## Особенности влияния микроструктуры на прочность композиционных материалов при статическом и циклическом нагружениях

С. А. Фирстов, Ю. Ф. Луговской

Установлено, что для исследованных поликристаллических материалов на основе меди зависимости предела текучести и ограниченного предела выносливости от размера зерна D в диапазоне размеров зерен 4—0,3 мкм параметру структуры  $D^{-1}$ . Показано, что уравнение Холла—Петча может быть применено в указанном диапазоне размеров зерен при условии, что коэффициент уравнения Холла—Петча подчиняется уравнению  $K_v = K_B \cdot D^{-0.5}$ .

В физике прочности известны многочисленные экспериментальные и теоретические результаты, которые показывают, что уменьшение размера зерна поликристаллических материалов обычно вызывает существенное повышение предела текучести  $\sigma_{0,2}$  и разрушающего напряжения  $\sigma_{p}$ , описываемое уравнениями Холла—Петча и Мотта—Стро

$$\sigma_{0,2} = \sigma_0 + K_{\rm v} D^{-1/2}; \tag{1}$$

$$\sigma_{0,2} = \sigma_0 + K_y D^{-1/2};$$
 (1)  
 $\sigma_p = K_p D^{-1/2}$  или  $\sigma_p = \sigma_0' + K_p' D^{-1/2},$  (2)

где D — средний размер зерна поликристаллического материала; постоянные  $\sigma_0 \sigma_0'$  — параметры, а  $K_v$ ,  $K_p$ ,  $K_p'$  — коэффициенты.

Вместе с тем при переходе к микро- и нанокристаллическим структурам ΜΟΓΥΤ наблюдаться отклонения OT Холла—Петча. Так, в работах [1—5] отмечается переход от зависимости (1) к экспериментальной зависимости

$$\sigma_{0,2} = \sigma_0 + K_{\scriptscriptstyle B} D^{-1} \tag{3}$$

при достижении некоторого критического размера структурного элемента в интервале D = 20—0,2 мкм. Размерность коэффициента  $K_{\rm B}$  (МПа·м), естественно, отличается от размерности коэффициента  $K_v$ . Отметим, что, если в работах [1-3] такой переход наблюдался для железа и его сплавов, а также для алюминия и титана при образовании мелкозернистых структур деформационного происхождения, в работах [4, 5] указанный переход наблюдался и для хрома, полученного магнетронным распылением. При дальнейшем уменьшении размеров зерен при переходе в область наноразмеров, напротив, предсказывается и иногда отмечается снижение прочностных характеристик [6].

В данной работе предпринята попытка установить влияние размера зерна на пределы текучести и выносливости группы конденсированных материалов на основе меди, в которых размер зерна варьировали в диапазоне 4—0,3 мкм.

## Материалы и методы исследования

В работе исследовали поликристаллические материалы на основе меди Cu—NbC, Cu—Mo и CuAl—Mo, полученные методом конденсации в вакууме компонентов на горячую подложку [7]. При этом исследовали

© С. А. Фирстов, Ю. Ф. Луговской, 2008

Си—Мо в исходном состоянии, то есть после конденсации при температуре 720 °C, а также после отжига при температуре 950 °C. Объемная доля  $V_{\rm p}$  частиц вторых фаз (NbC, Mo) в большинстве исследованных материалов не превышала 5%. Расчет увеличения пределов текучести Си—NbC и Си—Мо по формуле Орована показал, что упрочнение составляет соответственно 3 и 4%. Следовательно, основной эффект упрочнения достигался за счет измельчения размера зерна при введении дисперсных частиц. В то же время, по данным работы [8], в монокристаллах меди дисперсные частицы обеспечивают существенно более высокое упрочнение.

Испытания при статическом нагружении проводили стандартными методами. Сопротивление усталости материалов определяли при изгибе по методике нагружения образцов в резонансном режиме колебаний на частоте 1,5 кГц [9, 10]. Дислокационную структуру материалов после усталостных испытаний изучали на растровом электронном микроскопе JSM-200.

## Результаты испытаний и их обсуждение

Результаты определения пределов текучести и выносливости  $\sigma_{-1}$  материалов при изгибе на базе  $2\cdot 10^6$  циклов, а также данные о структуре исследованных материалов представлены в таблице и на рис. 1. Данные механических испытаний для всех представленных в таблице материалов были проанализированы в координатах уравнений (1) и (3).

На рис. 2 в качестве примера приведены типичные зависимости пределов текучести и выносливости от размера зерна для Cu—NbC. Как видно из рис. 2, a, b, уравнение (1) достаточно хорошо описывает экспериментальные данные для пределов текучести и выносливости соответственно. В то же время в координатах уравнения Холла—Петча наблюдается существенное отклонение от прямолинейной зависимости. Это отклонение может быть обусловлено тем обстоятельством, что в данном диапазоне размеров зерен коэффициент уравнения Холла—Петча  $K_y$ 

Структура и механических свойства исследованных материалов

| Материал     | V <sub>p</sub> , % | D,   | $D^{-1}$ ,        | $D^{-1/2}$ ,                              | $\sigma_{\scriptscriptstyle B}$ | $\sigma_{0,2}$ | $\sigma_{-1}$ |
|--------------|--------------------|------|-------------------|-------------------------------------------|---------------------------------|----------------|---------------|
|              | . р,               | MKM  | MKM <sup>-1</sup> | мкм <sup>-1</sup> мкм <sup>-1/2</sup> МПа |                                 |                |               |
| Cu—NbC       | 0,7                | 4,0  | 0,250             | 0,50                                      | 330                             | 240            | 210           |
|              | 0,75               | 3,9  | 0,256             | 0,51                                      | 350                             | 230            | 218           |
|              | 2,2                | 1,8  | 0,555             | 0,74                                      | 550                             | 380            | 307           |
|              | 3,7                | 1,2  | 0,833             | 0,91                                      | 730                             | 620            | 338           |
| Cu—Mo,       | 2,4                | 1,5  | 0,666             | 0,82                                      | 470                             | 310            | 215           |
| 720 °C       | 5,6                | 0,9  | 1,111             | 1,05                                      | 640                             | 470            | 290           |
| Cu—Mo,       | 1,0                | 2,2  | 0,454             | 0,67                                      | 335                             | 210            | 172           |
| 720 + 950 °C | 2,4                | 1,6  | 0,625             | 0,79                                      |                                 |                | 215           |
|              | 5,6                | 1,0  | 1,000             | 1,00                                      |                                 | _              | 318           |
| Cu           | 0                  | 22   | _                 | _                                         | 210                             | 80             | 150           |
| CuAl—Mo      | 2,0                | 1,1  | 0,909             | 0,94                                      | 600                             | 450            | 222           |
|              | 4,0                | 0,5  | 2,000             | 1,41                                      | 750                             | 670            | 258           |
|              | 6,0                | 0,4  | 2,500             | 1,58                                      | 820                             | 740            | 245           |
|              | 8,0                | 0,35 | 2,857             | 1,69                                      | 875                             | 830            | 280           |
|              | 10,0               | 0,30 | 3,333             | 1,83                                      | 900                             | 880            | 292           |
| Cu—5% Al     |                    | 20,0 | _                 | 0,22                                      | 340                             | 180            | 208           |

Рис. 1. Характерная ячеистая дислокационная структура Cu-2,4% Мо  $(T_{\Pi}=720~{}^{\circ}\mathrm{C})$  (x56 000).

не является константой, а тоже зависит от размера зерна. Соответствующие зависимости  $K_y(D)$  для всех изученных материалов приведены на рис. 3, a. Данные были получены из зависимостей, приведенных

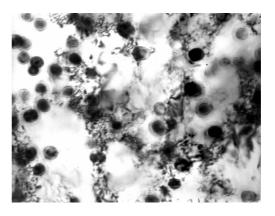



рис. 2,  $\delta$ ,  $\varepsilon$ . Как следует из представленных данных, хорошо выполняется линейная зависимость  $K_v(D^{-0.5})$ .

Такую эмпирическую зависимость, по нашему мнению, можно обосновать, сравнив уравнения (1) и (3). В обоих уравнениях присутствует один и тот же член  $\sigma_0$ , так как он отражает сопротивление движению дислокаций в теле зерна. Приравняв правые части уравнений (1) и (3), получаем зависимость  $K_{\rm V}/K_{\rm B}=D^{-0.5}$ .

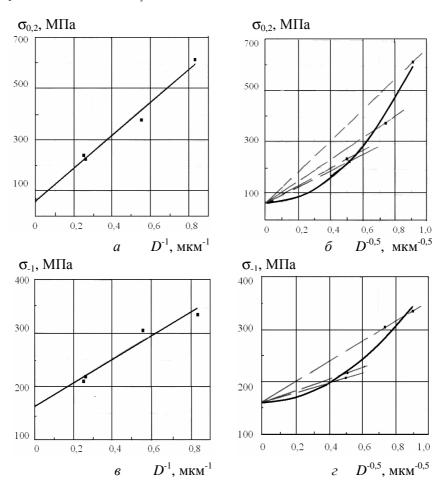
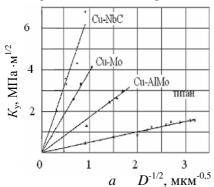




Рис. 2. Зависимости пределов текучести  $(a, \delta)$  и выносливости (s, c) поликристаллического материала Cu—NbC от параметров структуры  $D^{-1}$  и  $D^{-0.5}$ .



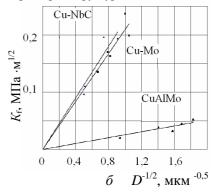



Рис. 3. Зависимости коэффициента уравнения Холла—Петча (a) и второго коэффициента уравнения типа Холла—Петча ( $\delta$ ) от параметра структуры  $D^{-1/2}$  исследованных материалов.

Для сравнения с нашими данными на рис. 3, a представлена зависимость  $K_{\rm y}$  холоднодеформированного титана от среднего размера D дислокационной ячейки, полученная по данным работы [2]. Как видно, отмеченные в настоящей работе особенности подтверждаются и данными для титана.

Итак, в данной работе, как и в работах [1—5], установлено, что при уменьшении размеров зерна до субмикронных имеет место переход к зависимости, описываемой уравнением (3). Интерес представляет определение критического размера зерна  $D_{\rm cr}$ , при котором происходит этот переход. Значение  $D_{\rm cr}$  можно найти, приравняв зависимости (1) и (3). Полагая, что значение  $\sigma_0$  в обоих уравнениях одно и то же, получим

$$D_{\rm cr} = (K_{\rm\scriptscriptstyle B}/K_{\rm\scriptscriptstyle y})^2 \,. \tag{4}$$

По данным, приведенным на рис. 2, a, e, легко найти значения  $K_{\rm B}$ , а для чистой меди можно принять  $K_{\rm y}=0.11~{\rm M}\Pi a\cdot {\rm m}^{0.5}$ . Тогда для материалов Cu—NbC  $D_{\rm cr}=34~{\rm mkm}$ . Отметим, что исследуемый в работе диапазон размеров зерен составляет 4—0,3 мкм.

Очевидно, что при размерах зерен больше  $D_{\rm cr}$  будет выполняться обычное уравнение Холла—Петча. Если предположить, что общая схема передачи скольжения через границу зерна, принятая для уравнения Холла—Петча, выполняется и при размерах зерен ниже критического, то можно получить связь между коэффициентами уравнений (1) и (3), а именно

$$K_{y}/K_{B} = D^{-0.5}.$$

(5)

Таким образом, оценка критических размеров зерен для исследованных материалов показала, что в изученном диапазоне их размеров хорошо выполняется зависимость (3), а при обработке экспериментальных данных в координатах уравнения Холла—Петча наблюдается существенное отклонение от прямой линии (см. рис.  $2, \delta, \epsilon$ ). Последнее обстоятельство свидетельствует о том, что коэффициент  $K_y$ 

зависит от размера зерна. Действительно, как следует из рис. 3, зависимость (5) выполняется с высоким коэффициентом корреляции.

С физической точки зрения причиной такого поведения, по нашему мнению, является следующее обстоятельство. В соответствии с классичес-

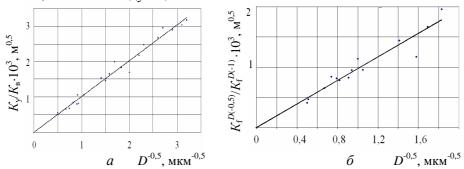



Рис. 4. Зависимости отношений  $K_{\rm y}/K_{\rm B}$  для предела текучести  $(y=1,0149{\rm x},R^2=0,9866)$  (a) и  $K_{\rm f}^{D(-0,5)}/K_{\rm f}^{D(-1)}$  для предела выносливости  $(y=0,9753{\rm x},R^2=0,9538)$  (б) исследованных материалов от параметра структуры  $D^{-1/2}$ .  $R^2$  — величина достоверности аппроксимации стандартной программы в Microsoft Office Excel.

кими представлениями, константа уравнения Холла—Петча  $K_y = m \tau_s (r_s)^{0.5}$  (m — фактор ориентировки;  $\tau_s$  — напряжение срабатывания дислокационного источника у вершины скопления;  $r_s$  — расстояние от вершины скопления до источника) не зависит от размера зерна. Однако с уменьшением D величина  $r_s$  приближается к границе зерна. При этом происходит срабатывание дислокационных источников не в теле зерна, а у его границы. Полагая, что и напряжение старта дислокационного источника  $\tau_s = \alpha Gb/l$  и расстояние  $r_s$  при размерах зерен ниже критического становятся зависимыми от D ( $l \sim D$ ,  $r_s \sim D$ ), получим

$$K_{y} = \alpha mGb/D^{1/2}.$$
 (6)

Поскольку в экспериментальной зависимости (5) величина  $K_{\rm B}$  постоянная, теоретическая зависимость (6) совпадает с ней при условии, что  $K_{\rm B}=\alpha mGb$ . Таким образом, можно теоретически рассчитать экспериментальный коэффициент  $K_{\rm B}$  в уравнении (3).

Экспериментальная проверка этих выводов для исследованных в работе конденсированных поликристаллических материалов, а также известных из литературы данных подтверждает хорошее выполнение зависимости (5) как для предела текучести, так и для предела выносливости (рис. 4).

Из представленных данных следует, что переход от уравнения (1) к (3) имеет место не только для напряжения течения, что уже наблюдалось и обсуждалось в работах [1—5], но и для предела выносливости, что в данной работе получено впервые.

## Выводы

Установлено, что для исследованных в работе материалов Cu—NbC, Cu—Mo (720 + 950  $^{\circ}$ C) и CuAl—Mo, полученных вакуумной конденсацией паровых потоков компонентов на горячую подложку,

зависимости пределов текучести и выносливости от размера зерна (4-0.3 мкм) пропорциональны параметру структуры  $D^{-1}$ .

Показано, что уравнение Холла—Петча может быть применено в указанном диапазоне размеров зерен при условии, что коэффициент уравнения подчиняется уравнению  $K_{\rm v} = K_{\rm B} \, D^{\text{-0.5}}$ .

- 1. *Thompson A. W.* Substructure strengthening mechanisms // Met. Trans. 1977. **8A**, No. 6. P. 833—842.
- 2. Sevillano J. G., Houtte P. van and Aernoudt E. Lardge strain work hardening and textures // Progress in Material Science. 1981. 25. P. 69—412.
- 3. *Трефилов В. И., Моисеев В. Ф., Печковский Э. П.* и др. Деформационное упрочнение и разрушение поликристаллических металлов / Под ред. Трефилова В. И. К.: Наук. думка, 1989. 256 с.
- 4. *Фирстов С. А.* Особенности деформации и разрушения нанокристаллических материалов // Прогресивні матеріали і технології: У 2-х т. К.: Академперіодика, 2003. Т. 2. 663 с.
- 5. Firstov S. A., Rogul T. A., Marushko V. T., Sagaydak V. A. Structure and microhardness of polycrystalline chromium produced by magnetron sputtering // Вопросы матераловедения. 2003. № 1. С. 201—205.
- 6. *Андриевский Р. А., Глезер А. М.* Размерные эффекты в нанокристаллических материалах. 1. Особенности структуры. Термодинамика. Фазовые равновесия. Кинетические явления // Физика металлов и металловедение. 1999. **88**, № 1. С. 50—73.
- 7. *Мовчан Б. А., Малашенко И. С.* Жаростойкие покрытия, осажденные в вакууме. К.: Наук. думка, 1983. 285 с.
- 8. *Мартин Дж.* Микромеханизмы дисперсионного твердения сплавов / Пер. с англ. М.: Металлургия, 1983. 167 с.
- 9. *Луговской Ю. Ф., Кузьменко В. А., Гречанюк Н. И. и др.* Влияние структуры и длительности циклического нагружения на сопротивление усталости дисперсно-упрочненных конденсированных материалов на основе меди. 1. Экспериментальные зависимости // Порошковая металлургия. 1998. № 3/4. С. 93—100.
- 10. *Луговской Ю*.  $\Phi$ . Методика усталостных испытаний композиционных материалов при изгибе, полученных электронно-лучевым испарением // Проблемы спец. электрометаллургии. 1987. № 4. С. 61—65.