575 to 1048576, the measure is given in the number of instruc-
tions; otherwise the transfer to the next instruction takes place. The Displace-
ment is added to the program counter.

A method of loop control. The proposed method is applicable to loops
with the loop structure like: for i = ms to me step st; <loop body>; endfor; i. e.
where the increasing/decreasing numeric loop variable (parameter) is used.
The loop control is realized with the help of the two instructions shown on
Fig. 4, and on Fig. 5. The loop condition evaluation is made by the instruction
on Fig. 6.

Opcode F0 Not used R3m1 R4m2

8 4 10 5 5

Opcode CE 11-bit Displacement R3m1 R4m2

8 3 11 5 5

Microprocessor Based on the Minimal Hardware Principle

ISSN 0204—3572. 85

The registers R3ms and R4me contain the comparable magnitudes ms and
me with the start and end values. The register R2st contains the step parameter
of the loop. Before the comparison register with R2st step is added algebrai-
cally to the register R3ms. The instruction may be placed in any location of
the loop body, but so that several other instructions were before the end of the
loop body. This provides for the logical result of comparison becomes known
at the end of the loop. Logical result of comparison fills in the loop condition
flags ZL and NL. The flags ZL and NL are assigned the initial values before
the loop. The increase/decrease of the loop parameter takes place at the end of
the loop as usual. The comparison instruction may execute concurrently with
other instructions being a member of the instruction group, and the field F0
may be used for the header grouping instruction. For comparable magnitudes
of different types (integer, 64-bit and 128-bit floating point) different instruc-
tions are provided for.

The instruction for the conditional transfer of control (see Fig. 5), directly
stipulated by the comparison expression, is located at the end of the loop
body. It secures the transfer of control to the beginning of the loop, or to go
out of the loop. The described case of the loop is where the condition evalua-
tion is made at the end of the loop body. Other kinds of loop made such a test
at the beginning of the loop body. Then the instruction for the conditional
transfer of control is the first instruction of the loop body, and the comparison
instruction may be placed as the next. The smart compiler organizes described
loop constructs.

Parallelization of branches. The parallelization of branches means avoi-
dance of delays caused when the resolving branch condition occurs. It is pro-
posed to merge the instructions of initial parts of two branch paths in the inter-
leaving stratified manner to create a combined instruction stream to execute in
parallel economizing machine cycles [7]. After the resolving of the branch
condition the transfer of control to the rest of the true branch path takes place.
The method is illustrated on Fig. 7.

Opcode CE 21-bit Displacement

8 3 21

Fig. 5. Instruction format for conditional transfer of control stipulated by the com-
parison expression

Opcode F0 Not used R2st R3ms R4me

8 4 5 5 5 5

Fig. 6. Structure of comparison instruction for loop control with usage of step pa-
rameter

V.K. Dobrovolskyi

86 ISSN 0204-3572. Electronic. Modeling 6

Front stream Branch path 1 Branch path 2 End
stream

1, 2, 3, 4, b 5, 6, 7, 8, 9, 10, 11, 12, j 13, 14, 15, 16, 17, 18, 19, 20, 21, ...

 Split point

 Convergence point
 a

Front stream Combined

stream
Rest of branch

path 1
Rest of branch

path 2
End

stream

1, 2, 3, 4, ci 5, 13, 6, 14, tc 7, 8, 9, 10, 11, 12, j 15, 16, 17, 18, 19, 20, 21, ...

 Split point Convergence point
 b

Fig. 7. Exemplary scheme of parallelization of branched instruction stream: a – traditional
form of the split of instruction stream in two branch paths; b – transformed instruction stream
having combined instruction stream. Designations: cb is compare and branch instruction; j is
jump instruction transferring control after the last instruction of branch path 1 to convergence
point; ci is condition instruction that fills the condition flags only; tc is transfer of control in-
struction using comparison flags. Numerals are the serial numbers of instructions. Front
stream – the initial flow of branching instructions; End stream – finishing stream after bran-
ching; Branch path 1, 2 – two alternative branch paths; Split point – point of branching; Con-
vergence point – point of confluence; Combined stream – stratified instruction stream; Rest of
branch path 1, 2 – the rest of the instructions in the two alternative branches after removing
some of the initial instructions.

Traditional structure of the branch construct is shown in Fig. 7, a. The
front instruction stream ending with the compare and branch instruction is
split into two paths which are located in the memory one after another. When
the branch condition is resolved the transfer of control takes place either to the
branch path 1, or to the branch path 2, the choice being defined by the algo-
rithm. The jump instruction in the end of the branch path 1 transfers control to
the convergence point, to the non-split end stream. The split point is a location
in the non-split instruction stream after the instruction which causes the
branch (e. g., comparison one). The convergence point is a location before the
instruction to which both branches transfer the control after the branching is
fulfilled. These definitions are abstractions for convenient description of the
branch occurrence.

Microprocessor Based on the Minimal Hardware Principle

ISSN 0204—3572. 87

A drawback of the described branch construct is a delay after the compar-
ison instruction. Contemporary microprocessors have a special complex hard-
ware which inserts some other instructions just after the split point, thus
avoiding processor stalls.

It is proposed new branch construct to parallelize branches. This is shown
as an example on Fig. 7, b. The front instruction stream is completed with the
pure comparison instruction without transfer of control which fills the condi-
tion flags in the PSR to use in the sequel. Further the combined instruction
stream follows, which consists of some initial instructions from two branch
paths merged in the interleaving manner. The combined stream is created by
the smart compiler. The last instruction of the combined stream is the transfer
of control instruction that uses the information from the condition flags left by
the pure comparison instruction after the logical result of comparison is solved
and known. After that the transfer of control is carried out either to the rest of
the branch path 1, or to the rest of the branch path 2, and further to the con-
vergence point, i. e. to the end stream. Instructions in the combined stream
should be mutually independent, and not change the variables which secure
correctness of the algorithm programmed. This is verified by the compiler.

The advantages of the proposed method are avoidance of pipeline stalls,
utilization of the general register file only, and usage of the same program
counter. The instructions of the combined instruction stream, comparison in-
struction, and instruction for transfer of control may be members of instruction
groups, executing in parallel. The proposed method is the deterred branch ap-
proach, and is different from the well known delayed branch approach. No
special hardware is needed. There are some peculiarities, e. g., the instructions
like s = s + a * b are not permitted in the combined instruction stream as they
may violate the correctness of the algorithm.

Conclusion
The proposed project of the general purpose microprocessor architecture is a
deep deviation from the habitual guidelines and principles of processor de-
signing, overcoming much stereotypes. For the sake of it the notion of the in-
struction group is developed, the groups being formed by the smart compiler.
The instruction group permits to extract all possible parallelism from the large
source program text instruction window, and to execute it in parallel. The con-
cept of the flux, which is developed as a composite that includes the software
and hardware components within the scope of the uniprocessor, permits con-
venient execution several program streams concurrently. The fluxes are at
programmer's disposal securing the full access to them by means of the OS.

V.K. Dobrovolskyi

88 ISSN 0204-3572. Electronic. Modeling 6

The minimal hardware principle is postulated on which the proposed
microprocessor architecture is founded. The architecture does not use SMT,
register renaming, instruction reordering, out-of-order execution, speculative
execution, superscalar execution, delayed branch, branch prediction which all
require very complex hardware units. These all are substituted by the notion of
instruction group, concept of flux, specially designed instructions, and all this
gives a considerable economy of hardware.

The method of loop control, applicable to loops where the numeric loop
variable is used, replaces the widely used branch prediction in contemporary
processors, and needs no additional hardware. The method of the paralleliza-
tion of ordinary branches ensures a sort of linearization of the instruction
stream avoiding extra machine cycles.

The proposed microprocessor architecture ensures less hardware, higher
performance, less power, less cost, no vulnerabilities, it secures effective par-
allelization both on the instruction set level, and on the higher levels.

REFERENCES

1. Dumas II, J.D. (2017), Computer Architecture. Fundamentals and Principles of Computer
Design, Taylor & Francis Group.

2. Stallings, W. (2013), Computer Organization and Architecture. Designing for Perfor-
mance, Ninth edition, Pearson Education.

3. Patterson, D.A. and Hennessy, J.L. (2009), Computer Organization and Design. The
Hardware/ Software Interface. Fourth edition, Morgan Kaufmann Publishers.

4. Melnyk, A.O. (2008), Architecture of Computer. Manual, Lutsk regional printing, Ukraine.
5. Sima, D., Fountain, T.J. and Kacsuk, P. (1997), Advanced Computer Architectures: A De-

sign Space Approach, Addison-Wesley.
6. Tremblay, M., Chan, J., Conigliaro, S.W. and Tse, S.S. (2000), “The MAJC Architecture:

A Synthesis of Parallelism and Scalability”, IEEE MACRO, November-December, pp. 12-
25.

7. Dobrovolskyi, V.K. (2018), “Microprocessor with Explicit Parallelism’’, the Proceedings
of SIMULATION-2018, September 12-14, 2018, Kyiv, Ukraine, pp. 135-138. ISBN 978-
966-02-8587-3

8. Eggers, S.J., Emer, J.S., Levy, H.M., Lo, J.L., Stamm, R.L. and Tullsen, D.M. (1997),
“Simultaneous Multithreading: A Platform for Next-Generation Processors” IEEE Micro,
pp. 12-19.

9. Lo, J., Eggers, S., Emer, J., Levy, H., Stamm, R. and Tullsen, D. (1997), “Converting
Thread-Level Parallelism Into Instruction-Level Parallelism via Simultaneous Multi-
threading”, ACM Transactions on Computer Systems, pp. 322-354.

Received 15.07.19

Microprocessor Based on the Minimal Hardware Principle

ISSN 0204—3572.

. .

-

-
,

 .

 : , , , -
 , .

. .

-

,

-
-

.

 : , , ,
, .

DOBROVOLSKYI Volodymyr (Dobrovolsky in some publications) Ph.D., graduated in 1961
from Lviv Polytechnic Institute, Ukraine, in technology of machine building, received a Ph.D.
in mathematical economics from Institute of Economics of National Academy of Sciences of
Ukraine. The research interests are the CPU and microprocessor architecture, the mathemati-
cal modeling of economy, and energy economics.

