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RELOCATING EARTHQUAKES IN CLUSTERS BASED ON VARIATIONS IN THE 
INTERVALS BETWEEN THEIR FIRST P- AND S-WAVES 

The length of the interval between the first P- and S-waves is routinely used as a rough estimator of 
epicentral distance. We propose an algorithm for the relocation of earthquakes occurring in clusters, based on the 
simultaneous comparison of a large number of intervals. Variations in the intervals at each station are measured 
by cross-correlation between the respective portions of records directly and without a reference to any absolute 
times. In the current version of the algorithm, it is assumed that the size of the cluster is much smaller than the 
distance to the stations; the azimuths of the stations, as well as the angles of the emergence of the first P- and S-
waves, are more or less accurately known for at least one (reference) earthquake; and the rays of the first waves 
lie in the vertical plane that contains the earthquake and the station. Under these assumptions, the relationship 
between the locations and the variations in the intervals becomes purely geometrical and linear, and the 
corresponding system can easily be solved. A series of synthetic experiments with different numbers and 
configurations of stations, levels of noise in the observed data, sparse data, and inaccuracies in azimuths and 
angles of emergence have demonstrated the stable and reliable performance of the algorithm and its potential 
applicability to real data. Due to the large number of constraints on each location, the algorithm can be used 
primarily in the case of small earthquakes or sparse networks when a large portion of data is missing. It can be 
used independently, to validate the locations determined by other methods, or be integrated into them, thereby 
improving their reliability by providing a large number of additional constraints.  

Key words: earthquake locations; relocation; cluster earthquakes; interval between first P- and S-waves; 
cross-correlation. 

Introduction 

Small earthquakes, much more frequent than large 
ones, provide a wealth of invaluable information for 
many applications of seismological research. Recent 
staggering advances in real-time access to an ever-
increasing volume of seismological data make their 
use even more feasible. The problem of improving the 
location accuracy of small earthquakes has remained 
the focus of seismological research for many decades. 
Although a wide variety of approaches have been 
proposed, most of them are based on exploiting the 
similarity of the waveforms of small earthquakes 
occurring in clusters. In earlier works, the differential 
arrivals of P- and/or S-waves corresponding to the 
cross-correlation maxima with the so-called master 
event were most often estimated [Shearer, 1997; 
Shearer et al., 2005]. Double differences between 
travel times for pairs of events were then introduced, 
minimizing the problem of spurious absolute arrivals, 
especially of S-waves, as well as the problem of a 
poorly known velocity structure [Waldhauser et al., 
2000]. On the other hand, the absolute values of the 
cross-correlation between body waves [Menke, 1999] 
and coda waves [Sneider & Vrijlandt, 2005] were 
implemented in estimators of source separation 
between two earthquakes that can be used to locate 

earthquakes with a single station [Robinson, et al., 
2007, 2013; Gnyp, 2013, 2014]. Often, the 
performance of the approaches can be further 
improved by combining them with each other as well 
as with more traditional location algorithms [Harris & 
Douglas, 2021].  

When relocating earthquake clusters in the 
Carpathian region of Ukraine [Gnyp, 2010, 2022; 
Gnyp & Malytskyy, 2021], we also analyzed the 
variations in the differential intervals between the first 
P- and S-waves at each station and found that they 
correlated well with the changes in location obtained 
by using the differential arrival times of only  
P-waves. Although the analysis was then considered 
only auxiliary, the idea arose that the variations in  
S-to-P intervals themselves could be used to locate 
earthquakes. The advantage of variations seemed to 
be that they were not only independent of the source 
times but even of the absolute values of the intervals 
themselves and could easily be measured by the cross-
correlation between the corresponding waveforms. 

Algorithm 

By comparing the intervals between the first P- 
and S-waves, one can judge which of the earthquakes 
is closer to the station; by comparing them at different 
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stations, roughly estimate the location of the earthquake. 
Our algorithm is based on the simultaneous 
comparison of the intervals for a large number of 
earthquakes. The difference (k)

ijSPDD  between the 

intervals for a pair of earthquakes i and j at station k is 
defined as 
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in which ti and tj are the source times, (k)
iS , (k)

jS , (k)
iP , 

and (k)
jP  are the travel times of first P- and S-waves, 

(k)
ijPD  and (k)

ijSD  are the travel time differences between 

earthquakes i and j measured by the cross-correlation 
between the corresponding waveforms at station k, 
i, j = 1,…, N, and k = 1,….K. For N earthquakes,  
 

there will be N(N-1) pairs and the same number (or 
sometimes lesser) of differences (observations) at 
each station.  

Before establishing the dependence of the 
difference between the P- and S-wave intervals for 
a pair of earthquakes on their coordinates in the 
local Cartesian system (Northing, Easting, Z), we 
assume that since the cluster size is much smaller 
than the distance to the station, (i) the ray paths are 
almost identical outside the cluster, and the travel 
time differences arise inside the cluster and are the 
same as at the station; (ii) the changes in the station 
azimuth and angles of the emergence of P- or S-
waves due to changes in the location are very small 
and can be neglected. It is also assumed that the 
rays lie in a vertical plane containing the earthquake 
and the station, and P- and S-wave velocities (vP and 
vS) are known and uniform within the cluster.  

         

a                                                              b 
Fig. 1. A scheme for the calculation of difference between the ray paths from earthquakes 1 and 2 with 
coordinates x1, y1, z1, and x2, y2, z2 in the local Cartesian system. A horizontal projection is on the (a),  

and a vertical one is on the (b). Earthquakes are indicated by red and green stars, and the station  
that is actually much further away is indicated by a blue triangle. a is the angle of emergence. 

 
Then, at station k, the differences )(

12
kraD  and 

)(
12

krbD  between the ray paths of the first P- and  

S-waves with angles of emergence (k)α  and (k)β  can be 
calculated for earthquakes 1 and 2 from their 
coordinates x1, y1, z1, and x2, y2, z2 in the local 
Cartesian system, as shown in Fig. 1. Since 
earthquake 1 is placed at the zero coordinates (x1, y1, 
z1 º 0), the horizontal projection of )(

12
kraD  can be 

obtained as a radial coordinate in the system rotated 
by the station's azimuth (k)Az  (Fig. 1, a): 
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in which '

2y  is the horizontal projection of  
)(

12
kraD . Similarly (Fig. 1, b), )(

12
kraD  itself is 

calculated by rotating the system in the vertical 
plane by the angle of emergence ( (k)α  or (k)β ): 
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with the axis Z directed upwards.  
For a pair i and j, )(k

ijraD  can be obtained in  

a system with zero coordinates translated to xi,  
yi, zi: 
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Then, since 
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we obtain the more compact expressions for the 
differences (2): 
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The equations (4) are linear with respect to the 
coordinates, and can be easily solved if angles (k)α  
and (k)β , and (k)Az  are known.  

After introducing vectors  
X º (x2, y2, z2, x3, y3, z3, … , xN, yN, zN)T,        (5) 

and DDSP(k) º ( )(
12SP kDD , )(
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1SP k

NDD , 
)(

23SP kDD , )(
24SP kDD , … , )(

2SP k
NDD , … , 

)(
12SP k

NN --DD ,  
)(
2SP k

NN-DD , )(
1SP k

NN-DD )T,                 (6) 
equations (4) can be presented in matrix form: 

)()( kk ΔΔSPXD = ,                       (7) 
in which the matrix D(k) consists of the expressions 
(3) for a(k), b(k) and c(k), and its dimensions are  
(N–1)·N/2 ´ 3·(N–1). The structure of the system is 
transcribed in Appendix 1. 

After introducing matrix D and vector DDSP 
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the system of equations for K stations is obtained: 

ΔΔSPDX = ,                              (8) 
in which the dimensions of matrix D are K·(N–1)· 
N/2 ´ 3·(N–1). 

Locations X of the earthquakes relative to 
earthquake 1 can be obtained by solving the linear 
system (8): 

ΔΔSPDX 1-= .                        (9) 
 

Synthetic experiments 

Next, we conducted a series of synthetic 
experiments to test the performance of the algorithm 
depending on the number and configuration of 

stations, level of noise in the observed data, data 
sparsity, and inaccuracy of azimuths and angles of 
emergence. In these experiments, the synthetic 
earthquakes were located randomly along the two 3D 
lines intersecting at zero coordinates, thus defining an 
imaginary rupture plane (Table 1, Fig. 2). Variations 
in the intervals between S- and P-waves were 
generated for the original locations and used subsequently 
to recover the locations by solving the corresponding 
linear system. 

 
Table 1 

Coordinates of synthetic earthquakes  
in the local Cartesian system 

 EW, km NS, km Z, km 
1 0.00  0.00  0.00  
2 9.00  9.00  9.00  
3 –1.00  –1.00 –1.00  
4 –2.00  –2.00  –2.00  
5 8.00  8.00  8.00  
6 –3.00  –3.00  –3.00  
7 4.00  4.00  4.00  
8 6.00  6.00  6.00  
9 7.00  7.00  7.00  

10 5.00  5.00  5.00  
11 9.00  –5.85  1.35  
12 –1.00  0.65 –0.15 
13 –2.00  1.30  –0.30 
14 8.00  –5.20  1.20  
15 –3.00  1.95  –0.45 
16 4.00  –2.60  0.60 
17 6.00  –3.90  0.90 
18 7.00  –4.55  1.15  
19 5.00  –3.25  0.75 

 

Table 2 

Azimuths of the stations and the angles  
of emergence of first P- and S-waves (a, b) 

used for calculation of variations in synthetic 
S-to-P intervals 

 Az, deg a, deg b, deg 
RAK 97.00 73.58 40.48 
BMR 199.60 78.00 32.06 
MEZ 343.30 79.60 28.85 

 

Experiment 1: The impact of the number  
and configuration of stations 

To avoid data inconsistency and bring our 
simulations closer to reality, we used the same station 
azimuths and angles of emergence (Table 2) as during 
the relocation of the Carpathian cluster in Teresva 
[Gnyp & Malytskyy, 2021]. Velocity vP was set at 5 
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and vS 3 km/s inside the cluster. Since the azimuth of 
the station is the same for all earthquakes, the 
tangential changes in the location do not affect the 
differences in the intervals (Fig. 1), and data from 
only one station is insufficient. (That is also why the 
coefficients a(k), b(k), and c(k) in (4) are the same for all 
pairs of earthquakes.) 

 

 
Fig. 2. 3D locations of synthetic earthquakes 
(Table 1) and the hypothetical rupture plane 

defined by them. Here and further, the original 
locations are shown as empty squares, and their 

projections are shown as empty circles. The 
locations are approximated by a surface (the blue 
wire grid) using the method of correlation grids 

[Davis, 1986]. 

 
Fig. 3. Azimuths of stations and angles of 

emergence of first P- and S-waves (indicated by 
circles and diamonds, respectively) (Table 2) 
used for the calculation of variations in the 
synthetic intervals between S- and P-waves. 

 

 
Fig. 4. The locations of earthquakes (Table 1, 
Fig. 2) recovered based on variations in the 
synthetic intervals at two stations (RAK and 

BMR). Here and further, the recovered locations 
are shown as cyan squares, and their projections 
are shown as purple circles. At the bottom, the 

variations in the intervals are plotted. 
With two stations, the locations remain not 

uniquely constrained either. In the case of the BMR 
and RAK stations, in particular, the rank of the linear 
system turned out to be deficient, and only the least-
squares solution could be estimated (Fig. 4). From the 
figure, it can be seen that the recovered locations do 
not exactly coincide with the original ones, although 
they still lie along the two perfectly straight lines, and 
in the same sequence, and belong to the same plane 
defined by the lines (Fig. 5). The entire set of them 
rotates, however, about the reference earthquake, and 
its shape is distorted depending, as experiments with 
other pairs of stations have shown, on the station 
azimuths and angles of emergence. On the other hand, 
the variations for the least squares locations turned out 
to be identical to the original ones with an accuracy of 
~ 10–15, which only confirms that the solution is not 
unique. At the same time, the same least squares 
locations were obtained each time after the 
calculations were repeated. This in turn means that at 
least the least squares solution is unique and stable 
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and can still appear useful if there are only two 
stations. In the absence of noise, however, the exact 
recovery of locations was achieved for all possible 
configurations of three or more stations (Fig. 6). 
 

 
Fig. 5. The sets of original locations (top) and 
locations recovered based on variations in the 

intervals at stations RAK and BMR (bottom), the 
same as in Fig. 4, rotated to better show their 

similarity. 
 

Experiment 2: The impact of noise 
The presence of noise in the observed data was 

modeled as 
r)5.0( ×-+= RanΔΔSPΔΔSP (o)(n) ,  

in which DDSP(n) are the noised variations in the 
intervals, DDSP(o) are the original ones, Ran is the 
vector of random numbers uniformly distributed in the 
interval between 0 and 1, and r is a coefficient. Since 
the noise in the travel time differences measured by 
cross-correlation is independent of their absolute 
values, we deliberately scaled it by the same factor r. 

However, the absolute values of the differences 
themselves depend on the actual distances between 
earthquakes, so the same r will result in a relatively 
higher level of noise for the closer pairs (or for the 
smaller clusters in general). To be able to compare the 
results for the clusters of different sizes, we measured 
the average level of noise using the relative norm: 
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With the same three stations (BMR, MEZU, and 

RAK) as previously, we then compared the locations 
recovered for the same synthetic earthquakes at 
different levels of noise r with their original ones. The 
locations recovered for r equal to 0.2 and 0.5, as well 
as the diagrams of (o)ΔΔSPi  and (n)ΔΔSPi , are shown 
in Figs. 7 and 8. The absolute values of the relative 
norm r* were 0.17 and 0.40, respectively. Even at such 
a high value of r* as 0.40, the results may only seem 
satisfactory: although the original lines of synthetic 
earthquakes are no longer easily recognized, the plane 
remains almost unperturbed, as does its orientation.  

 

 
Fig. 6. The locations of earthquakes 

(Table 1, Fig. 2) recovered based  
on variations in the synthetic intervals at 3 

stations (RAK, BMR, and MEZ).  

However, the size of our synthetic cluster (with 
a side of about 20 km) was rather large, and 
significantly larger, in particular, than the size of the 
Teresva cluster of 2015 (with a side about ten times 
smaller) [Gnyp & Malytskyy, 2021]. So, to get even 
closer to reality, we downsized our synthetic cluster 
defined by the same two 3D lines tenfold. The 
locations were satisfactorily recovered (Fig. 9) with 
the norm r* equal to 0.39 (r=0.05) and turned out to be 
quite similar to the results for the larger cluster with r* 
equal to 0.40 (r=0.5).  
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Fig. 7. The locations of earthquakes recovered 

based on variations in the synthetic intervals at 3 
stations (RAK, BMR, and MEZ) in the presence 
of noise (r=0.2, and r*=0.17). At the bottom, the 

original variations are plotted as dark cyan 
squares, along with the noisy ones plotted here 

and further on as empty red squares.  

 
Fig. 8. The locations of earthquakes recovered 
based on variations in synthetic intervals at 3 

stations (RAK, BMR, and MEZ) in the presence 
of noise (r=0.5, and r*=0.4). At the bottom, the 
original variations are plotted, along with the 

noisy ones.   
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Fig. 9. The 10-fold downscaled coordinates of 
earthquakes recovered based on variations in 

synthetic intervals at 3 stations (RAK, BMR, and 
MEZ) in the presence of noise (r=0.05, and 

r*=0.39). At the bottom, the original variations 
are plotted, along with the noisy ones. 

 

Fig. 10. The locations of earthquakes recovered 
from a set of variations at 3 stations (RAK, 

BMR, and MEZ) randomly reduced from 513 
to 135. For visualization purposes only, the 

removed variations are plotted here and further 
on as zeros. 



Geodynamics 2(35)/2023 

 

 26 

 
 
Fig. 11. The locations of earthquakes recovered 

from a set of variations at 3 stations (RAK, 
BMR, and MEZ) randomly reduced from 171 to 

24 at the station MEZ. 

 
 

Fig. 12. The locations of earthquakes recovered 
from a set of variations at 3 stations (RAK, 

BMR, and MEZ). 17 variations for earthquake 2 
are removed from the full set of 18 at the station 

RAK.  
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Fig. 13. The locations of earthquakes recovered 
from a set of variations at 3 stations (RAK, 

BMR, and MEZ). All variations for earthquake 2 
are removed from the full set of 18 at station 

RAK. 

Experiment 3: The impact of sparse data 

While S- to P- intervals varied in the range ±3.5s 
for the larger cluster in Example 2, for the downsized 
one they occurred in the range of only ±0.25, the 
quantity still confidently measurable by cross-correlation 
(with the HH broadband data, in particular). However, 
due to the low level of signal-to-noise ratio, it may 
appear that variations in the intervals cannot be 
measured with any degree of confidence for some 
earthquakes. If the number of the corresponding 
“missing” measurements (M) is not very large compared 
to their largest possible K·(N–1)·N/2, such an incomplete 
system (8) can still remain over-determined and have 
an exact or approximate solution. So, we tried to 
establish at what ratio of “missing” intervals, for a 
single earthquake, a single station, or for all stations 
(RAK, BMR, and MEZ), the system (2) can become 
incomplete and, as a result, intractable. For this 
purpose, M random integers uniformly distributed in 
the interval between 1 and K·(N–1)·N/2 (for all 
earthquakes and all stations), (N–1)·N/2 (for a single 
station), or N–1 (for a single earthquake at one station) 
were generated, and the equations with the corresponding 
numbers were removed from the full set. Even with a 
large fraction of “missing” measurements, the locations 
were recovered almost without a change (Figs. 10–13). 
Even with 17 variations for earthquake 2 removed 
from the complete set of 18 at station RAK, its 
recovered location remained the same (Fig. 12). Only 
when the number of constraints dropped to zero did 
the rank of matrix D in (8) became deficient, and its 
location, although still controlled by variations at 
stations MEZ and BMR, changed (Fig. 13). For 
earthquake 2, the situation turned out to be similar to 
experiment 1, where intervals from only two stations 
were available. Ultimately, it was concluded that the 
exact recovery of the location is achievable even if at 
least one direct or indirect link to the reference 
earthquake is available at three stations; if indirect, 
however, the link must be through a chain of 
earthquakes also with three links. 

Experiment 4: The impact of inaccurate azimuths 
and angles of emergence 

In this experiment, variations in the synthetic intervals 
at three stations (again, RAK, BMR, and MEZ) were 
calculated according to (4) using their original 
azimuths and the corresponding angles of emergence. 
Then, to simulate the situation with their inaccurate 
knowledge, the angles were changed by adding the 
random numbers to them:  

r,)A5.0(AzAz )( ×-+= i
o

ii  
r,)a5.0(αα )( ×-+= i

o
ii  

r,)b5.0(ββ )( ×-+= i
o

ii  
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in which angles are measured in radians, )(Az o
i , )(α o

i , 

and )(β o
i  are original azimuths and angles of emergence, 

Ai, ai, and bi are random numbers uniformly distributed 
in the range between 0 and 1, the coefficient r is the 
same for all angles, and i = 1, 2, 3. These inaccurate 
angles were then used for the calculation of locations. 

The results for three values of r (0.2, 0.5, and 0.9) 
are shown in Fig. 14–16. The largest inaccuracies in 
the respective sets of angles measured in degrees were 
5.3˚, 13.1˚, and 23.6˚. Even with such large inaccuracies, 
the locations were recovered quite satisfactorily, in 
our opinion, as were the size of the cluster and the 
orientation of the “rupture” plane defined by them. 
Again, as in experiment 1, variations in the intervals 
calculated for the original and inaccurate angles turned 
out to be virtually identical to within 10–15. This 
means that the variations can be the same for different 
sets of angles and locations. And the very idea of 
recovering angles at the same time as locations looks 
unrealizable, at least with only three stations.  

However, the situation changed with four or more 
stations: the recovered set of locations became unique, 
but did not exactly fit the “observed” variations, as 
would be expected.   

Discussion and conclusion 

Although the assumptions in the algorithm may 
seem too numerous or too restrictive, most of them are 
in fact very realistic and common in seismological 
practice. Usually, the location and angles of emergence 
can be calculated by other methods for at least the 
strongest earthquake used subsequently as a reference. 
Since the cluster size is assumed to be much smaller 
than the distance to the stations, which is indeed often 
the case, it reasonably can be assumed that station 
azimuths and the angles of emergence are the same for 
all cluster earthquakes and that the ray paths are the 
same outside the cluster. Besides, the majority of rays 
lie in the vertical plane that contains the source and 
the station, with very few exceptions due to an 
extremely inhomogeneous velocity structure. 

Indeed, various combined experiments with 
synthetics could be devised to test the performance of 
the algorithm. However, since their results depended 
on a large number of factors and in different ways, it 
had been difficult to separate their impact from each 
other and arrive at some kind of quantitative measure. 
So, we varied the configuration of stations, the level 
of noise in the observed data, their sparsity and 
inaccuracy of azimuths, and angles of emergence in 
some tests to extremes until the recovered locations 
became unrecognizable or were impossible to obtain 
at all. Even in some extreme tests, recovery of 
locations was quite satisfactory, in our opinion. 

 
Fig. 14. The locations of earthquakes recovered 

from a set of variations at 3 stations (RAK, 
BMR, and MEZ) using inaccurate azimuths and 

angles of emergence (r=0.2). At the bottom, 
original (0) and inaccurate angles are plotted. 
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Fig. 15. The locations of earthquakes recovered 
from a set of variations at 3 stations (RAK, 

BMR, and MEZ) using inaccurate azimuths and 
angles of emergence (r=0.5). At the bottom, 
original (0) and inaccurate angles are plotted. 

Fig. 16. The locations of earthquakes 
recovered from a set of variations at 3 stations 

(RAK, BMR, and MEZ) using inaccurate 
azimuths and angles of emergence (r=0.9). At the 
bottom, the original (0) and inaccurate angles are 

plotted. 
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An advantage of the algorithm in this regard is 
that each location is constrained by a much larger 
number of variations in the intervals than just the 
arrival times. The exclusion of such a large proportion 
of uncertainty as the origin times also can be 
considered an advantage that simplifies the algorithm, 
making it faster and the results more reliable. The 
impact of the velocity structure between the source 
and the station is also reduced to the location of the 
reference earthquake only. If the absolute location and 
angles of the emergence of the first P- and S-waves 
for the reference earthquake are accurate, the locations 
of other cluster earthquakes become absolute and 
accurate as well. However, synthetic experiments have 
shown that even if the reference was known only 
approximately, the relative locations of other earthquakes 
were often recovered to be quite similar to the original 
ones.  

Due to the large number of constraints on each 
location, the algorithm can be applied primarily in the 
case of small earthquakes or sparse networks when a 
large portion of data is missing. The algorithm can be 
used independently to validate locations determined 
by other methods, or it can be combined with them to 
improve their reliability by providing additional 
constraints. In the next phase, we will apply the 
algorithm to actual earthquakes and compare the 
results with those obtained by other techniques. 
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ВИЗНАЧЕННЯ КООРДИНАТ ЗЕМЛЕТРУСІВ У КЛАСТЕРАХ НА ОСНОВІ ВАРІАЦІЙ 
ІНТЕРВАЛІВ МІЖ ВСТУПАМИ Р- ТА S-ХВИЛЬ  

Довжину інтервалу між першими вступами Р- та S-хвиль часто використовують для приблизного 
оцінювання епіцентральної відстані. Ми пропонуємо алгоритм визначення координат землетрусів 
із одночасним порівнюванням великої кількості таких інтервалів. Для визначення різниці між 
інтервалами на кожній зі станцій обчислюється функція взаємної кореляції між відповідними 
хвильовими формами – без визначення абсолютної довжини інтервалів. У поточній версії алгоритму 
припускаємо, що розміри кластера набагато менші за відстань до станцій; азимути станцій і кути виходу 
перших Р- та S-хвиль доволі точно відомі, принаймні для одного (опорного) землетрусу; промені перших 
хвиль лежать у вертикальній площині, що містить вогнище і станцію. Зв’язок між координатами і 
різницею довжини інтервалів у цьому разі стає суто геометричним і лінійним, а відповідну систему 
рівнянь легко розв’язати. Результати серії модельних експериментів з використанням різної кількості 
станцій та їхньої конфігурації, рівня шуму у спостережених даних, ступеня неповноти даних, неточних 
азимутів та кутів виходу довели стійкість і надійність алгоритму і можливість його застосування надалі 
до реальних даних. З огляду на велику кількість обмежень на координати кожного із землетрусів 
алгоритм найдоцільніше використовувати у разі дуже слабких землетрусів або малої кількості станцій, 
коли істотна частина даних відсутня. Алгоритм можна використовувати окремо – або з метою 
підтвердження правильності координат, визначених іншими методами, або вбудувати його в інші 
методи, щоб підвищити їх надійність завдяки істотному збільшенню кількості обмежень. 

Ключові слова: координати землетрусів; визначення координат; кластер землетрусів; інтервал між 
вступами Р- та S-хвиль; функція взаємної кореляції.   
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