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ALGORITHM FOR DETERMINING INCLUSION PARAMETERS  
IN SOLVING INVERSE PROBLEMS OF GEOELECTRICAL  

EXPLORATION USING THE PROFILING METHOD 

The paper aims to develop an algorithm for recognizing the physical and geometric parameters of inclusion, 
using indirect methods of boundary, near-boundary, and partially-boundary elements based on the data of the 
potential field. Methodology. The direct and inverse two-dimensional problems of the potential theory concerning 
geophysics were solved when modeling the earth's crust with a piecewise-homogeneous half-plane composed of 
a containing medium and inclusion that are an ideal contact. To construct the integral representation of the 
solution of the direct problem, a special fundamental solution for the half-plane (Green's function) of Laplace's 
equation, which automatically satisfies the zero-boundary condition of the second kind on the day surface, and a 
fundamental solution for inclusion were used. To find the intensities of unknown sources introduced in 
boundary, near-boundary, or partially-boundary elements, the collocation technique was used, i.e. the conditions 
of ideal contact are satisfied in the middle of each boundary element. After solving the obtained SLAE, the 
unknown potential in the medium and inclusion and the flow through their boundaries are found, considering 
that the medium and inclusion are considered as completely independent domains. Results. The computational 
experiment for the task of electric prospecting with a constant artificial field using the resistance method, in particular, 
electrical profiling, was carried out, while focusing on the physical and geometric interpretation of the data. Initial 
approximations for the electrical conductivity of the inclusion, its center of mass, orientation and dimensions are 
determined by the nature of the change in apparent resistivity. To solve the inverse problem two cascades of iterations 
are organized: the first one is to specify the location of the local heterogeneity and its approximate dimensions, the 
second one is to specify its shape and orientation in space. At the same time, the minimization of the functional 
considered on the section of the boundary, where an excess of boundary conditions is set, is carried out. Originality. 
The method of boundary integral equations is shown to be effective for constructing numerical solutions of direct and 
inverse problems of potential theory in a piecewise homogeneous half-plane, using indirect methods of boundary, 
near-boundary, and partial-boundary elements as variants. Practical significance. The proposed approach for solving 
the inverse problem of electrical exploration with direct current is effective because it allows fora step-by-step, 
“cascade” recognition of the shape, size, orientation, and electrical conductivity of the inclusion. We follow the 
principle of not using all the details of the model and not attempting to recognize parameters with little effect on the 
result, especially with imprecise initial approximations. 

Key words: mathematical modeling, potential theory, direct problem, inverse problem, indirect near-
boundary element method, partially-boundary elements, piecewise homogeneous medium, electrical profiling. 
 

Introduction 

The study of the earth's interior by geological and 
geophysical methods provides a basis for elucidating 
fundamental questions of geodynamic processes, which 
primarily relate to understanding how deep high-
temperature fluids are formed and penetrate the earth's 
crust. They are an important source for all subsequent 
processes of formation of carbon, sulfide, and iron-
containing metasomatites, as well as the formation of 
ore and oil and gas deposits. As is known, fluids 
penetrate through the lithosphere by draining deep 
zones of high permeability, which often correspond to 
deep  faults.  Studies show  that areas  of articulation of  

various types of tectonic plates (oceanic, continental or 
intracontinental) are characterized by electrically 
conductive structures. The nature of such deep regional 
anomalies is not explained necessarily by partial melting, 
they can be the result of transportation of fluids and, 
accordingly, ore components from the crust and mantle 
during tectonomagmatic activation. The hydrogen and 
carbon present in the earth's crust and upper mantle 
can shift within the contact zones of geological 
formations of various ages. This movement leads to an 
increase in electrical conductivity, allowing us to identify 
areas that are likely to contain valuable mineral deposits. 
Articulation areas of tectonic plates of different ages 
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are studied experimentally within the area magnetotelluric 
and magnetovariation methods [Nikolaev et al., 2019]. 

When studying geodynamic processes in the 
earth's crust, generated by natural or artificial force 
fields of various physical nature, numerous physical 
and mechanical effects that appear on its surface as the 
result of changes in its structure are analyzed. The 
analysis includes the search for non-homogeneous 
objects such as falls, cavities, various caves, landslides, 
hydrocarbon or ore deposits. It also involves localizating 
and determining the physical properties of these 
objects, as well as monitoring the territories where 
they are located. This is one of the tasks of geophysical 
research methods, particularly, electrical prospecting. 

The advantages of methods that utilize natural and 
artificial potential fields (gravitational, magnetic, electric, 
thermal, filtering) to detect object heterogeneity include 
the ease of implementation in field or experimental 
conditions and their economic feasibility. These methods 
do not require special expensive equipment. At the 
same time, the mathematical models of steady-state 
processes used in these methods consist of Laplace 
or Poisson equations supplemented with boundary 
conditions of the first, second, or third kind and mixed, 
and are well studied [Lv, et al., 2023; Milson, Eriksen, 
2011; Pierre van Baal, 2014; Qu, et al., 2015; Zhdanov, 
2009]. 

Isolating and detecting physical anomalies is a 
complex mathematical and technical problem, since 
they are present against a backdrop of irregular and 
often turbulent natural and man-made disturbances, 
such as variations in the upper layers of the earth, 
uneven terrain, space, atmospheric, climatic, and 
industrial factors. At the same time, interference of fields 
of various nature, which is both a simple superposition of 
field parameters and their complex nonlinear interactions, 
is always observed. Anomalies manifested as changes 
in the physical characteristics of the object. For 
example, the gravitational field depends on the change 
in the density of rocks, the magnetic field – on the 
magnetic susceptibility and residual magnetization of 
its components, the electrical field depends on specific 
electrical resistance, and temperature depends onthermal 
properties, particularly thermal conductivity. 

Analytical or numerical solutions of direct problems 
involve determining the parameters of the physical 
field based on known physical characteristics, size, 
and shape of the components of the object. These 
solutions, can be found unambiguously, although 
sometimes they may require using complex algorithms 
[Brebbia, et al., 2012; Foks, et al., 2014; Zhang, et al., 
2013]. At the same time, the same distribution of 
physical field parameters can correspond to different 
ratios of physical characteristics and sizes of the object's 
components. In other words, finding a solution to the 
inverse problem of mathematical physics (determining 
the dimensions of the components of the object and 
their physical characteristics according to the observed 

field) is much more difficult due to its ambiguity 
[Mikheeva, et al., 2023; Mukanova & Modin, 2018]. 

The interpretation of gravity, magnetic, and electrical 
anomalies has many common features. This is explained 
by the similarity of the basic laws of interaction of 
gravitational, magnetic, and electric masses (Newton's, 
Coulomb's, and Ohm's laws), which led to the 
establishment of mathematical relationships between 
gravitational, magnetic, and electric potentials. However, 
despite similarities, there are also differences in the 
nature and morphology of gravitational, magnetic, 
and electrical anomalies [Zhou, et al., 2023; Li, et al., 
2022]. Anomalous objects in gravity prospecting are 
unipolar, that is, they form either positive or negative 
anomalies. Anomaly objects in magnetic exploration 
are bipolar, since each magnetized domain can form 
both positive and negative anomalies. Therefore, the 
structure of the anomalous magnetic field is more 
complex than that of the gravitational one. It is further 
complicated by the different length of the domains in 
the direction of magnetization, its different angle, the 
presence of induction and residual rock magnetization. 
The form and intensity of anomalies, and therefore the 
effectiveness of electrical profiling (EP) as a method 
of electrical prospecting with direct current, depend on 
the various natural and technical factors. These include 
the appropriate method selection, prospecting depth, 
the observation system, the intensity of the primary 
(feed) field and its polarization. This involves the 
direction of the electric field vector relative to the 
extension of objects. For example, when this vector 
direction coincides with the extension of objects, 
maximum secondary magnetic fields are induced in 
conductive domains. And when it is perpendicular to 
the extension, maximum conductive anomalies of 
secondary electric fields are observed. The methodology, 
or the theory of rational interpretation, is the same for 
all electrical prospecting methods. However, the 
geological-geophysical interpretation, as well as the 
field of applications, are different. The physical-
mathematical quantitative interpretation of these 
methods, which boils down to solving the inverse 
problem, is well developed only for one-dimensional 
(horizontally layered) models of environments. 
Interpretation of electric fields with the help of modern 
computers is carried out with greater accuracy, 
objectivity, and speed. Among the many algorithms 
for solving the inverse problem of electrical prospecting, 
algorithms of various selection options have become 
the most popular.  

Quantitative interpretation of EP data is a complex 
and imprecise process. Therefore, it makes sense to 
talk only about semi-quantitative interpretation, whose 
main task is to determine the epicenter of the 
reconnaissance object, that is, the area under which it is 
located, as well as to assess the shape and depth of its 
location, sometimes dimensions, physical and geological 
nature of anomalies. It begins with the selection of 
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physical and geological models that can be used to 
approximate exploration objects. They include media 
contacts, thick and thin layers, isometric (spherical), 
elongated (lens-like, cylinder-like) objects, etc. Solving 
direct and especially inverse problems by mathematical 
and physical modeling methods for the listed models 
is more difficult than for vertical electrical soundings. 
The effectiveness of EP is determined not only by the 
presence of favorable geoelectrical conditions and a 
successful choice of method but also by a sufficient 
amount of additional geological and geophysical 
information. In particular, depending on the physical 
properties of the rocks, it is advisable to carry out EP 
together with magnetic exploration, thermal exploration, 
or radiometry. To interpret the results of the EP, a 
priori data, geological sections, and maps are needed, 
which, in turn, are refined after the EP is carried out. 

Purpose 

The paper aims to develop an algorithm for 
recognizing the physical and geometric parameters of 
inclusion, using indirect methods of boundary, near-
boundary, and partially-boundary elements based on 
the data of the potential field. 

Methodology 

Problem formulation 

Let it be necessary to determine the geometric 
parameters of inclusion according to the nature of 
the flow of the potential field on the electrically 
insulated boundary 1 2 1{( , ) : ,x x x∂Ω = − ∞ < < ∞  

2 0}x =  of the half-plane, which occupies the domain 
2

1 2 1 2{( , ) : , )x x x x−Ω = = − ∞ < < ∞ − ∞ < < ∞R  
in the Cartesian coordinate system 1 2( , )x x . We assume 
that the flow of the potential field is equal to zero 
everywhere on ∂Ω , except points A 1( ,0)Ax and 
B 1( ,0)Bx , where current sources are located, feeding 
electrodes with known constant intensities Ag  and Bg , 
respectively. In addition, there is a section b∂Ω ⊂ ∂Ω  on 
which we additionally know the value of the potential u. 

We assume that the potential 0( )u x  of the stationary 
electric field inside the half-plane satisfies the equation 

2 2
0 0

0 0 0 2 2
1 2

( ) ( )
( ( )) ( )

u x u xP u x u x
x x

 ∂ ∂
= ∆ = σ + =  ∂ ∂ 

 

0 ( ) ( )gg x x= − χ , 0x ∈ Ω ,         (1) 

everywhere except an inclusion 1Ω  1( )Ω ⊂ Ω . In the 
domain 1Ω  the environment is homogeneous, but 
different from that in which the operator 0( ( ))P u x  
operates, therefore, the process in it is described by the 
equation 

1( ( ))P u x
2 2

1 1
1 1 2 2

1 2

( ) ( )( ) u x u xu x
x x

 ∂ ∂
= ∆ = σ + =  ∂ ∂ 

0,  

1x∈Ω .   (2) 
Here ( 0,1)s sσ =  is a constant physical characteristic 

(conductivity coefficient), ( )g xχ  is a characteristic 

function of the domain 0gΩ ⊂ Ω , ( )1 2,x x x= . 

For the mathematical formulation of the excess of 
boundary conditions, we consider that a boundary 
condition of the second kind is set on the boundary 
∂Ω , and a boundary condition of the first kind is also 
set on the section b∂Ω : 

0
0 0

( )
( ) 0

( )
u x

q x
x

∂
=−σ =

∂n
, (2)

bx ∈∂Ω = ∂Ω ∪ ∂Ω , (3) 

0 ( ) ( )bu x u x= , bx∈∂Ω , (4) 

where 1 2( ) ( ( ), ( ))x n x n x=n  is a uniquely defined 
external unit normal to the boundary 0 1∂Ω = ∂Ω ∪ ∂Ω . 

The choice of sources on the boundary of the half-
plane in the form 0 0 0( ) ( ) ( )A Bg x g g= ξ + ξ , where 

0 0 0 0( ) 2 / , ( ) 2 / ,A A B Bg g g gξ = σ ξ = σ ensures the 
fulfillment of condition (3). 

Note that there must be an empty set for the 
correct statement of direct problems of mathematical 
physics b∂Ω . When solving inverse problems, the 

presence of b∂Ω  is mandatory, and the quality and 

reliability of the result is higher when the area (2)∂Ω  
is smaller, that is, it is the best one when the condition 

(2)∂Ω = ∅  is fulfilled. 
The ideal contact conditions are set at the media 

interface 1∂Ω : 

0 1( ) ( )u x u x= , 

0 1
0 1

( ) ( )
( ) ( )

u x u x
x x

∂ ∂
−σ = −σ

∂ ∂n n
, 1x ∈ ∂Ω . (5) 

Geometrical information about the inclusion 1Ω  
will be given in the form of N pairs of points with 

coordinates ( )1 1
1 2,n nx x  and ( )2 2

1 2,n nx x (n=1,…,N) and 

1∂Ω  will be modeled by N linear segments nΓ , which 
will be set as follows: 

( )1 2,n n nx x ∈ Γ , if 1 2
1 1 1 1 2( ) ( )n n nx x xϕ η ϕ η= + , 

1 2
2 2 1 2 2( ) ( )n n nx x xϕ η ϕ η= + , 

where ( )1 1
1 2,n nx x  and ( )2 2

1 2,n nx x  are the coordinates 

of the extreme points of the segment nΓ , 

( )1( ) 0.5 1ϕ η η η= − , ( )2 ( ) 0.5 1ϕ η η η= + , η  is a 
one-dimensional coordinate, which changes from-1 to 
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1 when the point ( )1 2,n nx x  moves from ( )1 1
1 2,n nx x  to 

( )2 2
1 2,n nx x  along the segment nΓ . Since the closed 

broken line which simulates 1∂Ω  is continuous, we 
will require that 

( )2 1
1 1( 1)n nx x += , ( )2 1

2 2( 1)n nx x +=  when n<N and 

( )2 1
1 11nx x= , ( )2 1

2 21nx x=  when n=N.  

Finding unknown values 1 1
1 2,n nx x , 2 2

1 2,n nx x  will 
be carried out in stages. First, we will write down the 
algorithm for solving the direct problem of the potential 
theory, then we will consider them known, and then 
we will build a method for recognizing the physical 
and geometric parameters of the inclusion 1Ω . 

Algorithm for solving the direct problem  
of electric prospecting with direct current using 

electric profiling 

Let us find the solutions of the problem (1)–(3), (5) 
( b∂Ω = ∅ ) using indirect boundary element method 
(BEM) [Brebbia, et al., 2012], near-boundary element 
method (NBEM) [Zhuravchak, 2019), Zhuravchak, 
Zabrodska, 2021] and partially-boundary element method 
(PBEM) [Zhuravchak, Zabrodska, 2021]. Note that 
among the listed methods, NBEM is the most accurate. 
However, it takes more time than BEM, while the 
partially-boundary element method achieves higher 
accuracy than BEM in a shorter time than NBEM. 
To construct the solution, we will use a special 
fundamental solution for the half-plane (Green's function) 
of the Laplace equation (1), which automatically satisfies 
the zero boundary condition (3): 

0 0 0( ) ( ) ( ')h r r r= +E E E ,  
the fundamental solution for the plane in the inclusion: 

0
1( ) ( , ) ln | / |

2s s
s

r x r r= ξ = −
πσ

E E , 

and their normal derivatives: 

0 0 0( ) ( ) ( ')h r r r= +F F F , 

( ) ( , )s sr x= ξF F =
( )2

2
1 2

i i i
s

i

n x
r

ξ
σ

π=

−
∑ . 

Here 1 2,ξ ξ  is a coordinate system that coincides 
with 1 2,x x ,  

2 2
1 1 2 2( ) ( )r x x= − ξ + − ξ , 

2 2
1 1 2 2' ( ) ( )r x x= − ξ + + ξ , 

constant 0r  is used to improve the accuracy of 
calculations. 

Step 1. In the BEM, we divide the boundary 1∂Ω  

into boundary elements svΓ  so that 11
V

svv=∪ Γ = ∂Ω , 

sv sqΓ ∩ Γ = ∅ , v q≠ , , 1,v q V= . When using NBEM 

and PBEM, we introduce external near-boundary 

domains /s s sG B= Ω , where 
2
1sB ⊂ R , s sBΩ ⊂ , 

s sB∂ ∩ ∂Ω = ∅ . In NBEM we divide each near-
boundary domain sG  into elements svG  so that each 
boundary element svΓ corresponds to two near-boundary 

elements: svG : 1sv svG ∩∂Ω = Γ , sv sqG G∩ = ∅ , 

v q≠ , , 1,v q V= , 1
V
v sv sG G=∪ = . We enter partially-

boundary elements as follows. In each near-boundary 
domain sG  we introduce curves ,sv svG G+ −  so that 

the beginning of svG+  is the beginning of svΓ  and 

the beginning of svG−  is the end of svΓ . The union 

sv sv sv svG G G− + Γ∪ Γ ∪ =  is called a partially-boundary 
element [Zhuravchak, Zabrodska, 2021]. We introduce 
fictitious sources of unknown intensity ( )svg γ ξ  on each 

of the discrete elements [ , , ]sv sv sv svG GΓγ = Γ . 

Step 2. We approximate the intensities ( )svg γ ξ  of 

unknown sources by constants svd γ  and move from 
differential equations (1), (2) to their integral 
representations, that is, we write down the potentials 
and their derivatives along the normal in the form: 

( )
0

0 00 0
1

( ) ( , )
v

V

h vv
v

u x d x dγ γ

= γ

= ξ γ ξ∑ ∫ E + 

0 0 0 0( , ) ( ) ( , ) ( )h A A h B Bx g x g+ ξ ξ + ξ ξE E , 

( )
1

1 1 11 1
1

( ) ( , )
v

V

vv
v

u x d x d Cγ γ

= γ

= ξ γ ξ +∑ ∫ E ,           (6) 

0
00 0 0

( )
( ) 0.5 v v

u x
q x d

γ
γ γ γ∂

= −σ = − χ +
∂n

 

( ) ( )
0

0 00
1

,
v

V

h vv
v

d x dγ

= γ

+ ξ γ ξ +∑ ∫ F  

+ 0 0 0 0( , ) ( ) ( , ) ( )h A A h B Bx g x gξ ξ + ξ ξF F .  

1
11 1 1

( )
( ) 0.5 v v

u x
q x d

γ
γ γ γ∂

= −σ = − χ +
∂n

 

( ) ( )
1

1 11
1

,
v

V

vv
v

d x dγ

= γ

+ ξ γ ξ∑ ∫ F ,           (7) 

where ( ) 1sv xγχ = , ,svx ∈ Γ  ( ) 0sv xγχ = , svx ∉ Γ .  

Note that except for 1∂Ω  (6) exactly satisfies (1), 
(2) in Ω . This fact frees us from constructing a grid 
in Ω . 
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Step 3. To find the intensities of unknown sources, 
we will use the collocation technique, that is, we will 
satisfy the ideal contact conditions in the middle of 
each boundary element. Substituting (6), (7) into (5) 

and adding the condition of equality to zero in 2
1R  the 

sum of all sources at infinity, we obtain a system of 
linear algebraic equations (SLAE) for finding unknown 

values svd γ  and С1: 

( )
0

0 00
1

( , )
v

V
w

h vv
v

d x dγ

= γ

ξ γ ξ −∑ ∫ E

( )
1

1 1 11
1

( , )
v

V
w

vv
v

d x d Cγ

= γ

− ξ γ ξ −∑ ∫ E = 

= 0 0 0 0( , ) ( ) ( , ) ( )h A A h B Bx g x g− ξ ξ − ξ ξE E , 

1
wx ∈∂Ω ,                        (8) 

( ) ( )
0

0 00 0 0
1

0.5 ,
v

V
w

h vw w v
v

d d x dγ γ γ

= γ

− χ + ξ γ ξ +∑ ∫ F

( ) ( )
1

1 11 1 1
1

0.5 ,
v

V
w

vw w v
v

d d x dγ γ γ

= γ

+ χ − ξ γ ξ∑ ∫ F = 

= 0 0 0 0( , ) ( ) ( , ) ( )h A A h B Bx g x g− ξ ξ − ξ ξF F ,  

1
wx ∈∂Ω ,  (9) 

( )
1

1 11
1

0
v

V
vv

v
d d Cγ

γ
γ ξ

=
+ =∑ ∫ .            (10) 

Step 4. After finding the unknown values svd γ  and 
С1 as solutions of SLAE (8)–(10), we calculate the 
desired potential in the medium and inclusion and the 
flow through their boundaries using formulas (6), (7), 
since the medium and inclusion are now considered as 
completely independent domains. 

Solving the inverse problem of electrical 
prospecting with direct current using electrical 

profiling 

Geometric information about 1∂Ω  is stored in the 

form of N quadruplets of numbers 1 1
1 2,n nx x , 2 2

1 2,n nx x . 
If we now take into account that they are rather 
difficult to include in integral representations (6), (7), 
as well as the fact that we will use iterative procedures 
to find them, then it is advisable to reduce the number 
of unknown values at the first stages of recognition. 
To do this, we will introduce additional dependencies 

between 1 1
1 2,n nx x , 2 2

1 2,n nx x  and limit ourselves to the 
case of N=4 for the inclusion. 

We organize the iterative recognition algorithm as 
follows. 

Step 1. According to the nature of the change in 

apparent resistivity 0 0( ) ( )u
M N

k
u x u x

I
γ γγρ = −  we 

determine the sign and initial approximations for 

,∆σ  10, 20( )x x  – the center of mass of the inclusion, 

modeled by a rectangle with sides 2 1l , 2 2l  or a 

rhombus with the same diagonals of length 2 0l . We 

determine exactly 10x  by the extremum of the curve γρ  

and 20x  and 0l  (or 1l , 2l ) – approximately by that 
curve integrated within the limits between its inflection 
points. Here  

11 1 1 12 ( )
ln ln ln lnu

AM AN BM BN
k

r r r r
π −= − − +   

is the coefficient of device АВMN, 

( ) ( )2 2

1 1 2 2
C D C D

CDr x x x x= − + − .. 

The apparent resistivity *ρ  of a homogeneous half-
plane is equal to unity at each point. 

Step 2. We put 1 0σ = σ + ∆σ , considering that 

0σ  is known. 
Step 3. We organize the first cascade of iterations 

to clarify the location of local heterogeneity and its 
approximate dimensions. 

1. We model 1∂Ω  with a rectangle or a rhombus 
with the coordinates of the vertices: 

1 1
1 10 1 2 20 2, ,x x l x x l= − = − 2 2

1 10 1 2 20 2, ,x x l x x l= + = −   
3 3
1 10 1 2 20 2, ,x x l x x l= + = +  4 4

1 10 1 2 20 2, ,x x l x x l= − = +   

or 1 1
1 10 0 2 20, ,x x l x x= − = 2 2

1 10 2 20 0, ,x x x x l= = −   
3 3
1 10 0 2 20, ,x x l x x= + = 4 4

1 10 2 20 0,x x x x l= = + .    (11) 
2. For the selected 1σ  according to the algorithm 

of solving of the direct problem, described above, we 

calculate the potential 0 ( )u xγ  by formula (6) for 

bx ∈∂Ω . 
3. Minimize the functional 

0| ( ) ( ) | ( )
b

f
b bI u x u x d xγ

∂Ω
= − ∂Ω∫ ,  (12) 

allowing variation only 20, 0x l  (or 1l , 2l ). 

4. We fix ,20 0
f fx l  (or 1

fl , 2
fl ), which correspond to 

the found minimum of the functional (12), and refine 
the electrical conductivity using minimization (12), 

denote it by 1
fσ . 

5. As a result, using formulas similar to (11), we 
will find the specified coordinates of the vertices of a 

rectangle or rhombus ( 1
nfx , 2

nfx ), n=1,...,4. 
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Step 4. We organize the second cascade of iterations 
to clarify the shape and orientation of inclusion in the 
space. 

1. We will rotate the rectangle or rhombus found 
in step 3 around its center of mass, simultaneously 
scaling along the axes. To do this, we enter three new 
parameters 0 1 2, ,s sϕ  and calculate the new coordinates 
of the vertices of the rectangle or rhombus: 

1 10 0 0 101 2 20( )cos ( )sin ,nf nf fnrx x x x x xϕ ϕ= − − − +  

2 10 0 01 2 20 20( )sin ( )cos ,nf nf f fnrx x x x x xϕ ϕ= − + − +  

1 1 1 1 10(1 ) ,nc nrx x s s x= + −  

2 2 2 2 20(1 ) fnc nrx x s s x= + − .           (13) 
2. We minimize the functional (12) by variation 

0 1 2, ,s sϕ  and fix 0 1 2, ,f f fs sϕ , which correspond to the 
found minimum. 

3. For constants 10 ,20 0, f fx x l  (or 1
fl , 2

fl ), 0 1 2, ,f f fs sϕ , 

we specify the electrical conductivity 1
fσ  using 

minimization (12), denote it by 2
1
fσ . 

Step 5. The found values 1 2,nc nc
nx x  serve instead of 

variables 1
nfx , 2

nfx  in formulas (13) for further refinement 
in the iterative process of minimization (12) at 
constant 2

1
fσ . Note that it is sometimes advisable to 

repeat the last two steps several times. 

The results 

The direct and inverse problems of electrical 
prospecting with direct current using electrical profiling 
were solved by the indirect method of near-boundary 
elements for A=(–25.0) and B=(25.0), 0.5Ag = −  and 

0.5Bg = respectively. The current strength I and the 
electrical conductivity 0σ  of the geological environment 

0Ω  were assumed to be equal to one. The distance 
between the receiving electrodes was chosen as МN = 
=0.1АВ. They are moved along the line (–25, 25) with 
a step of 0.1. 

Having some information about the research area 
from previous experience, we determine the initial 
approximations and the possible range of parameters 
we need to find. The asymmetry of the graph shows 
that the inclusion is placed at angles to the horizontal 
axis other than 0 and 90 degrees. Initial approximations 
for ∆σ  (deviation from the electrical conductivity 

of the medium) and 10, 20( )x x  (center of mass of the 
inclusion) are determined by the apparent resistivity 
graph (Fig. 1). 

Its convexity shows that the electrical conductivity 
of the inclusion is lower than the electrical conductivity 
of the medium. The apparent resistance is the inverse 

value of the electrical conductivity, so we put ∆σ  as 
negative. The concavity on the graph shows that the 
electrical conductivity of the inclusion is greater 
than the electrical conductivity of the medium, so 
we assume ∆σ  is positive. The coordinate 10x  is 

determined exactly by the extremum of the curve γρ , 

and 20x  and 0l  (or 1l , 2l ) – approximately by that 
curve integrated within the limits between its inflection 
points. The horizontal size of the inclusion 1l  (or 0l ) 
will be smaller than the distance between the minima 
of the curve by about 50 %. The vertical size and 
depth of the center of mass h will be proportional to 
the height of the maximum on the graph. 

 

 
Fig. 1. Graphs of apparent resistivity  

for the selection of initial approximations.  
 
First, let us solve the inverse problem for inclusion 

in the form of a rectangle with sides 2 1l =4, 2 2l =2, 
placed horizontally, that is, its longer side is parallel to 
the day surface. Having found the initial approximations, 
we calculate the values of the functional with two fixed 
parameters ( 1σ  and h) and two variables. We find the 
range of values of variable parameters around which the 
functional is minimal. Fig. 2 presents isolines that 
show that there are areas where the values of the 
functional are the smallest, and they cover possible pairs 
of problem solutions: the desired values 1l  are in the 

range from 1 to 2.1, and 2l  – from 0.2 to 2. 
Fig. 3 shows the step-by-step selection of inclusion 

parameters, based on the minimization of the functional 
(12), from 1σ =0.05, h=3.6 to the optimal 1σ =0.2, h=4. 

Next, we will find the solution of the inverse 
problem for inclusion in the form of a square with side 

2 0l =2, parallel to the day surface. To demonstrate the 
refinement of the orientation of inclusion in the space, 
a rhombus is chosen as an initial approximation. 

Fig. 4 shows the step-by-step selection of inclusion 
parameters, based on the minimization of the functional 
(12), from 1σ =0.1, 0 0=ϕ  to the optimal 1σ =0.2, 

/ 2= πϕ  at h=4. 
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a 

 
b 

Fig. 2. Graphs of isolines of functional values, 
calculated for two fixed parameters: 

а – 1σ =0.05, h= 3.6 m; b – 1σ =0.2, h= 3.6 m. 
 

 

Fig. 3. Graphs of step-by-step finding  
of the inclusion-rectangle parameters,  

a rectangle is chosen as the initial approximation.  

 
Numerical results showed that during profiling 

with a conventional gradient device, it is possible to 
approximately determine the length of the inclusion 
(its beginning and end) by a coordinate parallel to the 
day surface. This involves taking into account the 
distance between the inflection points of the apparent 
resistivity curve. Additionally, it allows forthe 
determination of whether the inclusion has a greater 

or lesser electrical conductivity compared to the main 
environment. At the same time, the “center of mass” 
of the inclusion is almost always identified by the 
extremum (minimum or maximum) of the curve, 
but in the case of two inclusions located close to 
each other, two inclusions may be identified as one. 
The change in the shape of the inclusion is slightly 
reflected in the curve. The distance between the 
“centers of mass” of two inclusions of the same 
conductivity placed horizontally is identified by the 
distance between the maxima on the apparent 
resistance curves. The obtained data serve as initial 
approximations when solving inverse problems. 

 

 
Fig. 4. Graphs of step-by-step finding 
 of the inclusion-square parameters,  

a rhombus is chosen as the initial approximation.  
 
It should be noted that two inclusions placed one 

under the other (vertically) are identified as one in the 
profiling method. To distinguish them, as well as to 
determine the depth of their occurrence, it is necessary 
to use vertical electrical sensing. 

The software implementation of the proposed 
approaches was carried out in the modern, powerful 
Python programming language, as it is freely distributed 
and has a large number of additional libraries, including 
NumPy, SciPy, Matplotlib, etc. Their use significantly 
speeds up and facilitates the writing of programs 
that allow you to visually control the processes of 
forming a geometric research domain, a discrete 
model, and the computing process in general. Based 
on the proposed approach, automated computer 
modules were created in Python for solving direct 
and inverse problems of the theory of electrical 
exploration with direct current. 

In further research, we plan to expand the proposed 
algorithm for solving the inverse problem using the 
profiling method for two, three, or more inclusions 
placed horizontally with the same and different electrical 
conductivity, as well as develop an algorithm for 
recognizing two inclusions placed one under the other 
by the method of vertical electrical sensing. 
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Originality 

The method of boundary integral equations is 
shown to be effective for constructing numerical 
solutions of direct and inverse problems of potential 
theory in a piecewise homogeneous half-plane, using 
indirect methods of boundary, near-boundary, and 
partial-boundary elements as variants. 

Practical significance 

The proposed approach for solving the inverse 
problem of electrical exploration with direct current is 
effective because it allows fora step-by-step, “cascade” 
recognition of the shape, size, orientation, and electrical 
conductivity of the inclusion. We follow the principle of 
not using all the details of the model and not attempting 
to recognize parameters with little effect on the result, 
especially with imprecise initial approximations. 

Conclusions 

1. It is possible to analytically solve a direct 
problem, and, accordingly, to give methods of 
interpretation only for sources of disturbances in the 
form of simple geometric models (sphere, cylinder, 
ledge, etc.). Approximation of real geological objects 
by such models for a number of cases is conditional 
because geological objects of ideal shape are rare. 
However, even depth estimation plays a significant 
role in geology. In more complex cases, the problem 
is solved by numerical methods, which must be highly 
accurate, reliable, and fast. NBEM has proven itself 
well in solving direct and inverse problems of electric 
exploration with direct current for inclusions of non-
canonical form. 

2. For the interpretation and geological explanation 
of anomalies, it is necessary to study in detail the 
physical characteristics of the rocks, the patterns of 
their change both in horizontal directions and with 
depth. Anomalous physical characteristics of geological 
objects should be greater the deeper they lie. The 
efficiency of electric prospecting increases if the 
physical characteristics of the investigated geological 
object are significantly different from the physical 
characteristics of the host rocks. 

3. According to the principle of superposition of 
fields, the effects caused by various geological factors 
are added. Total anomalies of the first derivative of 
the potential are determined by the deep structure of 
the earth's crust and its different strengths, the relief 
of the surface of the crystalline foundation and its 
petrographic composition, the heterogeneity of the 
structure of layers of sedimentary rocks and the presence 
of certain structures and minerals within them. 
Theoretically, there is a functional dependence between 
geological factors and anomalies of the potential field, 
but in practice, only a correlation dependence is most 
often established. The main method of geological 

interpretation of exploration data is the comparison of 
maps and graphs of the potential field with geological 
maps. A correlation can be observed between potential 
field anomalies and known geological anomalies, 
which indicates the identity of these geological formations 
and the identified source of the field disturbance. If 
there is no such connection, the field is caused by 
deeper and unknown geological formations. The 
accuracy of the geological interpretation of potential 
field anomalies depends on the degree of consideration 
of the noted features. 

4. In case the physical characteristics and shape of 
the objects are unknown, the mathematical solution of 
the inverse problem of electrical reconnaissance is 
ambiguous and the quantitative interpretation gives 
several options. To increase the reliability of the 
interpretation, it is worth applying a complex of various 
geophysical methods of analysis and technologies. This 
helps to obtain the most reliable data on the geological 
structure of the research area. In turn, the creation of 
geoinformative systems will make it possible to fully 
apply all known technologies to effectively interpret 
geophysical data. The software makes it possible to 
increase the degree of automation of the measurement 
process with the direct formation of a working project, 
ensuring the promptness of obtaining information 
about the effective and quantitative characteristics of 
the studied environment. 
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АЛГОРИТМ ВИЗНАЧЕННЯ ПАРАМЕТРІВ ВКЛЮЧЕННЯ  
ПРИ РОЗВ’ЯЗУВАННІ ОБЕРНЕНИХ ЗАДАЧ ГЕОЕЛЕКТРОРОЗВІДКИ МЕТОДОМ ПРОФІЛЮВАННЯ 

Мета. З використанням непрямих методів граничних, приграничних та частково-граничних елементів 
побудувати алгоритм розпізнавання фізичних та геометричних параметрів включення за даними потен-
ціального поля. Методика. Розв’язано пряму та обернену двовимірні задачі теорії потенціалу стосовно 
геофізики під час моделювання земної кори неоднорідною півплощиною, складеною із вміщувального 
середовища та включень, які перебувають в ідеальному контакті. Для побудови інтегрального подання 
розв’язку прямої задачі використано спеціальний фундаментальний розв’язок для півплощини (функцію 
Гріна) рівняння Лапласа, який автоматично задовольняє нульову крайову умову другого роду на денній 
поверхні, та фундаментальний розв’язок для включення. Для визначення інтенсивностей невідомих 
джерел, уведених у граничних, приграничних чи частково-граничних елементах, використано колока-
ційну методику, тобто умови ідеального контакту задовольняються у середині кожного граничного 
елемента. Після розв’язання отриманої системи лінійних алгебраїчних рівнянь знайдено шуканий 
потенціал у середовищі та включенні й потік через їхні межі, враховуючи, що середовище і включення 
розглянуто як цілком незалежні області. Результати. Обчислювальний експеримент виконано для задачі 
електророзвідки постійним штучним полем методом опору, зокрема, електропрофілюванням. Увагу 
зосереджено на фізичній та геометричній інтерпретації даних. За зміною позірного опору визначено 
початкові наближення для електропровідності включення, його центра мас, орієнтації та розмірів. Для 
розв’язання оберненої задачі організовано два каскади ітерацій: перший для уточнення місцезнаходжен-
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ня локальної неоднорідності та її приблизних розмірів, другий – для уточнення її форми та орієнтації в 
просторі. Здійснено мінімізацію функціонала, розглянутого на ділянці межі, де задано надлишок 
крайових умов. Наукова новизна. Обґрунтовано ефективність непрямих методів граничних, пригра-
ничних та частково-граничних елементів (як варіантів методу граничних інтегральних рівнянь) для побу-
дови числових розв’язків прямої та оберненої задач теорії потенціалу в кусково-однорідній півплощині. 
Практична значущість. Ефективність запропонованого підходу до розв’язування оберненої задачі 
електророзвідки постійним струмом зумовлена тим, що вдалося реалізувати поетапне, “каскадне” 
розпізнавання форми, розмірів, орієнтації та електропровідності включення, керуючись принципом: у 
разі доволі неточних початкових наближень не використовувати усі тонкощі моделі й не виконувати 
розпізнавання параметрів, що мало впливають на результат. 

Ключові слова: математичне моделювання; теорія потенціалу; пряма задача; обернена задача; непря-
мий метод приграничних елементів; частково-граничні елементи; кусково-однорідне середовище; елек-
тричне профілювання. 
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