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EVALUATION OF THREE-DIMENSIONAL DEFORMATION FIELDS OF THE
EARTH BY METHODS OF THE PROJECTIVE DIFFERENTIAL GEOMETRY.
THE MAIN LINEAR DEFORMATIONS

Aim. The aim is to solve the problem of evaluating the Earth’s topographic surface deformations using
projective differentia geometry methods as an expression of the space metric tensor and the group of main linear
deformation parametersin the spatial geocentric coordinate system. M ethodol ogy. Solving the problem is based
on using the homeomorphism transformation (mapping) properties of the three-dimensional continuous and
closed domains of the space with the hypothesis that this transformation has a geophysical origin and was caused
by the deformation. If the base functions meet homeomorphism requirements, the functional model
transformation is capable of tranamitting the change of metric properties of the domain by different
characteristics that, in the accepted hypotheses, are its deformation parameters. The main carrier of these
characteristics is the metric tensor of three-dimensional Euclidean space. A tensor isformed by the metric form
of the transformed domain of space as the square of the linear element length, which is expressed by differentials
of the transformation domain coordinates and then full differentials of base functions e are taken into account.
Results. Solving the task is carried out on the condition that the transformation domain of space is outlined by
the Earth’s topographic surface and coordinated on a three-dimensional rectangular geocentric system. The
solution results are working formulas for calculating the main spatial linear deformations, which are expressed
by coefficients of elongation, compression, and shear of the topographic surface. Directions of these parameters
are defined in the geocentric polar system. Various coefficients of elongation and their directions are expressed
in metric tensor components. Formulas are obtained for calculating the parameters in any given direction, along
the directions of coordinate axis, on projections to coordinate planes, and for the extreme values triad with the
respective spatial orientation. Scientific novelty and practical significance. It is grounded that studies of the
Earth’s deformation fields by methods of the projective differential geometry has greater potential capabilities
when compared to methods of linear continuum mechanics and aso provides generalized solutions. The
homeomorphic functiona model as the basis for the formation of the tensor alows the expression of the
deformation of any character. Formulas for expressing the main linear deformations are obtained. Results are
suitable for evaluation of three-dimensiona deformation fields of any scale. Deformation parameters are
attributed directly to the topographic surface of the Earth. The sufficient coverage of the Earth by GNSS stations
and representational observational data that defines the completeness of functiona mode construction, together
with the obtained results are able to provide the evaluation and interpretation of the real deformations, but not
within the traditional moddl surfaces.

Key words: spatial deformations of the Earth; topographic surface; space mapping; space metric form; space
metric tensor; coefficient of linear distortion.

Introduction

Research of the Earths deformation fidds is an
actual problem of modern geodynamics, which
comprehensively solved on the basis of interdisciplinary
cooperation a wide range of natural sciences. The
purpose and content of research using the geodetic
branch of knowledge is defined by resolutions of the
International Association of Geodesy (IAG) in
framework of the activities of Sub-Commission 3.2
“Crystal Deformation” of Commission 3 “Earth
Rotation and Geodynamics’. Among other, the
objectives of ther work is “to sudy the deformation of
the crust al scales from globa plate tectonics to local
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deformation, ... the development and coordination of
international programs of the observation, analysis and
interpretation of deformation fidds’ [Internationa
Association...].

Applied aspects of researches are the basis of
activities for the working group 6.1 “Measurement
and analysis of deformation” of Commission 6
“Engineering surveys’ of International Federation of
Surveyors (FIG) [International Federation ...].

As a consegquence of close cooperation between
the two most important international geodetic
organizations in area of researches the problem was
the creation of a joint working group IAG/FIG 0.2.1
“New technology to deformations monitoring and



I'eoaunamika 2(21)/2016

responding to natural disasters’. In its activities, a
working group provides the coordination of
interdisciplinary  approaches to monitoring  of
deformation fields of natural and engineering objects,
development of methods of processing and analyzing
the time series of observations on the theoretical leve,
innovative data processing algorithms, satic and
dynamic modeling of deformations and so on. The
main source of quantitative information for problem
solving is defined the data of observations in
networks of permanent GNSS-dations. The
theoretical basis of researches already is traditionally
used a linear homogeneous modd of continuum
mechanics. Results of the working group activities as
well as scientific and applied aspects of researches by
all geodetic community discussed at the standing joint
(IAG/ FIG) International Symposium on deformations
monitoring, for example[Joint ...].

Analysis of the research and unresolved parts
of the general problem

Repeated geodetic measurements that are
performed on physical surface of the Earth are able to
provide the discrete character information only about
movements of points or their velocities, while
evaluation of surface deformation is a result of any
modeling of input survey data. Taking into account
the specific of methods of constructing classical
geodetic networks, but redizing that the deformation
is a continuous spatial phenomenon, the data is
traditionaly divided into horizonta and vertical
components. This division is also substantiated by
geophysical point of view: tectonic processes that
affect on horizontal movements of surface are
different as compared to those that affect on vertical.
The division into components a so defines the area of
application of geodetic data in the modeling of
deformation fiedlds of the Earth: planes of two-
dimensional or three-dimensional space, geosphere,
ellipsoid, topographic (physical) surface of the Earth.
By calculating the deformation parameters, they
belong to one of these surfaces. Mostly the object of
research is the horizontal component of the
deformation in projection onto the plane or curvilinear
spherical or elipsoidal surfaces. Based on the theory
of an infinitessimal locally homogeneous linear
deformation of the continuum, al used methods
estimate only the linear approximation of deformation
tensor on a plane with arectangular coordinate system
or on a plane that is tangent to the curvilinear surface
with a spherical or elipsoida parameterization.
Modeled on that basis a horizontal approximation is
judtified at the evaluation of the local scale
deformations when errors of projections of physical or
curvilinear surfaces onto the plane are small.

A special place in research are occupied a methods
of three-dimensionad modeling of deformations.
Based on the same theory and using measurement
results on points of spatial geodetic networks the first
task solutions was achieved by three-dimensional

finite e ement method. The method was implemented
in arectangular coordinate system on simplexes of the
three-dimensional space — on tetrahedrons [Esikov,
1979; Brunner, 1979], on eements of the
quadrangular form [Kiamehr, Sjoberg, 2005], and also
by using a least squares method, on finite elements of
arbitrary geometric forms [Reilly, 1987; Pietrantonio,
Riguzzi, 2004]. Listed references represent only atiny
fraction midst of total this kind of researches.
Deformation invariants as the fina result of data
processing and the basis of phenomenon
interpretations refers to barycenters of selected spatial
geometric shapes, but not to topographic or any
modeled surface. The three-dimensional finite
element method has perspective in evaluation of local
deformations of the upper crust horizonsin conditions
of the broken terrain or, hypotheticaly, provided
carrying out of displacements measurements a a
certain depth relatively the topographic surface or
extrapolation of survey data deep into the Earth. In
latest cases the task is devoid of thelogical content.

A weighty motive for the rethinking of theoretica
foundations of the deformation analysis was the
introduction in geodetic practice the modern satellite
navigation technologies based on the use of global
satdllite positioning and implemented in networks of
permanent GNSS-stations. The results of gpatid
coordinate monitoring of stations allowed to increase
the effectiveness of the solution of many problems of
modern geodynamics. At the same time, their use has
given rise the problems associated with the need to
create new models of deformation fields and methods
of data processing.

The origina solution of the problem presented in
the article [Savage et a., 2001]. Assuming the
sphericity of the Earth, as input data is used
coordinates | ,j ,r (east, north and zenith) in the

loca sphericd system. They obtained by
transformations of geocentric spatial coordinates of
stations. Components of the three-dimensional
deformation tensor are expressed in  sphericd
coordinates based on the mathematical theory of
elagticity [Love, 1944] by Taylor series
approximation of displacements using the least
squares method. A tensor describes only horizontal
deformations and refers to the part of a spherica
surface, for which is set the local coordinate system.
The authors consciously neglected the vertical
movements of the Earth, but consider as the
indisputable positive of solution the prospect of
evaluation the rotation vector of the local surface
around conditiona pole which fixesthe r coordinate.
As the third component of a three-dimensiona tensor
he is associated with a rigid rotation of the Earth
around the Euler vector. This method has found
practicdl application in evaluation of local
deformation fields as it is presented, for example, in
articles [Savage et a., 2004; Hammond, Thatcher,
2004, 2007; Kreemer et al., 2009]. Though on this
basis is esimated a three-dimensional tensor,
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however, he does not express the spatial deformation
of the Earth.

The spatial coordinates of GNSS-stations provides
a description of the physical surface of the Earth by
the curvilinear surface that is embedded into a three-
dimensional Euclidean space with a conditiona
beginning in the geocenter. Such data caused the
development of methodol ogical approaches to solving
the problem that can provide the evaluation not only
horizontal but also vertica components of
deformation fields and in the future also spatid
deformations of the Earth, that are referred to its
topographic surface.

The first substantial researches of problem in this
direction is presented in articles, such as [Xu,
Grafarend, 1996; Altiner, 1999; Voosoghi, 2000;
Grafarend, Voosoghi, 2003]. Researches based on
differential surfaces representation in the plates and
shells theory within continuum mechanics. Solving
the problem considered from two perspectives. The
firgt is an external modeling of deformations. This
approach involves the modeling of the topographic
curvilinear surface of the Earth into a three
dimensional space with the following evaluation of
three-dimensional deformation tensor and related
invariants. It could provide an ideal, in terms of
cognition of phenomena the interpretation of
deformation fields, but because of the difficult
differential wording does not have at present due
mathematical solutions. The second view — the
internal modeling of deformations of the Earth's
surface as graded two-dimensional curvilinear
surface, which is embedded in the three-dimensional
space, with appropriate evaluation of two-dimensional
tensors. Authors believe that this approach is able to
provide the estimates of spatial deformations which
referred to the topographic surface of the Earth
separately in the horizontal and vertical components.
Argumentations of such decision are as follow.
Presentation of the horizontal component provides the
method of geometric modeling the metric changes of
the surface, based on the expression of two-
dimensional Euler-Lagrange deformation tensor of the
first kind. Such method is traditionally used in the
interpretation of deformation fidds. A verticd
deformation describes the associated invariants of the
rotation tensor and Euler-Lagrange tensor of the
second kind, which expresses the changes of the
Gaussian curvature along the norma to the surface.
Such innovative solving of the problem greatly
expands the informative capabilities of geodetic
methods of deformation fields monitoring.
Implementations of task solutions are constantly
improved and in lagt years actively introduced in the
research practice. Some of optimization mathematica
solutions presented, for example, in articles
[Moghtased-Azar, Grafarend, 2009; Hossaindli et al.,
20113, 2011b; Grafarend, 2012].

Author’'s argumentation concerning referring the
tensors and their invariants to the topographic surface

of the Earth is questionable. It confirms the content of
the term “the internal modeling of deformations of the
Earth's surface as graded two-dimensiona curvilinear
surface”, and some examples of practica
implementation of the method. So, the graded
presentation of the surface causes the need of its
divison into finite elements. The result of such
division is called as grid. Hypothetically the grid on a
topographic surface could be implemented, but it is
hardly can be achieved into the near future.
Beforehand the surface should be parameterized.
From a geometrical point of view, a topographical
surface is extremely complicated and is not subject to
the two-dimensiona parameterization by traditional
methods even within such model as geoid. In
implementing of the method, such as is done in
studies [Voosoghi, 2000; Altiner et a., 2006], as the
parameterized surface authors have used the elipsoid.
Calculated on dlipsoidal triangles [V oosoghi, 2000]
or quadrilateral [Altiner et al., 2006] tensors and their
invariants are referred to barycenters of these
geometric shapes, but not to the topographic surface
of the Earth. Such a shortcoming is caused by the
theoretical basis of the problem solving.

Methods of solving the problem on such
theoretical basis have another shortcoming — most of
solutions are able to express only linear component of
deformation fields. It is well known that the spatial-
time regularities of Earth deformations having more
complicated nature compared to linear. This fact is
confirmed by empirical calculations which are
presented in article [Tadyeyeva et a., 2012]. Others,
formal, confirmation is as follows. If the
displacements field is approximated by the arbitrary
function and members of the second and higher orders
during the decomposition of the corresponding
empirical formula in the series will be significant
compared to the member of the first (linear) order,
thereby will also be confirmed the fact of non-linear
spatial distribution law of displacements. However,
the ascertained fact mostly by used methods does not
count: which would not have been the functiona
filing of displacement field, the deformation tensor
describes only him linear component. In deterministic
relation “function-tensor” based on classical linear
theory of the continuum deformation does not take
pat the actua function that expresses the
deformation, but only her local linear approximation
into the infinitely small scale. When is formed the
tensor, actual functions are subject to linearization
and only obtained approximation defines the structure
of tensor and associated invariants. In this connection,
arises the problem of expediency a nonlinear
functional filing of displacement fields for the needs
of the following deformation analysis on such
theoretical basis. Obvioudly, the use of nonlinear
functional models of displacement fields is endowed
the logical content only for their spatial interpolation.

Presents an analysis became the motivation for
finding the aternative ways and development
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methods of problem solving which have not been
burdened by ascertained shortcoming. In the article
[Tadyeyev e al., 2013] we substantiated the
expediency of solving a general problem by methods
of projective differentiadl geometry. In the article
[Tadyeyev, 2013c] presented the ways of its solution
on this basis. Based on the theory of surfaces mapping
are obtained solutions of the problem of evaluation
the horizontal deformations of the Earth's surface
assigned to the plane [Tadyeyev, 2013a], geosphere
[Tadyeyev, 2013b] and the Earth’s dlipsoid of
revolution [Tadyeyev, 2015]. If you compare the
obtained solutions with similar, which are used in
research practice (even listed in Anayss), from the
point of view the formulation of the problem the
differences between them does not exist. By
following the terminology of [Grafarend, Voosoghi,
2003], they are a means of “internal modeding” of
horizontal deformations of the earth’s surface on
according parameterized two-dimensional model
surfaces with evaluation belonging to them two-
dimensional tensors after simple transformations of
geocentric spatial coordinates. But if to take into
account that the problem solutions based on the
theory of surfaces mapping are not limited only linear
functional model, they have obvious advantages.

Aim
Based on the projective differential geometry
methods, try to summarize the obtained earlier
solutions on a case the evaluation of spatial (three-
dimensional) Earths surface deformations. Solutions
must be adapted to the direct use of data in the

geocentric spatial coordinate system and referred to
the topographic surface of the Earth.

Methodol ogy

Problem statement should be considered in the
context of “external modeling” [Grafarend, Voosoghi,
2003] spatial deformations of the Earths topographic
surface in three-dimensional Euclidean space.
Generally, methods of projective-differential
geometry make it possible to describe the mapping of
any two-dimensona  surfaces which are
parameterized in one or another coordinate lines
system. But the topographic surface is such a kind of
them, which is not subject to parameterization by
accepted into geodesy methods.

We define the content of some basic provisions
and terms of projective-differential (metric) geometry
[Kagan, 1947; Norden, 1956; Finikov, 1937], which
are directly related to solving the problem. We
formulate them compared with relevant conventional
wording of the deformation analysis.

The general theory solves the problem into the
triply orthogonal system of con-focal surfaces with
arbitrary curvature. The geocentric spatial system
(X,¥,2) in which, as input data, defined the
coordinates of GNSS-stations, is a partia case of a

10

orthogonal Cartesian coordinate system in three-
dimensional Euclidean space Ez with the right-hand

orientation and the coordinate zero curvature surfaces
such as planes xOy, yOz, xOz. From this

perspective, problem solving can be considered as
trivia relatively to the total.

A mapping (or transformation) of the space is a
process where for each point M of space is put in
correspondence a certain point M ¢. The point M ¢isa
mapping (or a projection) of M . A mapping is an
unambiguous (or mutualy an unambiguous) if for the
point M is corresponds the one and Sur.“y one
pointM ¢. The totality of points M; (i=1n) of a
certain part or even the whole space, which are
subject to unambiguous mapping (or transformation)
forms the domain of transformation D. The totality of
points M that corresponds to points M; forms the

domain of mapping D¢ (or transformed domain). If in
the three-dimensional Euclidean space is installed the

system of geocentric coordinates (X,y,z) and the
domain D is closed and continuous, the points
M; (%.¥;,z) is completely defines (or delineates)
the domain D. If, due to unambiguous transformation

of space the domain D mapped on D¢ and latter
retained properties of the closed and continuous

domain, the points M&x% ygz#) completely define

the domain D¢. Under such conditions the mapping of
D on D¢ can be expressed analytically by equations
x¢=u(x y,z)u
i
ye=v(x,y, z)y (1)
z¢=w(x,y, z)b

According to the genera theory of mappings,
functions u,v,w as base functions of unambiguous

mapping should be unambiguous and continuous,
respectively, and thus differentiated (with partia
derivatives to the second order inclusve). These
requirements express the homeomorphism property of
mapping: the homeomorphic mapping is mutualy
unambiguous and mutually continuous. To solve the
problem is fundamentaly important that the
homeomorphism property does not limit the dass of
base functions (1), and only imposes upon them these
requirements. But in terms of the adaptation of such
property to determine the functions that implementsthe
mapping and devel opment of the optimal mathemeatical
problem solving arises certain problems.

Considering the discrete structure of geodetic data,
the only available means of definition the functions is
empirical. It involves the approximation of unknown
functions by the known discrete digtribution. The task of
derive the empirical formulas that meet approximation
functions does not have an unambiguous strict solution.
This violates the homeomorphism conditions. Therefore,
solution of the problem needs to motivate from the
standpoint of the correctness of its setting. The choice of
analytical form of base functions can be substantiated by
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the content of the task by a priori information about the
character of trandformation or formaly from a
mathematical point of view by the criteria of
approximaion accuracy. The latest motivation seems as
amore promising due to the possibility of evaluation the
degree of approximation of the final solution to a grict
with regard to homeomorphism conditions. In the
processing of geodetic data for solving of this kind of
tasks are mogt often used the least squares method. Heis
able to provide the determination of empirical formulas
and evaluation of their accuracy. However, this kind of
problem has place dso in traditiona problem solving at
the gage of congruction a functionad modeds of the
Earths displacement fidds.

The homeomorphism property alows describe the
transformation domain by meric forms As linear
elements of measure, they describe not only the projection
(mapping), but aso the internd geometry of space
transformation which is caused by a change of metric
properties. Solving the problem can be achieved with the
hypothesis that the change of metric properties of space
has a geophysical origin and caused by its deformation.
Then the geomeric parameeas of homeomorphic
mapping of D on D¢ that describe such change and
transfer the digortion of the projection, thisis in fact, the
deformation characteridics of the domainD. Formulated
hypothesis is a fundamental from the perspective of the
use of mappings theory for evaluation of three
dimensond deformation fidds of the Earth.

A metric form of transformation domain D
describes a linear element ds which by differentials
of coordinates expresses the formula

ds? = dx? +dy? +dz. )
Fig. 1 shows the element ds in the system of right

orientation trihedron. The direction of the element ds
defines the polar geocentric coordinates

dy

| =arctg—,

gdx
j :arctggazsinl 2: arctgaezcosl 9
gdy g Edx o

In projections dsy, and ds,, on coordinate planes

yOz and xOz (I liesinthe planexQy)

. dz . dz
=arctg—, =arctg— .
) vz g dy ) xz g ix
For mapping dst¢ of the linear ement ds that
mesets to the transformed domain D¢, we have the
following formula:

ds® = dx® + dyd.2 +dz®. (3)

Let us assume empirical formulas that meet to the

base functions (1) for whatever considerations are
established. Their full differentials

dX¢:EdX+Edy+EdZ,

X Ty 1z

v v v
¢:_ —_
dy ﬂde+ﬂydy+ﬂzdz,

fw
x
adlow to express the quadratic form
differentials of the domain D coordinates:
ds® = e, dx® + ey, dy” +e,,dz° +

+2e, dxdy + 26y, dydz + 2¢,,dxdz . (4)

dz¢= dx+ﬂ—wdy+ﬂ—wdz
iy 1z

(3) by

Fig. 1. Thelinear lement ds intheright
orientation trihedron

Coefficients of the metric form (4) reveas asfollows:

.2 .2 .2

e _ngUQ +adTVo +adTWo_
X — — — — =,
efxg efxg efxg

gﬂu & vy | ewd

By =T T t T,
O TV TV T
.2 2 2

€, Z(?EQ +ad1_Vg +(?T_W9 :
efzg efzg efzg

_Tufu  Tviv, fwfw
Xy_——+——+——,
™oy Xy XMy
o, = UM W, wiw,
Wiz 9z Ty 1z
_Tufu, v, Twiw

T Xz X Tz
They form a symmetrical matrix
?XX eXy eXZQ
Qexy eyy eyz _ ®)

& € €z
Quadratic form (4) is a main metric form and the
matrix (5) — the main metric tensor of space
transformations. A tensor (5) fully defined by
functions that express the concrete realization of
mapping (1): tensor components are the partia
derivatives of base functions of the mapping.

11
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According to the hypothesis that changing metric
properties of gpace is caused by the deformation, tensor
(5) should be recognized as the deformation tensor of
space. As the main carrier of information about such a
change, the tensor able to transmit her sSigns by various
numeral characterigtics of different geometric content —
by parameters of the space deformation in the generdly
accepted interpretation of the deformation analysis. A
tensor (5), equaly as the deformation tensors in
continuum mechanics, has the differentid origin.
Therefore, should expect the identity of content and
quantify of deformation parameters based on both
fundamental theories: the space mapping theory and the
continuum deformation theory.

Results

Try to express the linear distortions of mapping (1) —
linear deformations of the space domain D when it is
transformed into the appropriate space domain DC. Such
a dgn of the space deformation expresses by a
coefficient of dongation in a specified direction. It is
also cadled as the mapping scale or dongation module,
For this we use the metric forms, that correspond to D
and D¢, and the deformation tensor (5).

A digortion in any given direction (I ,j ) expresses

by the coefficientm= (;—Sq:. Conddering the quadratic
s

forms (2) and (4) and relations dx =dscosj cosl ,
dy =dscosj sinl and dz=dssinj we obtain the
following:
mz=exxc032j cos? | +eyyc032j sn’l +

+ezzsin2j +exyc032j sin2l +

+6,,SiN2 sinl +e,sinZ cosl . (6)
Thus, space domain eongation in a direction (I ,j )
fully defined by the tensor (5).

If you set values of (I ,j) that correspond to

directions of the coordinate system axes then from
formula (6) are follows:

Nt =ey; @
g =ey; ®)
g =e,. ©)

Thus, space domain elongations in directions of the
coordinate axes aone defined by diagond
components of the deformation tensor.

Particular importances for the deformation analysis
have parameters of extreme (principal) eongations.
Corresponding to them coefficients m,; and principal

directions(l o,j ,) and (I, +90°j , +90°) provides the

solution of the equations system
o(r)_ ¢
dl :{/
a(m?) o
dj b

12

Such derivations of the formula (6) provides a system
of nonlinear equations

2tgj 0(eyzcoslo- exzsinlo)+ :J
+(eyy - 6 )Sin2 , +26,, cos2l , =0 |

v. 10)
tg2) o(ezz' 6 C0S° | 4 - & SN 1 - I

Y
!

- gy Sn2 0)+2(eyzsinlo+exzcoslo)20b
Solving of the system defines the principal directions
and corresponding to them parameters of extreme
elongations.

Solving of equations (10) relatively to the
coordinate planes of the system (X, y,z) provides the
following results.

On the coordinate plane xOy the value

j =const=0° and tgj =0. Then from the first
equation of the system (10) for the principal direction
I, we obtain the formula

tg2l , = 2& . (12)

The maximum elongation of the space domain in this
direction expresses the distortion coefficient

My max :%gem +e,y +\/(exx &) +4¢2 g (12)

The formula (12) is obtained from (6) based on the
results of simple transformations of the formula
(11). The minimum elongation (compression)
expresses the distortion coefficient in the

direction! , +90°:

rTﬁymin zégem"'eyy' \/(exx' eyy)2+4e>%y g (13)

The formula (13) is obtained on the same basis as the
formula (12). Directions of extreme elongations are
shown in Fig. 2a

Extreme elongations of the space domain in
principal directions on coordinate planes yOz and
xOz can be obtained from the solution of the second
equation of (10):
2e,,8inl , +2e,, cosl

6 005 |, +6,, SN2l +6, SN2 ;- &,
On the coordinate plane yOz at a vaue

92 , = . (14)

| =const =90° from the equation (14) follows:

%2 . (15)

In the direction j ,,, (Fig. 2b) the maximum elongation
expresses the coefficient

nﬁzmax :%geyy +eZZ +\/(eyy - ezz)z +4G§Z g (16)
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In thedirection j ,, +90°

lee 2 0
nﬁzmin :Egeyy +e, - \/(eyy - ezz) +4e§Z E, (17)
e
On the coordinate plane xOz a a vaue

| =const =0° the solution
2e,, (18)

xx = €z

of the equation (14) defines two principa directions
o @d ] 4 +90° (see Fig. 20) with extreme
elongations, which are expressed by coefficients

Mmax :%g:éxx O (T g (19)

192 yz =

1 .
Momin =5 6o 0~ (8- €)° +46% 2. (20
Formulas for calculating of domain elongations
which belong to coordinate planes are identica to
similar ones, which was obtained on the same basis
for the evaluation of horizontal deformations. Latest
is presented in article [Tadyeyev, 2013a]. Assuming
that base functions of mapping are the linear, the
obtained formulas expresses dongations, as is
customary for the traditional approach to the
deformation analysis. Such deformations then referred
to as shear (or diding). If to follow such tradition,
obtained with respect to the coordinate planes results
should be interpreted in this way.
On the plane xOy

O%m . 2 Oxy
) Mymin = FMxy - 2m'

Oxyy, = \[gfyl + g)%yz ; (21)

Oxyl = €xx -~ Byy:  Oxy2 = 26xy.
The valu&mfymax, mfymin and r,, are caled the

maximum, minimum and average elongations
respectively. The value gy, is the maximum shear

2 -
Meymax = Mxy *

e, +6e
r — XX Yy .
Xy 2

in the planexOy ; andd,y,0y> — its components.
These values in relation to coordinate planes yOz
and xOz have the following expression:

gyZm . 2

gyzm .
2 ! 'yzmin T T 5

mizmax =lyt yz 5
ey t€,
W . — 2 2 .
lyz _T! gyzm _\lgyﬂ"'gyzZ! (22)
gyﬂ:eyy' €2; gy22:zeyz;

g g
nﬁzmax:rxz"'szm; I'Tﬁzmin:rxz' XZZm;

=7

_Sx*€ _[2 a2 .
rXZ 2 ’ gxzm gxﬂ gszy (23)
Ol = - €27 Oxz2 =28
b4
10%
(pyzo gs %yzo
* ﬂ& 0l = 0 Y
A H9
Y
a b
z
+98¢
¢x27¢xzo
X
0
C

Fig. 2. Directions of extreme elongations
in coordinate planes of the (X, Y, z) system

The gpatial orientation of extreme dongations sas the
triad of orthogonal directions (I , +90°,j 4j , +90°).

The direction 1,+90° and the corresponding
elongation define formulas (11) and (13). By leaving
the main directions on the plane xOy as fixed, now
discloses other unknowns. The direction j, is

disclosed by the formula (14). After her
transformation, this direction can also be expressed
directly by coefficients of the tensor (5) and shear
componentsin coordinate planes, for example:

- +

zeyz gxym gxyl +2exz gxym gxyl

2gxym 2gxym

&« + €y - 267 +Oym
For the direction j, corresponds the maximum
elongation of the space domain, which expresses the
coefficient my,4 and for the orthogonal to it direction
jo+90° — the minima eongation with a
corresponding coefficient myip,

tg2j , =2 (24)
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1 2 &  0ym-9 Oxym *9x1 0 =,
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48 2gxym 29xym g =

6

2

&
2 ¢
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1 2 x /gxym - Oxy1 Oxym tOxy1 O = (26)
Mhin = —cex * €y * 285 +Uyxym - ,[|&xx + €y = 265 +Oxym ) *+4G28y,, | ————+26; | —— 7 +°
4(8; ( ) 8 2gxym 2gxym g +

2
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Considering designations (21)—(23), formulas (24)—
(26) can be presented in any other convenient forms,
including a more compact, and on their basis the
appropriate parameters properly interpret.
Thus, to the triad of

(I,+90°j oj o +90°)  corresponds

(nﬁymin,nﬁ,ax,nﬁ,in). Taken together, latest are

parameters of extreme linear deformations of the
domain D at her transformation into the domain D¢.

directions
coefficients

Scientific novelty and practical sgnificance

There is grounded that studies of Earths
deformation fields by methods of the projective
differential geometry has greater potentia capabilities
as compared to methods of linear continuum
mechanics and provides a generalized solutions. The
homeomorphic functional model as the basis for the
formation of the tensor allows to expressing the
deformation of any character. Formulas for expressing
the main linear deformations are obtained. Results are
suitable for evaluation of three-dimensional
deformation fields of any scale. Deformation
parameters are atributed directly to the topographic
surface of the Earth. The sufficient coverage of the
Earth by GNSS dations and representationa
observationa data that defines the completeness of
functional model congtructing, together with the
obtained results are able to provide the evaluation and
interpretation the real deformations, but not within the
traditional model surfaces.

Conclusions and prospects of further researches

At this stage of the research is grounded the
expediency of the use the projective differentia
geometry methods for modeling a deformations of the
Earth's topographic surface in three-dimensiona
geocentric coordinate system. Statement of the
problem is formulated. Analytical expressions for
linear deformations in an arbitrary set direction, along
the directions of the coordinate axes, in projections on
coordinate planes and also for the triad of extreme
values with the corresponding spatial orientation are
obtained. Formation of the deformation tensor that
defines these parameters is not burdened by
linearization of the displacements functional model.
The obtained results make it possible to evaluate the
real, not modeled linear deformations of a
topographic surface, far as their can be submit by the
homeomorphic functional mode.

The topographic surface as a continuous closed
domain of space which is the object of researches by
methods of the projective differential geometry is not
limited by any conditions concerning its sze and
geometrical forms. In practical terms this means the
following. Firgt, there is no need to divide the surface
on finite elements. Second, as a consequence, there
are no limits to the scale of deformation fields: on this
theoretical basis is equally possible to investigate the
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geodynamic processes of global, regiona or loca
scales. Probably, for the effective interpretation of
three-dimensional deformation fields of regional and
local scales will be expedient to transform the input
data from the geocentric coordinate system in a
conditional topocentric system.

Various parameters of the space domain linear
deformations are united by a similar geometric
content and origin — they are a consequence of
relations the linear elements of the space domain into
pre- and after its deformation. For this reason,
organize them into one group with an appropriate
name - the main linear deformations. By following the
established traditions of the deformation analysis
together with a group of linear deformations for the
interpretation of fields are used another two groups of
parameters - parameters of relative changes in the
volume or area (dilatation) and angular distortion
parameters. According to the latest express the
"rotation of the domain as an absolutely rigid body".
The expression of deformation parameters that are
attributed to these two groups by using the projective
differentiadl geometry methods, are the subject of
further researches.
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OLIIHIOBAHHS TPUBUMIPHUX JJE®OPMALIMHKX ITOJIIB 3EMJII METOJAMU
[MTPOEKTUBHO-IU®EPEHIIAJILHOI TEOMETPIL. T'OJIOBHI JIHIVHI JE®OPMAILIIT

Mera. OninroBanus nedopmariii TornorpadiqHoi MOBEPXHI 3eMJIi METOAMH NTPOEKTUBHO- (D epeHIiaTbHOT
reoMeTpii crpsiMOBaHe Ha BHPaKEHHS METPHYHOI'O TEH30pa MPOCTOPY 1 TPYNU MapaMeTpiB TOJIOBHUX JIHIHHUX
nedopmariiii  y T€OLEHTPHYHIH TPOCTOpOBiIH cucTeMi KoopauHarT. Meroauka. BukoHaHHs 3aBaaHHS
IPYHTYETBCSI HA BHUKOPHUCTaHHI BIACTHBOCTEH roMeomopdismy mepeTBopeHHs (BimoOpa)keHHs) TPUBHUMipHOL
3aMKHEHOI HEMepepBHOI 00JIACTI MPOCTOPY 3a TIMOTE3H, IIO 1€ MEePETBOPEHHs Ma€e reodi3uyHe MOXODKECHHS 1
crpyurHeHe Jedopmanico. 3a YMOBH BIiANMOBIAHOCTI 0a30BuUX (yHKUiHi BuUMoOram romeoMopdizmy,
(yHKI[IOHAJbHA MOJIENb TIEPETBOPEHHS 3/aTHa NEpelaBaTH PI3HUMU XapaKTEPHCTHKAMHU 3MiHY METPHYHHX
BJIACTHBOCTEH 00JIacTi, sKi, 32 MPUHHATOI TiMOTE3H, € Mapamerpami ii aedopmarii. OCHOBHHM IXHIM HOCIEM €
METPUYHUI TEH30p TPHUBHUMIPHOTO €BKJIIOBOrO IpocTopy. TeH3op (opMyeTbcss METPUYHOI (QOPMOIO
MepeTBOPEHOI 00J1aCTi MPOCTOPY — KBaJpaToOM JTOBXKHMHH JIIHIHOIO €IeMEHTa, BUPaXEHOTo 3a JudepeHmianaMu
KOOpJIMHAT 00JacTi MEepeTBOPEHHs 3 ypaxyBaHHsAM NOBHHUX AudepeHmianiB 6azoBux ¢yHkuiil. PesyabraTh.
BukonaHHs1 3aBIaHHs 31HCHEHO 32 YMOBH, IIO OOJACTh MEPETBOPEHHS MPOCTOPY OKpecieHa TornorpadidHoro
MOBEpXHEI 3eMili 1 KOOpJMHOBaHA B TEOLEHTPUYHIA TPUBHMIpPHIA NpPSIMOKYTHIH cucremi. PesynbraTtom
BUKOHAHHS € poboui hopMynu 11l 0OUUCIIEHHS TOJIOBHUAX HMPOCTOPOBUX JIIHIMHUX nedopMarltiii — KoedillieHTiB
PO3LIMPEHHs], CTUCHEHHS Ta 3CyBy TomorpadidHoi moBepxHi. HampsmMu NnuX NOKa3HWKIB BH3HAYEHO B
TeOLIEHTPUYHIN TOJNSpHIH cucremi. Pi3Hi koedillieHTH po3MMpeHb Ta TXHI HANpsIMH BUPaKEHI B KOMIIOHEHTaX
MeTpu4yHOro TeHzopa. OnepkaHo Qopmynu aist oOUMCIIEHHS NapameTpiB y JOBUIFHOMY 3a/IaHOMY HaIIpsMi,
B3JIOBX HANpPSMIB KOOPJMHATHUX OCEW, y TPOEKIsIX Ha KOOPAWHATHI IUIOIIMHM, a TAKOX VIS Tpiagu ixXHix
eKCTpeMaJIbHUX 3HA4eHb 3 BiIIOBIMHOIO MPOCTOPOBOIO opieHTamiero. HaykoBa HoOBM3HA i mpakTHYHA
3HaYymicTb. OOrpYHTOBAHO, IO MijJ 4Yac OCHiIKeHb AedOopMaliiiHuX IMoiiB 3emili METOIU IMPOEKTUBHO-
JIu(epeHINiaTbHOl TeOMETPii MarOTh OiIBII MOTCHIIHHI MOXKIMBOCTI OPIBHIHO 3 METOIAMH JTIHIHHOI MEXaHIKU
CYLIJIBFHOTO CEepeIoBHINA i 3a0e3MeuyI0Th y3arajibHeHI po3B’sa3ku. I'oMeoMopdHa (QYHKIIIOHATHPHA MOJICIb 5K
ocHOBa (hOpMYBaHHs TEH30pa Jae 3MOT'Y BHpakaTH Oymb-iki aedopmariii. OpepxaHo po3paxyHKOBi (HoOpMyIH
JUIE BUPA)KEHHS TOJIOBHUX JiHIMHMX paedopmauiid. PesynmpraTé mpupaTHi Ui OILHIOBAHHS TPHUBUMIPHHX
nedopmariiHx ToNiB Oyap-sAkux MacmradiB. [lapamerpu apedopmariii 3apaxoBylOTh Oe3MOCEPETHBO 10
tororpadiuHoi moBepxHi 3emuti. JlocratHe mokputts 3emai GNSS-craHuisiMu 1 penpe3eHTaTHBHI AaHi
CIOCTEpeXeHb, 0 BU3HAYA€ MOBHOTY NMOOYMOBH ()YHKIIIOHAIBLHOI MOJIEINI, Pa30M 3 OAEPKAHUMH Pe3ylIbTaTaMH
3/IaTHI OLIHUTH Ta IHTEPIPETYBATH peaybHi nedopmallii, a He Ti, 0 HAJISKATh IO TPATUIIHHUAX MOJCITHHUX
pedepeHITHUX TOBEPXOHb.

Kmiouosi cnosa: mpocropoi medopmariii 3emiti; TormorpadivuHa IMOBEPXHS, BiIOOpa)KCHHSA MPOCTOPY;,
MeTpu4Ha (opMa MpOCTOPY; METPUYHHH TEH30p MPOCTOPY; KOe]ilieHT JIiHIIHOTO CIIOTBOPEHHS
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OHNEHMBAHHWE TPEXMEPHbBIX IEOOPMALIMOHHBIX [IOJIEV 3EMJIU METOJAMU
[MPOEKTUBHO-JUO®DEPEHIITMAJIIBHOU 'EOMETPUU. I''TABHBIE JIMHEWHBIE JIE@OPMAIINN

Heasn. Pemenne 3amaum oneHuBanus aedopmanuii Tormorpaduueckoil IMOBEPXHOCTH 3eMIIM METONAMHU
MPOEKTUBHO-IM((epeHINAFHON  T'eOMETpUHM  HANpaBJIEeHHOE Ha BBIPaXKEHHE METPHUYECKOro TEH30pa
MIPOCTPAHCTBA U TPYIIIBI IAPaMETPOB INIaBHBIX JIHMHEHHBIX Je(opManuii B reoleHTPHYECKOi MPOCTPaHCTBEHHOM
cucreMe KoopauHaT. MeTtoauka. Perienne 3aa4i OCHOBBIBA€TCS HAa UCIIOJIb30BAaHUU CBOMCTB roMeoMopgu3mMa
npeobpa3zoBanus (OTOOPaXKEHHUS) TPEXMEPHON 3aMKHYTON HENpepbIBHON 00JIACTH MPOCTPAHCTBA MPU THIIOTE3E,
YTO 3TO NMpeodpa3oBaHue UMeeT reohu3nuecKoe MPOUCXoXKAeHHEe U 00ycioBieHo nedopmanueid. [Ipu ycnoBuu
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COOTBETCTBHsI 0a30BBIX (YHKIMH TpeOoBaHHAM romeomMopdusmMa, (GyHKIMOHAIbHAs MOEIb MPeoOpa3oBaHUs
CrocoOHa IepeaaBaTh pa3IMYHbIMU XapaKTEPUCTUKAMHU U3MEHEHHUsI METPHUYECKUX CBOMCTB 00JaCTH, KOTOPHIE, B
COOTBETCTBHH C THUIIOTE30H, SBISIIOTCS mapamerpamu ee Jedopmarmu. OCHOBHBIM MX HOCHTENIEM SIBIISIETCS
METPHYECKUI TEH30p TPEXMEPHOTO EBKIHUIOBA IPOCTpaHCTBA. TeH3op (opMupyercs MeTpuueckoil (opMoii
npeoOpa3oBaHHOW O00NAacTH MPOCTPAHCTBA — KBAAPaTOM [UIMHBI JIMHEHHOTO SJEMEHTa, BBIPAKEHHOTO
nuddepeHMaIaMi  KOOpAMHAT 00JacTH MpeoOpa3oBaHUSA C YYETOM MONHBIX JuddepeHnnanor 6a30BbIX
¢byuknuii. PesyabraThl. PemeHue 3aqaud  OCYIECTBJIICHO MpPU YCIOBUH, YTO OOJACTh MpeoOpa3oBaHUs
MPOCTPAHCTBA OuYepUYEHa TOMOrpaUueckoil MOBEPXHOCTHI0 3eMJIM M KOOPAMHUPOBAHA B T'EOLIEHTPHYECKOM
TPEXMEpHOH MpsSMOYroJbHOW cucreMe. PesynbraToM pelieHus ecTh pabouue (OpMYJbl Uit BBIYUCICHUS
[JIaBHBIX IPOCTPAHCTBEHHBIX JIMHEHHBIX nedopmanmii — Kod(pQUIMEHTOB pacHIMpeHusi, CKaTHi U CIBHTa
TororpauIeckoi OBEpXHOCTH. HanpaBieHus: 3TUX MoKa3aTeneil orpe/eieHbl B IeOleHTPUUECKOH MOISIPHOM
cucreMme. PaznuuHble KOI(QQUIMEHTH pacHIMpEeHHs W WX HampaBieHHS BBIPAKEHbI B KOMIIOHEHTaX
Merpudyeckoro TeH3opa. IlomydeHsl (GoOpMynbl Ui BBIYHCICHHS] MapaMeTpoOB B TPOU3BOJIBHOM 3aJ[aHHOM
HAIpaBJICHWH, BJOJb HANPABICHUI KOOPAMHATHBIX OCEH, B MPOCKIMSIX Ha KOOpPAMHATHBIE INIOCKOCTH, a TAKXKe
JUISL TPHAIbl UX 3KCTPEMAaJbHBIX 3HAYeHHH C COOTBETCTBYIOIIEH NMpPOCTpaHCTBEHHOW opueHTanueil. Hayunas
HOBHM3HA W TNpaKTHYecKass 3HAa4YMMocTh. OOOCHOBaHO, YTO TPH HCCIENOBaHUM Ae(OPMALMOHHBIX IOJEH
3eMir MeTObI IPOCKTHUBHO- A (D hepeHINaTBEHOI reOMEeTpUH UMEIOT OOJIbIIINE TOTEHINAIBLHBIE BO3MOXKHOCTH B
CpPaBHEHHUHM C METO/aMH JIMHEWHOW MEXaHWKM CIUIOIIHOM cpeibl M 0o0ecredrBaloT OO0OOIIEHHBIE pElIeHus.
Tl'omeomopduast (yHKIMOHANbHAST MOZAENb, Kak OCHOBa ()OPMHPOBAHHUS TEH30pa, IO3BOJISIET BBIPAXKATH
nedopmaru He TONBKO JIMHEHHOro xapakrepa. [loiaydeHbl pacueTHble (QOPMYJBI JJIsl BBIPAKEHHS TJIaBHBIX
JMUHEHHBIX nedopmarmii. Pe3yapraThl MPUTOAHBI AJIsl OLEHUBAHUS 1e()OPMAIMOHHBIX MOJEH BCEX MacIITa0oB.
[Mapamerpsr nqedopmany OTHECEHBI HEMIOCPECTBEHHO K Tonorpadpuyeckoi mopepxHoctu 3emiu. Jloctarounoe
nokpbiTre 3eman GNSS-craHmmsiMH U penpe3eHTaTHBHBIC JIaHHbIE HAOIIONEHHH, ONpEessIoIe MOITHOTY
MOCTPOEHHsI (PYHKIMOHAILHON MOZETH, BMECTE C ITOJyYeHHBIMH PE3yJIbTaTaMU CHOCOOHBI 00ECTIEUNTh OLEHKH
W MHTEPIIPETAIMIO peasibHBIX JeopMaluii, a He OTHECEHHBIX K TPAJUIMOHHBIM MOJIEIbHBIM pedepeHIIHBIM
TIOBEPXHOCTSIM.

Kntouesvle cnosa: MpocTpaHCTBEHHBIE e opMaly 3eMiIH; Tornorpaduyeckas IOBEpXHOCTh, OTOOpaKeHNe
MPOCTPAHCTBa; MeTpuueckass Qopma NPOCTPAHCTBA; METPHUYECKUIl TEH30p IPOCTPAaHCTBA; Kod(duimeHT
JIMHEHHOT'0 MCKAKECHUSI
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