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DETERMINATION OF THE HORIZONTAL STRAIN RATES TENSOR  
IN WESTERN UKRAINE 

Doppler Orbitography and Radio-positioning Integrated by Satellite (CORS) observations from 37 Global 
Navigation Satellite System (GNSS) stations located in the Western Ukraine area were processed using Bernese 
Processing Engine module (BPE) of Bernese GNSS Software version 5.2 for a time span of about 2.5 years. To 
get a better agreement for constrains, the IGS stations closest to the surrounding area of study were chosen with 
fixed coordinates of ITRF2008 at epoch 2005.0. Eastern and Northern components of velocities of GNSS 
observations from these 37 permanent stations, calculated from GNSS measurements, were used to construct a 
2D model of horizontal strain rates field for the area. This study is presented in three parts. Firstly, two exact 
solutions for the components of the 2D strain rate tensor derived on the geosphere based on solving the 
eigenvalues – eigenvectors problem were analyzed, including skew symmetric rotational rate tensor. Secondly, 
based on the most simple and useful formulas from the first stage, a rigorous estimation of the accuracy of 
components of the 2D strain rate tensor were obtained based on the covariance propagation rule. Finally, the 
components of the 2D strain rate tensor, dilatation rate and components of the sheer rate tensor in the region 
were computed. A model of the rotation rate tensor was constructed for the described area, which led to the 
conclusion that the region of study should be interpreted as a deformed territory. Based on the computations 
from the GNSS-data model of components of horizontal deformations, the rates of principal values and rates of 
principal axes of the Earth’s crust deformation were found. To be consistent, the main tectonic formations are 
shown as the background intensity of different components of velocities, the rotation rate and strain rate tensors. 
Topographic features of the region were based on the SRTM-3 model (Shuttle Radar Topography Mission) with 
resolution 3″×3″. At the first sight, the maximum sheer rates have greatest values in the areas located around the 
Ukrainian Carpathians. The dilatation rate has also a similar distribution.  Nevertheless, because in the paper 
only eigenvalue – eigenvector problem without accuracy estimation has been considered, which possibly leads to 
doubtful conclusions regarding interpretation and requires an additional solution of a purely mathematical 
problem. The full covariance matrix of the strain rate tensor should be found based on given full covariance 
matrix of the velocity components obtained by Bernese software. As a matter of fact, the study region is very 
complex in terms of crustal movements, which, according to the results obtained, require further densification of 
permanent GNSS stations. 

Key words: Horizontal velocity; strain rate tensor; dilatation rate; maximum sheer rate tensor; accuracy 
estimation; skew symmetric rotational rate tensor. 

Introduction 

The deformations of the Earth's crust caused by 
the processes of the deep earth dynamics arose 
because of the translational-rotating motion of the 
planet in space. Such deformations are classified both 
in terms of their changes in time, and in the 
distribution of various spatial displacements. In 
particular, they can be age-related, periodic and 
occasional, and in addition, they can be divided into 
global, regional, and local deformations. Our 
knowledge of the Earth's crustal movements is 
strongly dependent on their nature and  the  period  of  

deformation determinations obtained from various 
measurements [Minster & Jordan, 1978; DeMets, et 
al. 1990; DeMets, et al., 1994; England, Molnar, 
1997; Kreemer, et al., 2000, Crespi, et al., 2000; Bird, 
2003; et al.]. Traditionally, studying the deformations 
of the Earth's crust involved investigating the 
horizontal and vertical components of the deformation 
field. In principle, the deformation analysis became a 
mostly geodetic task using satellite geodesy. These 
allowed the monitoring and determining with high 
accuracy the three-dimensional deformation field by 
means of VLBI (Very Long Baseline Interfero-
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meters), SLR (Satellite Laser Ranging), DORIS 
(Doppler Orbitography and Radio-positioning 
Integrated by Satellite), GNSS (Global Navigation 
Satellite System), and InSAR (Interferometric 
Synthetic Aperture Radar). Development of these 
technologies cannot occur without the precise 
definition and implementation of the Earth's 
coordinate system to study the deformations of the 
Earth's crust, as reported in the IERS Conventions 
2010 by [Petit, Luzum]. Measurements from the 
moderately dense network of GNSS stations were 
used for this study in the Western Ukraine region. 

Deformation analysis represents a fundamental 
tool for solutions of the problems of modern 
geodynamics for the study of spatial and temporal 
changes of deformation fields and modern movements 
of the Earth’s crust. Due to tectonic processes, their 
peculiarities can be explained by analyzing long-term 
GNSS observations in different regions of the world. 
Therefore, today such investigations contain a 
common application of the experimental study of 
deformations using the latest GNSS technologies, in 
particular, a traditional approach in geophysics. The 
determination of deformations of the Earth’s crust, 
which is devoted to a very large number of scientific 
works every year, is usually based on the 
mathematical approach having a tensor nature. From 
the outcome of such investigations [see, for example 
in separate papers of,  Crespi et al.,  2000; Kreemer  et  

al., 2000; Marchenko, 2003; Vanichek, et al., 2008; 
Marchenko et al., 2010] now already stated that it is 
possible to calculate the 2D and 3D strain rate tensor 
with 2D and 3D rigorous accuracy estimation 
[Marchenko, 2003; Marchenko et al., 2010], analysis 
of the deformation field components, and the 
construction of mathematical models of active fault 
zones. Such a study of deformation processes using 
GNSS observations leads to the refinement of known 
tectonic plates. 

As will be shown below in later sections, for the 
deformation analysis of the Earth’s crust, the 
additional requirement requires the determination of 
partial derivatives of the vector functions of the strain 
rates. In the ideal case, these functions should be 
given continuously in the space-time domain, which, 
however, is not achieved by geodetic measurements 
that have discrete nature in space and time. Since 
modern tectonics are generally determined from 
geophysical and geodetic measurements, they also 
have a discrete nature. For this reason, the initial data 
also require continuous nature in space and time and 
should be evaluated by means of approximation by 
unknown functions based on a known discrete 
distribution, which represents a problem having a 
unique solution. As was noted by Juliette et al., 2006, 
this problem is nothing else but preprocessing part of 
the deformation analysis and can be solved by either a 
finite element method or such worldwide approach as 
the least square collocation. 

 

 
 

Fig. 1. Distribution of 26 GNSS station and topographical  
heights [m] according to STRM-3 model 
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Fig. 2. Eastern EV  component [mm/yr]  
of velocity vectors in the ITRF2008 system at epoch 2005.0 

 

 
 

Fig. 3. Northern NV  component [mm/yr] of velocity vectors  
in the ITRF2008 system at epoch 2005.0 
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Data 

Continuous observations CORS from 37 GNSS 
stations were processed using Bernese Processing 
Engine module (BPE) of Bernese GNSS Software 
version 5.2 for the time span of about 2.5 years. To 
get a better agreement for constrains the IGS stations 
closest to the surrounding area of study were chosen 
with fixed coordinates of ITRF2008 at epoch 2005.0. 
Fig. 1 demonstrate 26 permanent stations in the West 
Ukraine area called here as Set 1. Set 2 represents 11 
stations, which are surrounding the study region. As 
well-known, the studied area is characterized by 
complexity of tectonic and geological structures. For 
better understanding, on the Fig. 1 we give 
additionally the topographic features of the region 
based on the SRTM-3 model (Shuttle Radar Topo-
graphy Mission) with high resolution 3″×3″. Obtained 
coordinates of 37 stations and 2D velocities were 
applied in the following as input data to calculate the 
strain rate tensor and rotational rate tensor. Figs. 2 and 
3 illustrate the eastern EV  and northern NV  
components derived by BPE velocity vectors in the 
time span about 2.5 years calculated with respect to 
the ITRF2008 system at given epoch 2005.0 yr. The 
main tectonic formations are shown as the 
background intensity of different components of 
eastward EV  and northward NV  velocities based on 
the SRTM-3 model. 

 

Strain rate and rotations rate tensors 

Based on the general equations for the 
determination of rotation tensor on the spherical 
Earth, let’s assume that for each station vectors of the 
rectangular coordinates ( jx , jy , jz ) and corres-

ponding velocity ( j
xV , j

yV , j
zV ) are known in ITRF 

system. Transformation to the local NEU geocentric 
coordinates ( jϕ , jλ , R) , having the positive 
directions to North, East and Up, is well known and 
can be described for the velocities ( j

NV , j
EV , j

rV ) by 
the following rule: 

NEU  xyzϕ λ= ⋅V R V ,                       (1) 

where the rotation matrix  ϕ λR  is applied for the 
transformation from the global right to the local left 
coordinate system NEU with the axis direction North–
East–Up. Obviously that the following formulas for 
(2) and (3) are hold:  

 

sin cos sin sin cos
sin cos 0

cos cos cos sin sin
ϕ λ

ϕ λ ϕ λ ϕ
λ λ

ϕ λ ϕ λ ϕ

− − 
 = − 
 
 

R ,       (2) 

T
NEU ,   ,   j j j

rN EV V V =  V ,  

           
T

,   ,   j j j
xyz x y zV V V =  V .                 (3) 

Now if we assume that studying strains are 
infinitesimal, the corresponding tensor of second 
degree can be additively decomposed into ijε  infini-

tesimal strain rate tensor and ijω  as the rotation rate 
(vorticity) tensor.  

According to Hains, Holt, (1993) the horizontal 
strain rate field may be inverted if the rotation vector 
function ( )Ω r  is known that expresses continuous 
horizontal velocity field on a sphere:  

[ ]( )R= ×v Ω r r% % ,                              (4) 
where R  is the Earth’s radius; r  is the unite radial 
vector. The equation (4) is crucial in Hains, Holt 
(1993) theory and allows straightforward 
determination of the horizontal velocity field on a 
sphere. Thus the components of the strain rate tensor 

VS  given by (Haines, Holt, 1993; Kreemer, 2000) for 
the 2D space read: 

 

 

 

( ) ( ) ,
cos cos

( ) ( ) ,

1 ( ) ( ) .
2 cos

r

r

V
R

V
R

λ λ

ϕ ϕ

ϕ λ

ε
ϕ λ ϕ λ

ε
ϕ ϕ

ε
ϕ ϕ λ

∂ ∂
= + = 

∂ ∂ 
∂ ∂ = − + = − ∂ ∂ 
 ∂ ∂
= − ∂ ∂   

n Ω r n Ω r

Ω r Ω re e

Ω r e Ω rn

% % % %&

% %& % %

% % %& %

      (5) 

where rV  is the velocity in radial direction; ( )Ω r%  is 
the for the chosen patch or selected plate considered 
as a rigid body.  

Two vectors ( , , )R ϕ λ=r  and 

0 0 0( , , )R ϕ λ=r  given on the spherical Earth with the 
radius R  and the local directions ( , , )n e r% % %  and 

0 0 0( , , )n e r% % %  to the north, east and vertical Up, can be 
expressed in the following form: 

[ ]sin cos ,  sin sin ,  cosϕ λ ϕ λ ϕ= − −n% ,         (6) 

[ ]sin ,  cos ,  0λ λ= −e% ,                        (7) 

[ ]cos cos ,  cos sin ,  sinϕ λ ϕ λ ϕ=r% .          (8) 
In the first approximation the linear velocity v  at 

the point r  can be stated via the strain rate tensor 
( )∇v r , determined through Hamilton operator ∇  

[Ward, 1998]: 
0 0 0( ) ( ) ( ) ( )= + − ∇v r v r r r v r ,               (9) 

Considering hypothetically that movements take 
place in the tangent plane to the Earth’s sphere is true, 
then from the known relationship between the linear 
and angular velocity one gets 

( )= ×v Ω r r .                                (10) 
Moreover, taking into account (10), equation (9) 

can be transformed as follows: 
[ ]0 0 0 0 0( ) ( ) ( )= × + − ⋅ ∇ ×v Ω r r r r Ω r r .     (11) 

The first term of the equation (11) represents 
rotation around the pole 0( )Ω r , and the tensor 

[ ]0 0( )∇ ×Ω r r  can be additively decomposed into the 
strain rate tensor 0( )VS r  and rotation rate tensor 
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0( )VR r . If ( ) const=Ω r , then 0( ) 0∇ =Ω r  and 
tensors 0( )VS r  and 0( )VR r  cannot be determined. 
For the transformation from the 3D space to the 2D 
space as surface of the sphere, it is sufficient for ( )Ω r  
to consider dependence from two polar coordinates 
only  

( ) ( , )ϕ λ=Ω r Ω ,                         (12) 
Then the horizontal strain rate tensor and accuracy 

of it constituents can be estimated by neglecting the 
velocity rV  in radial direction in (Eq. 5) and using the 
known eastern EV  and northern NV  velocities 
derived from GPS observations. This assumes the 

vector 
T

,   j j
N EV V 

   of a horizontal velocity or residual 

velocity at the j number of geodetic point in the north 
j

NV  and the east j
EV  directions in the NEU local 

coordinate system (as example, after removing of the 
NUVEL-1A model). In such a case unknown 
parameters could be considered as infinitesimal 
values and should be determined by elements of the 
symmetric strain rate tensor VS : 

1
2

1
2

N N E

V
N E E

V V V

V V V

ϕ λ ϕ

λ ϕ λ

 ∂ ∂ ∂
+  ∂ ∂ ∂  = = ∂ ∂ ∂ + ∂ ∂ ∂   

S

 

,

  
      = =      
 

& &
& &
ϕϕ ϕλ

ϕλ λλ

ε ε
ε ε

                            (13) 

and skew symmetric tensor VR  or rotation rate 
(vorticity) tensor: 

10
2

1 0
2

N E

V
N E

V V

V V

λ ϕ

λ ϕ

 ∂ ∂
−  ∂ ∂  = = ∂ ∂ − ∂ ∂   

R

 
0 1

.
1 0

  
   = =    −  

&ω

                           (14) 

where ω&  is the rotation rate of the region, assumed as 
a rigid body. Obviously the rotation rate is adopted 
here as a function of spherical coordinates. The strain 
rate tensor VS  and the rotation rate tensor VR  are 
then given by the formulas (13) and (14), if the 

velocity vector [ ]T,N EV V=v  consists of the northern 

NV  and the eastern EV  components.  
Thus, it becomes necessary to determine the 

fundamental function ( )Ω r%  in the considered 
approach. Generally all geodetic and geological data 
require some preliminary analysis and prediction to 
the nodes of selected usually uniform grid to deter-
mine the derivatives presented in equation (5)–(14). 
In addition, the elastic properties of a tectonic plate 
can be modeled through spatial derivatives of a 

function ( )Ω r% , which are equal to zero in (5) for such 
areas, which are located on the same plate and with 
the same function ( )Ω r%  dependent from the Euler 
pole. Generally speaking, in the frame of considered 
theory, any area for which, ( ) const=Ω r%  can be 
interpreted as a rigid plate or region. 
 

Solution of eigenvalues – eigenvectors problem 

To analyze the solution for the eigenvalues and 
eigenvectors of the symmetric tensor VS , given by 
the expression (13), we recall that there are two 
different approaches. In order to select an optimal 
version for formulas and further accuracy estimation 
we will consider these two different solutions. 
According to the well known first solution given for 
strain tensor (see, for example, Vaníček, et al., 2008) 
the invariants of the matrix (13) can be calculated as 
follows: 

1 Trace( ) 2VI ϕϕ λλε ε χ= = + =S & & & ,        (15) 
2

2 Det( )VI ϕϕ λλ ϕλε ε ε= = −S & & & ,             (16) 
and used to solve the characteristic equation 

2
1 2 0I IΛ − Λ + = .                        (17) 

The solution of the equation (17) leads to the 
invariants 1I  and 2I  of the matrix (13). Two 
eigenvalues 1Λ  and 2Λ  are obtained as a solution of 
this quadratic equation: 

1
1 / 2

2
IΛ υ χ υ+

= = +& , 1
2 / 2

2
IΛ υ χ υ−

= = −& , (18) 

where we suppose that 1 2Λ Λ>  and 1 2Λ Λυ = −  is the 
roots difference of the equation (17) or the so-called 
rate of maximum shear, which is determined based on 
invariants (15) and (16) and the corresponding 
elements of the strain rate tensor (by substituting for 

1Λ  and 2Λ  in equation for 1 2Λ Λυ = − ) we get: 
2 2 2
1 24 ( ) 4I I ϕϕ λλ ϕλυ ε ε ε= − = − +& & & .      (19) 

It is evident that two principal axes represent such 
directions of strain rate tensor that characterize the 
maximum and minimum axes corresponding to the 
expansion 1Λ  and compression 2Λ  of some chosen 
certain area of study and can be found based on 
known values 1Λ  and 2Λ . Usually an eigenvector 
problem is solved in digital form.  

Nevertheless we shall discuss another approach. 
Henceforth the eigenvalues (18), which correspond to 
certain vectors, can be obtained together with 
directions of the eigenvectors in a closed form that is 
necessary for further accuracy estimation of all 
components of the eigenvalue-eigenvector problem. 
For this, we first recall that the principal axes of our 
tensor (13) coincide with the principal directions of 
the so-called tensor-deviator, which is defined not 
only by symmetric properties of the strain rate tensor 
(13), but also by a zero trace Trace( )VS . For 
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instance, among other types of tensors-deviators that 
have already been studied in terms of the derivation of 
analytic solutions of the eigenvalues – eigenvectors 
problem are the Earth's inertia tensor and well-known 
from GOCE satellite mission gravitational gradient 
tensor [Moritz, & Muller, 1987; Marchenko, & 
Schwintzer, 2003; Marchenko, 2003; Marchenko, et 
al., 2016]. Coming to the corresponding transfor-
mation through Trace( )VS  of the tensor (13) to the 
deviator VD  it is easily seen: 

Trace( )
2

V
V V= +

SS D ,  

Trace( )
2

V
V V V χ= − = −

SD S S & .           (20) 

Equations (20) provide the desired matrix – 
deviator VD :  

21
22V

ϕϕ λλ ϕλ

ϕλ λλ ϕϕ

ε ε ε
ε ε ε
− 

=  − 
D

& & &
& & & .               (21) 

The solution of eigenvalues – eigenvectors 
problem for the deviator (21) is straightforward, since 
the invariants have the simplest form 

1 Trace( ) 0Vi = =D , 

  2 2
2 Det( ) ( ) / 4Vi ϕϕ λλ ϕλε ε ε = = − − + D & & & ,   (22) 

that allows solving the corresponding quadratic 
equation and finding both roots and its restoring to the 
original equation (17): 

2
2 0iλ + = ,       

1 2 2

2
( ) / 4 / 2ϕϕ λλ ϕλ

λ
ε ε ε υ

λ


= ± − + = ±


& & & ,     (23) 

1 1

2 2

/ 2
/ 2

λ υ
χ χ

λ υ
Λ    

= + = +   Λ −  
& & .           (24) 

After some algebraic manipulations formulas 
(20)–(24) provide the important practical aspect. The 
tensor VS  can be written now in the following way  

1 2

2 1

1
2V

χ γ γ
γ χ γ
− 

=  + 
S

& & &
& & &

,               (25) 

where 
( ) / 2ϕϕ λλχ ε ε= +& & & ,       

1 λλ ϕϕγ ε ε= −& & & ,       2 2 ϕλγ ε=& & ,      (26) 
In the equation (26) χ&  is the dilation rate or the rate of 
average expansion (compression) of the region surface; 

1γ&  and 2γ&  represent the rate of components of the total 
rate γ&  in a studying area. It is obvious that the rate that 
this rate γ&  can be derived from 1γ&  and 2γ& : 

2 2
1 2γ γ γ= +& & & .                            (27) 

Thus, in the relationships (5), (13) and (25), the 
last representation of the tensor VS  becomes 
especially important, since it enables one to obtain a 
solution of the characteristic equation (17) for the 
tensor (25) in the most appropriate form  

1

2

( ) / 2
( ) / 2
χ γ
χ γ

Λ = + 
Λ = − 

& &
& &

 .                          (28) 

According to Vaníček et al., (2008), for the study 
of deformation field, the so-called maximum 
displacement  1 2υ = Λ − Λ  is used as an invariant 
characteristic in the form (19). It is easily seen from 
(28) and υ γ= & , these concepts are algebraically 
identical in the case of strain tensor and strain rate 
tensor considered here in the 2D space. In our case the 
parameter υ γ= & is nothing else but the rate of 
maximum shear. 

Now comes important step for the determination 
of the eigenvectors (also called by principal vectors) 
in view of the fact that the eigenvalues 1Λ  and 2Λ  of 
the tensors (13) or (25) correspond to their principal 
vectors  1Λ  and 2Λ  respectively. Remembering the 
definition of 1Λ  and 2Λ  these vectors can be found 
as a nontrivial solution of the homogeneous (singular) 
system of algebraic equations 

( ) 0V j j− Λ ⋅ =S I Λ  ,                    (29) 

where I  is the (2×2) unit matrix. Consider the matrix 
of the system (29) in the vector form 

1 1 2 2,   V j j j − Λ = − Λ − Λ S I s e s e  ,    (30) 

where each auxiliary vector is  represents the i-th 
column of the matrix VS : 

1
1

2

1
2

χ γ
γ
− 

=  
 

s
& &

&
,  2

2
1

1
2

γ
χ γ

 
=  + 

s
&

& &
.        (31) 

Here 1e  and 2e  are the unit vectors in the adopted 
horizontal local coordinate system.  

Thus, the system of linear equations (29) provides 
the following two conditions of orthogonality  

( ,   ) 0, ( 1,2)i j i j i− Λ = =s e Λ  ,  
( constj = ) .                            (32)  

Therefore, each eigenvector jΛ  will be normal to 

a plane, in which all-auxiliary vectors i j i− Λs e  
belongs to each fixed constj = . The transformation 
of the matrix V j− ΛS I  into the system of principal 

axes ( 1Λ , 2Λ ) leads to the relationship 

1

2

0

0
j

V j
j

Λ − Λ 
− Λ ⇒   Λ − Λ 

S I ,     

rank( ) 1V j− Λ =S I  where 1 2Λ > Λ ,              (33) 
for each (j = 1, 2). The result (33) reflects the 
following fact: there is only one linearly independent 
vector in the set i j i− Λs e  for each fixed (j = 1, 2). 

Thus, we can obtain an eigenvector jΛ  as a vector 
product of the corresponding linearly independent 
vectors i j i− Λs e . Simplest general solution can be 
formed by analogy with a three-dimensional case 
[Marchenko, 2003] by calculating the following 
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vector product, which coincide with the eigenvectors 
but are unnormalized,  

1 1 2 2( ) ( )j j j= − Λ × − ΛZ s e s e  .            (34) 

After standard normalization of each vector jZ  
one gets 

/ ( , )j j j j=Λ Z Z Z  .                      (35) 
As a result, transformation (34) allows us to 

represent every non-unique eigenvector in the 
simplest form  

2
j j j= + Λ + ΛZ P s e  ,                     (36) 

where 

1 2= ×P s s , 1 2= +s s s , [ ]T
1 2 1  1= + =e e e .  (37) 

Thus, the resulting equations (35)–(37) give a 
rigorous solution of the problem. However, for a 
strain rate tensor, which is studied in the 2D case, 
there are significantly simpler dependencies that 
allow further accuracy estimation of eigenvalues and 
principal axes using known velocities field and its 
covariance matrix from GPS-data processing. Note 
that the eigenvalues 1Λ  and 2Λ  of the tensors (13) or 
(25) assumed as principal values of strain rate tensor 
that correspond to the principal vectors of the 
maximum 1Λ  (minimum 2Λ ) extension (compres-
sion) in these principal directions. 

In this case, these vectors, considered as axial, 
correspond to principal directions. Simplest formulas 
represents the azimuth 1α  of the first principal axis 

1Λ , calculated by the formula (38), and the azimuth 

2α  of the second principal axis 2Λ , which is 
determined from the condition that the principal axes 
are perpendicular to each other: 

2
1

1

1 arctan
2

γα
γ

 
=  

 

&
&

 ,  2 1 / 2α α π= + .       (38) 

The azimuth 1 / 4β α π= +  corresponds also to 
axial vector in the direction of the maximum shear 
and equivalent to the bisector of the angle between the 
principal axes 1Λ  and minimal 2Λ . Equation (38) 
together with the solution (25)–(28) of the eigen-
values problem allows us to proceed to a rigorous 
estimation of the accuracy of the parameters from 
given GPS observation. 
 

Error propagation for the eigenvalues –  
eigenvectors problem 

 
According to [Marchenko, 2003; Marchenko, et 

al., 2010], the formulas for the accuracy estimation of 
the eigenvalues and eigenvectors can be obtained via 
error propagation if the input data represented in 
following form 

T
,  ,  e e eϕϕ λλ ϕλ =  T & & & ,                  (39) 

together with the known covariance matrix TTC  of 
the components (39) of the strain rate tensor. Taking 

into account that adopted functional dependence for 
the calculation of eigenvalues is the relationships 
(28), which are based on the vector 

[ ]T
1 2,  ,  ( ) / 2,   ,   2χ γ γ= = + −t & & &  

TT
1 2,  ,  ( ) / 2,   ,   2e e e e eϕϕ λλ λλ ϕϕ ϕλχ γ γ  = = + − & & & & & & & & ,      (40) 

we come to the additional task of preliminary 
accuracy estimation of the components of the vector 
t . Therefore, using the covariance propagation rule 
the matrix (41) of the following partial derivatives is 
necessary 

1/ 2 1/ 2 0
1 1 0

0 0 2

 
∂  = − ∂  

 

t
T

,                      (41) 

When (41) is given, the full covariance matrix ttC  
of the vector t  can be found by means of error 
propagation rule 

T

tt TT
∂ ∂ =  ∂ ∂ 
t tC C
T T

.                  (42) 

For further accuracy estimation of the eigenvalues 

[ ]T
1 2,   = Λ Λλ ,                       (43) 

we recall that each eigenvalue can be represented as a 
dependence on two parameters only: the dilation rate 
χ&  and two components 1γ&  and 2γ&  allowing to obtain 

the rate of the maximum shear 2 2 1/ 2
1 2( )γ γ γ= +& & &  (27). 

It should be noted that accuracy of the dilatation rate 
χ&  and accuracy of the components 1γ&  and 2γ&  (21) 
are derived from (42) and the variance var( )γ&  of the 
parameter γ&  can be found in the following way 

T T

tt TTvar( ) γ γ γ γγ ∂ ∂ ∂ ∂ ∂ ∂   = =   ∂ ∂ ∂ ∂ ∂ ∂   
t tC C

t t t T t T
& & & && , 

        1 20,   ,   γ γγ
γ γ

 ∂
=  ∂  t

& &&
& &

 .                  (44) 

Differentiating (43), according to usual rules, we 
get the matrix of partial derivatives from the 
eigenvalues vector λ  with respect to the components 
of the vector t  (42) and the complete covariance 
matrix λλC :  

1 2

1 2

1
2 2 2
1
2 2 2

γ γ
γ γ
γ γ
γ γ

 
 ∂  =

∂  − − 
 

λ
t

& &
& &
& &
& &

,   

T T

tt TT
∂ ∂ ∂ ∂ ∂ ∂   = =   ∂ ∂ ∂ ∂ ∂ ∂   

λλ
λ λ λ t λ tC C C
t t t T t T

.       (45) 

Accuracy estimation of the directions of the 
principal axes reduces in the evaluation of the 
accuracy of azimuths (38), which correspond to the 
maximum 1Λ  and minimum 2Λ  directions. Applying 
the covariance propagation rule to the first of the 
relations (38), variance of azimuth of the first 
principal direction can be obtained 
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1 1 20
2 2

α γ γ
γ γ

 ∂
= − ∂  t

& &
& &

,    

T T
1 1 1 1

1 tt TTvar( ) α α α αα ∂ ∂ ∂ ∂   = =   ∂ ∂ ∂ ∂ ∂ ∂   
C C

t t t T t T
 

T T
1 1 1 1

1 tt TT
α α α α∂ ∂ ∂ ∂∂ ∂   = =   ∂ ∂ ∂ ∂ ∂ ∂   

t tC C
t t t T t T

.              (46)  

Variance of the azimuth 2α  of the second principal 
axis and the azimuth β  of the direction of maximum 
shear will be equivalent, since partial derivatives of 
these three parameters coincide. 
 

Estimation of the strain rate tensor  
in the West Ukraine area 

 
The initial eastern EV  (Fig. 2) and northern NV  

(Fig. 3) linear velocity were found from the 37 GNSS 
stations located in the study area using Bernese 
Processing Engine module (BPE) of Bernese GNSS 
Software version 5.2 for the time span about 2.5 
years. To get a better accordance for constrains the 
IGS stations closest to a vicinity of study location was 
included with additional fixed coordinates of 
ITRF2008 at epoch 2005.0. Therefore, these 
velocities EV  and NV   also related to the ITRF2008 
system (epoch 2005.0) as source information. See 
Figs. 2 and 3. 

The components λλε  & , ϕϕε  &  , λϕε  &  of the strain 
rate tensor were computed straightforward through 
numerical differentiation using unites [µstrain/yr= 
= 10-6/year]. Then formulas (24)–(27) allow to 
calculate the dilation rate χ&  and the rate components 

1γ&  , 2γ&  of the tensor – deviator. Obviously the 
eigenvalues and eigenvectors can be derived from 
formulas (28) and (38) respectively. Figure 6 
illustrates the eigenvectors obtained from (38) in the 
points of GNSS stations location. Then the 
components  λλε  & , ϕϕε  &  , λϕε  &  of strain rate tensor 

and the component ω&  of rotational rate tensor have 
been calculated based on formulas (13) and (14) 
respectively. We omit here the parameters λλε  & , ϕϕε  & , 

λϕε  &  and give the value ω&  illustrated by Fig. 4. After 

determining the components λλε  & , ϕϕε  &  , λϕε  &  of the 
strain rate tensor, formulas (24)–(27) allow easy 
calculation of the maximum 1Λ  and minimum 2Λ  
eigenvalues given in the local NEU system (ITRF2008 
frame), the dilation rate χ& , the rate components 1γ& , 

2γ&  of the tensor – deviator and directions of the rate of 
the principal deformations 1Λ  and 2Λ  as eigenvectors. 
It is evident that the maximum and minimum 
eigenvalues should be derived from formula (28).  

 
 

Fig. 4. Basic component of rotation rate tensor ω&  [10–6/year]  
(rotation rates of the region) 
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Fig. 5. Dilatation rate [µstrain/yr] based on principal deformations  
corresponding the expansion 1Λ  and compression 2Λ   

 

 
 

Fig. 6. Maximal shear rate [µstrain/year]; directions  
of the principal deformations (↔) 1Λ   

(expansion) and (→←) 2Λ  (compression)
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Fig. 5 demonstrates the dilation rate χ& . Maximum 
sheer rate vector γ&  with directions of the same 
principal axes is presented in fig. 6, which correspond 
to the maximum 1Λ  and minimum 2Λ  eigenvectors 
or principal deformation rate in the region. To be 
consistent, the main tectonic formations are shown on 
all Fig. 2–6 as the background intensity of different 
components of the velocity components, rotation rate 
and strain rate tensors. Topographic features of the 
region were based on the SRTM-3 model (Shuttle 
Radar Topography Mission) with resolution 3″×3″. 

Summary and Conclusion 

In summary we can conclude. 
1. GNSS observations from the 37 stations 

located in the Western Ukraine area were processed 
using Bernese GNSS Software version 5.2 for the 
time span about 2.5 years. Therefore, coordinates and 
velocities of 37 GNSS stations have been calculated. 
Those results were used to construct the 2D model of 
horizontal strain rates in the region of Western 
Ukraine, including a part of the Carpathian 
Mountains. 

2. Then after densification a digital model of 
linear horizontal velocities of the Earth's crust 
movements for the Western Ukraine area was 
calculated. Two well-known methods for analytical 
solution of the eigenvalues – eigenvector problem for 
the 2D strain rate tensor are analyzed, and their 
identity is shown. Simplest formulas were chosen for 
further use in calculations and rigorous accuracy 
estimation.  

3. For better understanding, the basic tectonic 
formations are shown as the background intensity of 
different components of velocity, the rotation rate, 
and strain rate tensors. Topographic features of the 
region were based on the SRTM-3 model (Shuttle 
Radar Topography Mission) with high resolution 
3″×3″ (Fig. 1). A model of the rotation rate tensor was 
constructed for the region of Western Ukraine, which 
leads to the following conclusions. According to the 
classical approach, it is assumed that each tectonic 
plate should be rigid (having the same linear 
velocities for each sub-region lying on the same 
plate), then any area for which the condition 0ω =&  is 
fulfilled (linear velocity = const), considered as a non-
deformed region. This condition 0ω ≠&  is not fulfilled 
for the Western Ukraine area. 

4. Based on the computations from GPS-data 
model of components of horizontal deformations, the 
rates of principal values and rates of prin 

5. cipal axes of the Earth’s crust deformation 
were found. At the first sight, it should be pointed out 
that the maximum sheer rates have greatest values in 
the areas located around the Ukrainian Carpathians. 
The dilatation rate has also a similar distribution.  

6. However, this paper deals only with the 
problem of eigenvalues – eigenvectors without 
estimation of accuracy, which may lead to doubtful 

conclusions about interpretation and require 
additional solution of a purely mathematical problem. 
The complete covariance matrix TTC  of the strain 
rate tensor must be found from the given covariance 
matrix of the velocity components obtained by Berne 
software. This problem was omitted in the article due 
to possible further development. 
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ОЦІНЮВАННЯ ТЕНЗОРА ШВИДКОСТЕЙ ГОРИЗОНТАЛЬНИХ ДЕФОРМАЦІЙ  
У РЕГІОНІ ЗАХІДНОЇ УКРАЇНИ 

Дані GNSS спостережень (CORS) з 37 станцій, розташованих у районі Західної України, обробленО за 
допомогою модуля Bernese Processing Engine (BPE) Бернського програмного забезпечення GNSS версії 
5.2 протягом періоду часу близько 2,5 року. Щоб досягти кращої згоди, вибрано станції IGS, найближчі 
до навколишнього району дослідження, з фіксованими координатами ITRF2008 в епоху 2005.0. Східна та 
північна складові швидкості спостережень GNSS з цих 37 постійних станцій, обчислені за результатами 
вимірювань GNSS, використані для побудови двовимірної моделі поля горизонтальних деформацій цієї 
місцевості. Це дослідження складається з трьох частин. По-перше, проаналізовано два точні рішення для 
компонентів 2D тензора швидкостей деформацій, отримані на геосфері на основі розв’язання власних 
величин – задачі власних векторів, ураховуючи симетричний тензор швидкості обертання. По-друге, на 
основі найпростіших і найкорисніших формул з першого етапу виконано строге оцінювання точності 
компонентів 2D тензора швидкостей деформацій на основі правила поширення коваріацій. Нарешті, 
обчислено компоненти 2D тензора швидкості деформації, швидкості дилатації та компоненти тензора 
рівних швидкостей в області. Для описаної області побудовано модель тензора швидкості обертання. Це 
привело до висновку, що область дослідження слід інтерпретувати як деформовану територію. На основі 
обчислень з GNSS-моделі цих компонентів горизонтальних деформацій встановлено норми основних 
значень та швидкості основних осей деформації земної кори. Основні тектонічні утворення показано як 
фонову інтенсивність різних компонентів швидкостей, швидкість обертання та тензори швидкості 
деформації. Топографічні особливості регіону ґрунтувались на моделі SRTM-3 (місія з топографії 
Shuttle) з роздільною здатністю 3″×3″. На перший погляд, найбільші значення отримано в районах, 
розташованих навколо Українських Карпат. Швидкість дилатації також має подібний розподіл. Тим не 
менше, оскільки в роботі обчислено лише власні числа та власні вектори без оцінки точності, це може 
призвести до сумнівних висновків щодо інтерпретації результатів і вимагає додаткового розв’язання суто 
математичної задачі. Потрібно знайти коваріаційну матрицю тензора деформації на основі заданої 
коваріаційної матриці компонентів швидкості, одержаних програмним забезпеченням Bernese. Оскільки 
досліджуваний регіон є дуже складним, то за отриманими результатами необхідне подальше ущільнення 
перманентних станцій GNSS. 

Ключові слова: тензор швидкостей горизонтальних деформацій; швидкість дилатації; тензор 
швидкостей максимального зсуву; оцінювання точності. 
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