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ALGORITHM FOR CONSTRUCTING THE SUBSOIL DENSITY
DISTRIBUTION FUNCTION CONSIDERING ITS VALUE ON THE SURFACE

The conventional approach to constructing a three-dimensional distribution of the Earth’s masses involves
using Stokes constants incrementally up to a certain order. However, this study proposes an algorithm that
simultaneously considers all of these constants, which could potentially provide a more efficient method. The
basis for this is a system of equations obtained by differentiating the Lagrange function, which takes into account
the minimum deviation of the three-dimensional mass distribution of the planet’s subsoil from one-dimensional
referential one. An additional condition, apart from taking into account the Stokes constants, for an unambiguous
solution to the problem is to specify the value of the function on the surface of the ellipsoidal planet. It is
possible to simplify the calculation process by connecting the indices of summation values in a series of
expansions to their one-dimensional analogues in the system of linear equations. The study presents a control
example illustrating the application of the given algorithm. In its implementation, a simplified variant of setting
the density on the surface of the ocean is taken. The preliminary results of calculations confirm the expediency
of this approach and the need to expand such a technique with other conditions for unambiguously solving the
inverse problem of potential theory. Objectives. To create and implement the algorithm that takes into account
the density of the planet’s subsoil on its surface. Method. The mass distribution function of the planet's subsoil is
represented by a decomposition into biorthogonal series, the coefficients of decomposition which are determined
from a system of linear equations. The system of equations is obtained from the condition of minimizing the
deviation function of the desired mass distribution from the initially determined two-dimensional density
distribution (PREM reference model). Results. On the basis of the described algorithm, a three-dimensional
model of the density distribution of subsoil masses in the middle of the Earth is obtained, which takes into
account Stokes constants up to the eighth order inclusively and corresponds to the surface distribution of masses
of the oceanic model of the Earth. Its concise interpretation is also presented.

Key words: distribution function; Earth; Stokes constants; Lagrange function.

Introduction of hydrostatic equilibrium of the planet [Morits, 1994;
Fys et al., 2019; Meshcheryakov, 1991], closeness to a
known and predetermined function [Morits, 1994; Fys
et al., 2021; Meshcheryakov, 1991], specification of
the density function on the surface of the figure of the
celestial body, etc. [Fys, Gubar, 1999] can serve as

been constantly carried out in theoretical and practical ~ Such conditions. Another option for solving the given
aspects. The theoretical works include the series of ~Problem can be formulated as the proximity of the
works by Strakhov [Strahov, 1977], Moritza [Moritz, desired distribution function to a fixed (reference)
1973; Moritz, 1994]. Practical results were obtained geophysical radial model of the density function of the
by a number of scientists, in particular, Martinenc and ~ Planet’s subsoil, and the inhomogeneity of the Earth's
Pec [Martinenc & Pec, 1986], Meshcheryakov external gravitational field is connected with its three-
[Meshcheryakov, 1991] and others. At the same time, ~ dimensionality [Fys et al., 2018; Shcherbakov, 1978;
it should be noted that the main point in these studies ~ Fys et al., 2016]. For the clarity of the given task, it is
is the selection of additional conditions imposed on  necessary to add additional conditions. Traditionally,
the mass distribution functions of the planet’s subsoil  the minimal deviation from the presented one-dimensional
during the generation of the planet’s external mass distribution model is taken as such. However,
gravitational field. Reaching the minimum energy of  other conditions can be set. One such condition may be an
the gravitational field of a celestial body (conditions  additional presentation of the mass distribution

Determining the distribution function of the
planet's mass according to its external gravitational
field is an ambiguous task, but for the unity of the
solution, the imposition of additional conditions is
required. Detailed studies in this direction have
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function at individual points in the middle of the
Earth, for example, in the center of the Earth [Fys
et al., 2019], or on its surface. The mathematical
formulation of such a problem is given in
[Meshcheryakov, 1989]. The proposed method of
its solution is based on the theory of harmonic,
biharmonic, and three-harmonic functions, which
are used in the theory of elasticity and contains a
series and are quite cumbersome. In addition, the
practical implementation of this technique is
associated with the receiving of the data obtained
from observations (values on the surface of the
Earth) which can be too imprecise. Therefore, it
should be noted that the solution is not exact and
the extent of its approximation may not always be
determinable. For this reason, we plan to provide a
simplified version of the solution in the future,
which will be based on an approximation method
that considers the density of the Earth’s surface.

Formulation of the problem

Determine the mass distribution function of the
planet’s interior, which generates its external gravitational
field and takes a given value on the surface.

Presenting main material

For the simplicity of the presentation of the
material, we take the shape of the planet in the form
of a triaxial ellipsoid [Tserklevych et al., 2016], and
the mass distribution function in its middle in the
form of a decomposition by biorthogonal polynomials
[Meshcheryakov, 1991]:

where
OdWmnk
bmnk !
0 mnkd't
N 2 2 --N
mnk — L N mﬂn kgxz+x_22 X_32 1_ ‘(2)
mintk!12% x"Ix;Tx; £a; a, a; 4
b, — decomposition coefficients; W_, - three-

dimensional generalization of Legendre polynomials
[Meshcheryakov, 1991].

On the surface of the ellipsoid, we consider the
mass distribution function to be known, i. e.:

d|w(X1’X2’X3) = J (X, %y, Xg)- @)
The task of determining the density function is
reduced to finding the expansion coefficients b, in (1),

which generates the external gravitational field of the
Earth [Fys et al., 2019], adequately represented by a set
of Stokes constants [Pavlis et al., 2008], which through
the inner spherical functions [Fys et al., 2021]:
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Substituting the equation (4) into relation (5) and
taking into account (1), we get
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Representation of the density distribution function
in the form (1) covers the entire set of possible
distributions. However, in the discontinuity regions,
the convergence of series (1) is extremely slow (in
mathematics, it is called the “Gibbs effect”). To
accelerate the convergence of series (1) in the future,
it is advisable to present the density distribution
function, including as a separate term the already well-
studied one-dimensional spherical model of mass

én-ki

3RR(n-K)!k!d,, *

distribution (for the Earth, it is the reference model
PREM [Dziewonski et al., 1977]), i. e.:

d(X1'X2’X3):dO(r)+ é. bmnkank(Xl!XZ’XS)' (8)

m+n+k=0

Then the system will take the form [Fys et al., 2019]:
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non-zero Stokes constants calculated by the PREM model of the triaxial ellipsoid.

For the ellipsoid of rotation ( a, = a, ), respectively
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where CP; are the corresponding nonzero even

Stokes constants for the biaxial ellipsoid.
The total number of system equations is (10)

NZ,and the number of sought coefficients by, is
(N+1)(N+2)(N +3)
6
many solutions. For clarity, it is necessary to add
additional conditions that select dependencies on the
given task. The condition of minimal deviation of the
three-dimensional mass distribution function from its
one-dimensional counterpart, which was proposed by
Professor G. O. Meshcheryakov (truth in terms of the
problem of moments [Meshcheryakov, 1991]) can be
considered as the mostly used one. Other conditions
for obtaining a single solution can be given. For
example, if there is a question of studying the
hydrostatic state of the planet, related to the condition
of minimum gravitational energy [Fys et al., 2019],

then this is also a defining condition of unambiguity.
In this study, we propose to use the value of the

density of the substance on the surface, which in

principle can be considered known. However, it is

. Therefore,

the system has
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The minimum of expression (14) by variables
I' b
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where is the Lagrange multiplier,

C

determines the solution of the problem. To
find it, differentiation of function (14) by variables
b 11, gives a system of equations relative to these
unknowns. A detailed analysis shows that its structure

has a block form, which allows presenting the system
in the form of subsystems:

iT.B -RIL =D
'} CH Bi = Ci
In matrix form, the course of solving system (14)
and its solution can be presented as follows:

mnk ?

Yi=1-vi), (15)
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practically impossible to analytically describe such a
distribution due to the specifics of the setting on the
surface. Therefore, it is appropriate to consider the
deviation of the given and approximated function in
the sense of mean square deviation. Since we take the
shape of the planet to be an ellipsoid, on which the
value of the elements of the series is determined:

_ NI xg
= ikt ¢
then this condition will take the form:
2
.8 5 N 0
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Expression (13) is a surface integral over a closed
surface, which is connected to the volume integral
through the Ostrogradsky formula. Therefore, the
value of the surface density function affects its
structure throughout the body, and as a result, it is
appropriate to study the nature of this influence.

Considering this remark, we mathematically formulate
our problem as a conditional extremum problem, as it is
done in the article [Fys et al., 2019], accordingly, the
Lagrange function for our problem has the following form:
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Accordingly, the unknown coefficients b, in
subsystems (15) have the form:
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The indices i, jcorrespond to their own m,
n, kandm, n, k selected from (18) by dependence
(212).

Elementsr, ; of matrices R, — coefficients ay

mni

or
bnk

e+ T 1S the row number in equality (17), sis the
corresponding index m, n, kin (18) and connected to

them by formula (21) I is the column of unknowns

Il(lnk’gnk)'
Each of the subsystems of equations (14) gives
part of the coefficients b_. that appear in them with

'mnk
one index, similarly as in [Zayats, 2006]. Therefore,
there is a need to establish a connection between the
number of unknowns in the systems and the index of
coefficients b, : m, n, k, (N"=m+n+k)inarow

The scheme for establishing this connection looks
like this. Auxiliary order N* of the general index
r choose from the condition:

N, = (N"+1)(N"+2)(N" +3)

6
C(N"+2)(N"+3)(N" +4)
NZ - y
6
N, <r£N,.
Next, we define another natural parameter Ias
follows:
é1+./8r -71U
rL=r-N,l=g—Y1 "4,
6 2
I(1-2)
|, = 5 n=n-1.

Then the indexesm, n, k for each of the subsystems
are defined as follows:
I. Supposing, we have in the equation (paired Stokes
constants C,,,, ) an unknown with the number r.
N=2(N"+1),k=N-2(1-1),m=2(1-r2).

I1. Paired Stokes constants S, ,

N=2(N"+4),k=N-2l,m=2(I-r2)+1.

I11. Paired Stokes constants C, ..,

N=2(N"+2),k=N-2l+1,m=2(-r2)+1.
IV. Paired Stokes constants S, ,, .,
N=2(N"+2),k=N-21+1, m=2(I-r2).
V. Odd Stokes constants C,, ., -
N=2N"+3,rl=r-N1
k=N-21+1, m=2(I-r2)+1.
V1. Odd Stokes constants S,, ,,,,
N=2N"+3,rl=r-Nj 1)
k=N-21+1L,m=2(I-r2).
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VII. Odd Stokes constants C,, ., .,
N=2N"+3, k=N-2l+1, m=2(-r2).
VIII. Odd Stokes constants S, ...

N=2N"+3, k=N-2l+1,m=2(1-r2)+1.

The connection I-VIII allows the transition to the
use of the found coefficients for various options for
their determination, and therefore is an important link
in the implementation of the calculation of the density
in the middle of the planet.

Practical implementation of the algorithm on
the example of building a model distribution of
subsoil masses and preliminary interpretation of the
obtained results.

Let u’s apply the algorithm described above for a
specific case. As a basic model, we take the generally
accepted reference one-dimensional distribution of the
Earth's mass density subsurface — PREM, and its three-
dimensional external gravitational field of the Earth is
determined by one of the modern EGM 2008 models
[Pavlis et al., 2008]. Note that the choice of the model
practically does not affect the final result, since it is used to
construct powers up to ten, which are practically the same
for all variants of the description of the potential. It is also
should be noted that the low order of approximation is
associated with difficulties in implementing the method for
calculations. First of all, this affects the use of large data
sets and the possible accumulation of calculation errors,
and therefore requires a more detailed analysis during
calculations. Since the task is the implementation of the
method and its possible application in interpretation, such
aspects are not considered in this work and can be raised
during specific constructions of three-dimensional density
models, which significantly complements research using
other approaches [Tserklevych, 2005; Woodhouse &
Dziewonski, 1986; Panning & Romanowicz, 2006;
Dziewonski, 1984].

We will construct maps of deviations of the three-
dimensional mass distribution from the reference and
generally accepted radial one. Below we present their
cartographic image at different depths. The analysis of
these maps clearly shows the differentiation of the
three-dimensional deviation from the one-dimensional
deviation depending on the depth of the masses. Two
areas with a negative mass balance are clearly visible
at the core-mantle boundary. It can be related to the
Stokes constant of the second order C, . It is at these

depths that geophysicists attribute its formation. With
the transition to the mantle region, three-dimensional
detailing is observed [Tarakanov & Cherevko, 1978;
Furman, 2018]. Although the centers of negative masses

are concentrated at these longitudes (1 =50°, j =0°)

(1=200° j =0°), new concentrations of negative
heterogeneity begin to appear next to them: 1 = 30°,
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j =0°. Such differentiation even more intensifies

when approaching the surface of the planet. The
influence of negative heterogeneity with coordinates
1 =30° j = 0°atadepth of 500 km (Fig. 2, a), which
breaks up into several local extrema with a minus
sign, is significantly weakened. A minimum of around
a point ( 1 =200° j =0°) erodes at a depth of
500 km, forming several smaller ones. The map of
inhomogeneities at a depth of 50 km deserves special
attention (Fig. 3). In areas near the North Pole, there is
almost zero increase in density (Arctic Ocean), while
in the South there is a tendency to increase the value
of density (mainland-Antarctica [Marchenko et al.,

50 0.08
0.04
0.00
o] i -]
=50 -0. g
| |

-150 -100 -50 0 50 100 150

a

2012]). For other latitudinal areas, there is an
inherent mass deficit, which is characterized by
many local minima. Characteristically, on all maps
in the polar regions, the three-dimensional deviation
from the radial one is kept with a plus sign. It is
difficult to find any explanation for this fact.
Obviously, more detailed studies are needed, which
include considering the distribution of masses in the
earth’s crust [Laske et al., 2013], and possibly in
the center of mass [Bullen., 1962]. Also, for a more
complete picture, it is necessary to increase the
order of approximation of the three-dimensional
mass distribution, which involves taking into
account the Stokes constant of higher orders.

Fig. 1. Deviation of the three-dimensional mass distribution function from
the one-dimensional one at a depth of 2890 km (a), 1000 km (b).
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Fig. 2. Deviation of the three-dimensional mass distribution function from
the one-dimensional one at a depth of 500 km (a), 100 km (b).
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Fig. 3. Deviation of the three-dimensional mass distribution function from
the one-dimensional one at a depth of 50 km.
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Conclusions

The proposed method of approximate construction
of the three-dimensional mass distribution of the
planet's subsoil, considering the Stokes constants,
significantly complements the existing methods of
studying the internal structure of the Earth.

Taking into account the Stokes orders in their
entirety alters the picture of mass distribution in the
middle of the Earth.

Setting the values of the density of the planet
significantly complements the picture of the placement of
inhomogeneities, which emphasizes the growing role
of setting values on the surface when approaching it.

A more detailed study of this role, as well as an
increase in the order of approximation, is planned to
be performed in further studies.
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AJITOPUTM IOBY IOBU ®YHKIIIT PO3MOAUTY I'VCTUHU 3EMHUX HAJIP
3 YPAXYBAHHSM ii 3HAUEHHS HA ITOBEPXHI

Ha BinMmiHy Bifi IIMPOKOBXHBAHOTO iTEpaLiifHOrO MeTOoay IMOOYJOBH TPUBHMIPHOTO PO3MOALTY Mac 3emui,
10 BUKOPHCTOBYE MOETAIHO CTOKCOBI CTali J0 BCTAHOBJICHOTO MOPS/IKY, B POOOTI 3aNpONOHOBAaHHUN aJIrOPUTM
OJTHOYACHOTO iX ypaxyBaHHS. (DyHKIiI0 PO3MOALTY Mac HaJap IUIAHETH MOAAHO CyMOIO OaraTOuWwIeHIB TPHOX
3MIHHHX, KOe(imi€HTH pO3KJIany sIKOI BHM3HAYaIOTBCSH 3 CHCTEeMH piBHSHB. L[lo cucremy opepXyroTh au-
(epenmiroBaHEsIM QyHKIIT Jlarpanxka, ska OyIyeThCs 3 ypaXyBaHHAM MiHIMAJIBHOTO BIAXHMJICHHS TPUBHMIPHOTO
pO3MOMALIY Mac Haap IUIAaHeTH BiJ pe)epeHTHOro OMHOBHMIPHOro. J[0MaTKOBOI yYMOBOK, KpIiM ypaxyBaHHS
CTOKCOBHIX CTaJHX, JUIA OJHO3HAYHOTO pPO3B’sI3aHHS 3ajadi € 3aJaHHA 3HAYCHHSA (YHKIIi HA ITOBEPXHI EJiIl-
coimanpHOI TaHeTH. KiTiTkoBa CTpyKTypa MaTpHUIli CHCTEMH YMOXJIUBIIOE allPOKCHUMAIIi0 BUCOKHX MOPSIKIB Ta
30UIBIICHHS 11 y BiCiM pa3iB, IIO € HACHiAKOM TIPYIyBaHHSI CTOKCOBHX CTAaJUX, a OTPUMAaHHH 3B’S30K MiX
IHeKCaMU BEJMYHMH IJICYMYBaHHSA B psA PO3KIANy Ta iX OTHOBHMIPHAMH aHAJOTaMH B CHCTEMI JIIHIHHHX
PIBHSHB J1a€ 3MOTY NPOCTO peali3oByBaTH Iporec o04uciaeHb. [101aHO KOHTPOIBHUM MPUKIAL, IO LIIOCTPYE
e(peKTUBHICTh 3aCTOCYBaHHs HaBEIEHOTO anropurMmy. Jns Horo peanizanii OepyTh CpolIeHH BapiaHT 3adaHHs
TYCTUHHM Ha IOBEPXHI OKeaHy, IO NpHHAMAETHCSA 3a ONMHMINO. Hamanmi 3amiaHOBaHO BHKOPHCTaTH OIHY 3
MoJieliel TYCTHHH 3€MHOI KOPH Ta BUKOHATH YHCJIOBE IHTETPYBAaHHs ITOBEPXHEBUX IHTETPANIB ISl TIOBHILIOTO
BioOpakeHHS peanbHOCTI PesympTatn 0OYMCICHD Y3TOMKYIOTHCS 3 JOCHIHKEHHSAMH, BUKOHAHMMH 3a JOIO-
MOTO0 IHIIMX METOMIB, HANPHUKJIAM, METOMIB cedcMiuHOi ToMorpadii, 10 MITBEPIKYE IOIUIBHICTh TaKOTO
HiIX0/1y Ta HEOOXIAHICTh PO3MIMPEHHS IIi€] METOIMKH Ta, MOXIIMBO, JOIYUYSHHS 1HIINX YMOB JUIS OJJHO3HAYHOTO
po3B’sa3yBaHHS OOepHEeHOI 3amaui Teopii moTeHumiamy. Mera. CTBOpPUTH Ta pealizyBaTH alTOPUTM, SKHH
BPaxOBYe 3HAYEHHS I'YCTHHM HaJp IJIaHEeTH Ha ii moBepxHi. Metonuka. @yHKIiS pO3MOALTY Mac Haap IUIaHETH
MOJAETHCS 32 JIOTIOMOTOI0 PO3KIIAAy B OiOpTOTOHANBHI PSITU, KOS(IIIEHTH PO3KIany SKOTO BU3HAYAIOTHCS 3
CHCTEMH JiHIHHUX piBHAHB. CHCTEeMy piBHSHb OTPUMYIOTH 3 YMOBHU MiHiMi3allil GyHKII] BIAXMICHHS IIyKaHOTO
PO3MOIiTy MAac BiJl MOYATKOBO BU3HAYEHOTO IBOBHMIPHOTO PO3MOIiIy rycTuu (pedepernta moaens PREM).
PesynpraTn. Ha OCHOBI ommcaHOro anropuTMy OTPUMAaHO TPUBHMIPHY MOJIENb TYCTHH PO3IOJITY Mac Hajap y
cepeauHi 3emili, 0 BpaxoOBY€ CTOKCOBi CTalli 10 BOCEMOTO TOPSIKY BKIIIOYHO Ta BIIMOBIA€ MOBEPXHEBOMY
PO3MOAITY Mac OKeaHIYHOT MOJIeTIi 3eMili, a TAaKOXK IOAaHO ii CTHCTY iHTepIpeTallio.

Kniouosi crosa: dyHKis posnoainy; 3emitst; cTOKCOBI ctaii; ¢pyHKiis Jlarpanxa.
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