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DETECTION OF GEODYNAMIC ANOMALIES  
IN GNSS TIME SERIES USING MACHINE LEARNING METHODS 

One of the applied geodetic tasks in geodynamics is the detection of anomalous deviations in GNSS time 
series, which may indicate deformations of the Earth’s surface caused by various geophysical phenomena. It is 
important to note that geodynamic anomalies may be of a local nature, manifesting at a single GNSS station, or 
of a regional nature, occurring simultaneously across a group of GNSS time series. The objective of this article is 
to develop a method for detecting geodynamic anomalies in GNSS time series using machine learning 
algorithms. The method has been implemented in the Python environment and allows for the semi-automated 
analysis of large datasets. Among the machine learning methods, the Isolation Forest algorithm was selected for 
this study. The research provides a detailed step-by-step description of the program’s operation and its stages, 
enabling the analysis of both individual time series for identifying local anomalies and groups of time series for 
detecting concurrent regional geodynamic anomalies. The developed method was tested on data from 37 GNSS 
stations of the GeoTerrace network located in western Ukraine. As a result, seven distinct groups of horizontal 
and vertical anomalies were identified. One of the detected anomalies was established to correspond with 
previously investigated vertical crustal deformations caused by non-tidal atmospheric loading in December 
2019. The study presents maps of the spatial distribution of the detected group height anomalies in November 
2022 and January 2013. Some anomalies observed at certain GNSS stations are of unknown origin and may be 
due to unidentified local geodynamic factors or measurement errors. In addition to its relevance for geophysicists 
and geologists in detecting collective geodynamic anomalies, the proposed method also demonstrates potential 
for use in structural health monitoring of large engineering constructuctions using data from GNSS station 
networks. 

Key words: GNSS time series, geodynamic anomalies, anomaly detection, machine learning algorithms, 
Isolation Forest, GeoTerrace GNSS network 

 

Introduction 

The number of permanent Global Navigation Sate-
llite System (GNSS) stations is steadily increasing. 
These stations serve a variety of purposes: they 
function as active, continuous operating reference sta-
tions (CORS) for real-time applications [Pipitone, et 
al., 2023], providelocal networks for monitoring the 
structural state of facilities [Tretyak, et al., 2024a], 
and are utilizedfor earthquake monitoring and volca-
nology. Data obtained from GNSS time series can be 
employed to address important applied geodetic tasks, 
such as the measurement and analysis of deformations 
and the modeling of local geodynamic processes. 

In addition to the growing number of GNSS CORS, 
the precision of individual GNSS solutions is 
continuously improving, which consequently enhances 
the quality of time series data. The total error in GNSS 
observations comprises measurement errors, model 
errors used for parameter estimation, and errors in the 
estimated parameters themselves [Steigenberger, 2017]. 
GNSS errors can arise from various sources, including 

synchronization discrepancies between satellites and 
receivers, orbital errors, ionospheric delays, the Earth's 
magnetic field, tropospheric delays, receiver-generated 
noise, and multipath errors [Bhardwaj, et al., 2020]. 
Initially, orbital errors were the primary source of inac-
curacies during the early stages of GPS development. 
However, today tropospheric delays and specific mul-
tipath effects are considered the dominant contributors to 
error [Steigenberger, 2017]. 

The increased precision of GNSS solutions ren-
ders the detection of anomalies in time series more 
relevant, as such anomalies may have previously been 
undetectable due to insufficient accuracy. Anomalies 
are deviations from the expected trend values that 
may arise from various influencing factors. This crea-
tes significant challenges in analyzing GNSS time 
series for geodynamic research, which involves two 
key aspects. The first concerns the accumulation of 
large data volumes, emphasizing the need for auto-
mated detection of concurrent anomalies across time 
series. The second pertains to the analysis of geo-
physical causes of these anomalies. 
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In addition to the instrumental errors listed above, 
which directly affect the accuracy of each daily 
solution, other factors may influence changes in time 
series. It is essential to exclude operational factors, 
particularly any alterations to tracking antenna or 
receivers at each GNSS station. In current GNSS 
CORS networks, such equipment changes are typi-
cally recorded in log files, facilitating the traceability 
of these events during time series analysis. 

Once operational factors have been excluded, 
specific geophysical causes of anomalies can be conside-
red. By geophysical phenomena, events such as seismic 
activity, non-tidal atmospheric loading (NTAL) [Brusak 
& Tretyak, 2021], non-tidal ocean loading (NTOL) 
[Williams & Penna, 2011], and hydrological loading 
[Michel, et al., 2021], among others. Identifying and 
confirming the nature of these anomalies typically re-
quires additional data. Forecasting or even detecting 
them remains challenging. For instance, the impact of 
NTAL can be evaluated using models developed by the 
Earth System Modelling division at GFZ Potsdam, 
Germany [Earth System Modelling at GFZ]. This online 
platform also offers up-to-date NTOL and hydrological 
loading models. 

When analyzing anomalies for each GNSS CORS 
individually, it is also crucial to understand that local 
geodynamic factors may affect only a specific station. 
For example, anomalies in time series may be caused by 
anthropogenic disasters, landslides, karst processes, or 
other geodynamic phenomena in the given area 
[Savchyn, et al., 2019]. At the same time, major 
earthquakes produce abrupt changes in the coordinate 
time series of several GNSS stations in the affected 
region. Similarly, while NTOL affects coordinate shifts 
in coastal GNSS stations, NTAL influences coordinate 
changes in groups of stations subject to atmospheric 
variations. For instance, in December 2019, height 
displacements of up to 2 cm were observed in more than 
500 GNSS time series across Europe within ten days 
[Brusak & Tretyak, 2020]. Accordingly, individual and 
group anomaly analyses should be conducted con-
currently within GNSS time series. 

When automatically analyzing large amounts of 
GNSS data to detect specific anomalies, traditional 
analytical methods, such as the least squares method 
and spectral analysis, encounter certain limitations. 
Although these methods are widely used for para-
meter estimation and time series analysis [Savchyn, et 
al., 2021; Savchuk, et al., 2024; Doskich & Serant, 
2024], they are not always effective for large and 
complex datasets, especially when the objective is to 
identifycomplex and unpredictable anomalies. Spect-
ral analysis allows the examination of periodic com-
ponents in signals. However, identifying non-periodic 
or irregular anomalies can be challenging, especially 

when they are obscured by noise or other signal 
components [Costantino, et al., 2024]. Moreover, the 
analysis of long-duration time series with high-
frequency measurements presents issues related to 
computational complexity and highlights the need for 
automation in the analytical process. 

Machine learning methods  
for time series analysis 

Today, researchers increasingly turn to machine 
learning (ML) methods to address the challenges of auto-
mating time series analysis, unlocking new possibilities 
for anomaly detection. ML enables the identification of 
complex patterns and interrelationships that are difficult 
to detect using traditional methods, particularly when 
dealing with large volumes of GNSS data [Butt, et al, 
2021, Ramavath & Perumalla, 2023, Heizmann & 
Braun, 2022, Breiman, 2001]. Special attention has been 
given to studies focused on using of specific ML 
algorithms and ensemble methods to enhance the 
accuracy of GNSS data analysis. For instance, Özarpacı 
et al., [2024] demonstrate how different ML algorithms 
can improve velocity estimation from GNSS data, 
emphasizing the importance of advanced techniques for 
analyzing complex time series. Butt, et al., [2021] con-
ducted a comprehensive review of ML applications in 
geodesy, highlighting the value of such methods in un-
covering hidden patterns and improving geospatial ana-
lysis through classification, regression, and clustering 
algorithms. This demonstrates the significant potential of 
ML in solving geodetic tasks, particularly in the 
detection of anomalies in GNSS datasets. Moreover, the 
concept of GeoAI, which integrates geospatial data with 
artificial intelligence, is gaining prominence in geospatial 
research [Pierdicca & Paolanti M., 2022]. GeoAI pro-
vides tools for automating the analysis of large geo-
spatial datasets, significantly reducing processing time 
and increasing the precision of results. This is especially 
important for efficient anomaly detection and GNSS 
network monitoring, where ML methods facilitate the 
integration of various techniques for deeper and more 
accurate analysis. 

Machine learning techniques are already being 
applied to analyzing of time series in regions with 
high geodynamic activity, detecting both local and 
group anomalies that point to geophysical processes 
or anthropogenic changes, such as in Turkey [Özbey 
et al., 2024].  

The Isolation Forest algorithm is among the most 
effective algorithms for detecting isolated anomalies in 
time series [Liu, et al., 2008, Liu, et al., 2012, Hariri, et 
al., 2021]. This algorithm is based on the principle of 
isolating anomalous data points through recursive 
partitioning of the data space and offers advantages in 
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speed and efficiency when processing large datasets. 
Extended versions of the Isolation Forest algorithm 
further enhance its performance for geodetic 
applications. A study by Özarpacı et al. [2024] reaffirms 
the importance of employing advanced ML algorithms, 
such as the Isolation Forest, to analyze complex GNSS 
datasets and detect anomalies in time series. The 
algorithm has also been applied to develop a semi-
automated method for detecting isolated anomalies 
induced by earthquakes using GNSS time series from the 
Japanese archipelago [Haidus & Brusak, 2024].  

Compared to other methods, the Isolation Forest is 
characterized by near-linear time complexity and 
minimal parameter tuning requirements. It is particularly 
well-suited for large network datasets and GNSS CORS 
observations. Density-based algorithms typically exhibit 
higher computational complexity and are more sensitive 
to parameter selection (e. g., neighborhood radius in 
DBSCAN, number of neighbors in LOF). Similarly, 
traditional statistical time series models such as ARIMA 
may offer better interpretability for individual stations 
but often require the assumption of stationarity and may 
be less effective under high signal nonlinearity or 
synchronized multistation deviations [Nguyễn & Tran, 
2023; Li et al., 2025]. 

Furthermore, the Isolation Forest algorithm 
balances detection accuracy and computational per-
formance, even under dynamic GNSS data conditions 
that include seasonal effects and periodic outlier 
surges. While neural network-based methods may 
sometimes achieve higher detection rates for complex 
patterns, they typically demand large volumes of 
training data, greater computational resources, and 
specialized tuning [Nguyễn et al., 2024]. In contrast, 
the Isolation Forest method, as applied in the study by 
Haidus, et al. [2024], does not require complex 
hyperparameter optimization and yet achieves robust 
performance in identifying both local and network-
level anomalies. 

The aforementioned studies confirm the effect-
tiveness of the Isolation Forest algorithm in geodetic 
applications, particularly for the analysis of large 
datasets and the detection of complex anomalies that 
may be associated with geophysical, anthropogenic, 
or operational factors in GNSS station networks. 
Building upon previous research in this field, the 
authors of this article aim to develop an algorithm 
based on the Isolation Forest ML method for 
detecting anomalies in GNSS time series. An essential 
component of this work is the supplementary 

interpretation of the causes of detected anomalies 
through comparison with findings from related stu-
dies. 

Method 

A step-by-step algorithm of the method for 
detecting anomalies in GNSS time series is presented 
below, and the corresponding block diagram is shown 
in Fig. 1. 

At the initial stage, key Python libraries are 
imported for numerical operations (NumPy, Pandas) 
and the practical implementation of machine learning 
methods, notably the Isolation Forest algorithm from 
the scikit-learn package [Pedregosa et al., 2011]. The 
Plotly module is used for results visualization. While 
these technical components are critical for method 
construction, the methodological core lies in the 
theoretical foundations of the Isolation Forest as an 
algorithm optimized for isolating anomalous points 
through strategic partitioning of the feature space. 

Unlike density or distance-based approaches, Iso-
lation Forest applies a more straightforward strategy 
based on the principle that “anomalies are few and 
different”. Its core involves constructing an ensemble 
of random decision trees: each tree recursively splits 
the data using randomly selected attributes and split 
values. Anomalous observations, those deviating 
significantly in one or more components (N, E, or 
Up), are “isolated” faster, as their coordinates lead to 
partition boundaries at shallower tree depths. The 
anomaly score is computed as a generalized path 
length to the node, aggregating estimations from all 
trees. 

After loading and cleaning the GNSS time series 
(removing gaps and invalid values), the data are 
grouped by station. Additional statistical features such 
as moving averages or standard deviations may be 
calculated for each GNSS CORS to enhance the 
model’s sensitivity.  

The definition of Isolation Forest hyperparameters 
is preceded by evaluating the typically low rate of 
anomalous events in geodetic measurements. The 
n_estimators parameter sets the number of decision 
trees: increasing this value improves distribution 
detail but also lengthens computation time.  

The contamination parameter contamination, the 
expected fraction of anomalies – is typically set low 
(e. g., 0.01) because GNSS time series usually exhibit 
smooth trends with isolated outliers. 
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Fig. 1. Block diagram of the proposed method utilizing the Isolation Forest algorithm  
for detecting geodynamic anomalies in GNSS time series.

Optimal hyperparameter values were selected using a 
grid search procedure, with particular attention paid to the 
sensitivity analysis of the contamination parameter. As 

illustrated by the results for station VARA (Fig. 2), the 
choice of this parameter is a compromise: increasing it 
(e. g., from 0.005 to 0.015) leads to an increase in the 
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number of detected anomalies (from 10 to 26), but reduces 
their average significance, or absolute deviation (from 
16.92 mm to 15.86 mm). This pattern, stable even when 
other hyperparameters are changed, emphasizes the 
critical role of contamination in tuning model sensitivity. 
Thus, the final parameter value was chosen as a balance 
between effective detection of significant deviations and 

avoiding false positives of fluctuations close to the back-
ground noise of the signal. 

Also, with contamination equal to 0.01, the num-
ber of expected geodynamic anomalies for the study 
period corresponds to the authors’ experience in this 
region and for these GNSS data. 

 
 

Fig. 2. Dependence of the number and values of detected anomalies  
on the contamination parameter in the Isolation Forest model  

for Up component on example of VARA GNSS station. 
 

A key advantage of Isolation Forest is that it does 
not require assumptions about the data distribution, 
making it particularly suitable for time series affected 
by seasonal, stochastic, or operational fluctuations. 
During model training, each daily coordinate solution 
receives an anomaly score: higher values indicate 
easier isolation and potential outliers. Alongside local 
anomaly detection, it is essential to identify group 
anomalies – synchronous spikes at multiple stations. 
For this, a four-day sliding window is analyzed: if 
≥20 % of stations register outliers within the window, 
a potential regional geophysical or atmospheric 
influence is inferred. This threshold is adjustable and 
tailored to the geodynamic behavior of GNSS time 
series. 

The results are displayed using interactive graphs, 
where GNSS time series and detected anomalies are 
overlaid on a single canvas, enabling rapid identification 
of segments that deviate from the expected trend. Com-
paring local and group anomalies in the graph facilitates 
assessment of whether a deformation affects a single or 
multiple GNSS stations. A final report consolidates all 
findings for subsequent analysis and comparison with 
known events. 

Ultimately, the “early isolation” principle embed-
ded in Isolation Forest proves highly relevant for 
GNSS stations, where outliers are typically driven by 
short-term but significant factors, such as operational 
changes or geodynamic phenomena. The proposed 
methodology provides a flexible and robust solution 
for anomaly detection by combining Isolation Forest 
with station-specific preprocessing and network-wide 

anomaly checks. Furthermore, cross-referencing de-
tected anomalies with known events (e. g., seismic 
events, non-tidal atmospheric loading) significantly 
supports interpretation. In general, applying the pro-
posed Isolation Forest-based method demonstrates 
that a data-oriented, distribution-agnostic approach 
can effectively monitor large volumes of GNSS time 
series. 

Validation of the method 

The GeoTerrace GNSS CORS network was 
selected to validate the proposed method. The 
Institute of Geodesy at Lviv Polytechnic National 
University actively developed this national network of 
GNSS CORS in Ukraine. The development of the 
GeoTerrace network began in 2007 in the Lviv region 
and has since expanded to approximately 90 stations, 
forming a unified network that covers most Ukrainian 
regions. Real-time network management is performed 
using the integrated SinoGNSS CDC.NET software. 
Daily GNSS solutions are computed in post-pro-
cessing using the Bernese GNSS Software for geo-
dynamic studies. A portion of the processed data was 
analyzed directly by the authors. In contrast, another 
portion was obtained from the Institute of geodesy 
Geodesy laboratory for scientific purposes. 

The average distance between adjacent GeoTer-
race stations is approximately 70 km, which is effec-
tive for differentiating current geodynamic processes 
across the covered regions. The spatial distribution of 
the stations is shown in Fig. 3. 
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Fig. 3. Location of GNSS stations from the GeoTerrace network used in this study.

Numerous scientific studies utilize data from the 
GeoTerrace network. Short-term anomalies caused by 
non-tidal atmospheric loading were identified using 
data from the GeoTerrace and Dnister Hydro Power 
Plants GNSS networks [Brusak & Tretyak, 2021]. 
The validation of GNSS time series for further 
geodynamic research is currently ongoing [Doskich, 
2021; Doskich & Serant, 2024; Brusak, et al., 2024]. 
These results are employed to identify current 
geodynamic processes occurring in the Ukrainian 
region [Tretyak, et al., 2024b; Doskich, et al., 2023]. 
The data are also provided to the Main Astronomical 
Observatory of the National Academy of Sciences of 
Ukraine for forming and disseminating reference 
frames in Ukraine. Velocity assessments indicate 
mean repeatability of coordinate components of 
1.69 mm (North), 1.40 mm (East), and 3.63 mm (Up) 
[Khoda, 2024]. Other studies have confirmed seasonal 
fluctuations at some permanent stations in Eastern 
Europe [Bem, 2024; Maciuk, 2016; Savchuk, et al., 
2023]. 

For validation, daily GNSS solutions from the 
GeoTerrace network were analyzed for the period 
2019–2024. To confirm anomalies caused by seismic 
events, USGS data were used [Search Earthquake 
Catalog at USGS], including event date, type, 
magnitude, and location. Anomalies associated with 
non-tidal deformations were compared to GFZ model 
data [Earth System Modelling at GFZ]. The date 
difference between the event and anomaly was 
calculated for each detected anomaly: a maximum 
difference of 7 days was considered indicative of a 
potential correlation. A list of matching events was 
compiled to assess the individual geodynamic impacts 
on GNSS time series. 

Figs. 4 and 5 show the time series of the Up 
component for GNSS stations VARA and KLCH 
from the GeoTerrace network. Detected anomalies 
using the proposed method are marked with vertical 
black lines: solid lines indicate group anomalies (also 
present in nearby stations), dashed lines indicate local 
anomalies affecting only that station .
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Fig. 4. Time series of vertical (Up) component for GNSS station VARA  
and detected local and group anomalies using the proposed method. 

 

Fig. 5. Time series of vertical (Up) component for GNSS station KLCH  
and detected local and group anomalies using the proposed method.

A detailed visual analysis of group anomalies re-
vealed clear patterns associated with NTAL anomalies, 
which correlate with modeled atmospheric pressure va-
riations [Earth System Modelling at GFZ]. In particular, 
height anomalies identified in December 2019 at stations 
VARA (see Fig. 4) and KLCH (see Fig. 5) coincide with 
previously studied NTAL effects [Brusak & Tretyak, 
2020], confirming the method’s capability to detect such 
geodynamic influences. Some anomalies are also asso-
ciated with operational factors, such as equipment re-
placement. For example, the hardware upgrade (antenna 
and receiver) at KLCH in early 2022 was identified as a 
local anomaly (see Fig. 5). 

Additionally, Fig. 6 provides a full overview of 
anomalies recorded at all stations in the western part 
of the GeoTerrace GNSS network from 2019 to 2024.  
The horizontal axis displays time, and the vertical axis 
lists the stations. Blue markers indicate horizontal 
anomalies (N, E components), and red markers indi-
cate vertical anomalies (Up).  

Seven group anomalies were recorded in the pe-
riod from 2019 to 2024. The determined dates for 
horizontal anomalies are: August 29, 2020; December 
11, 2021; and June 27, 2024. The dates for height 
anomalies are November 5, 2019; December 20, 
2019; November 30, 2022; and January 1, 2023.  
Summarized data for these periods, including the 
determined time ranges (where sequential recordings 
of anomalies of the same type were combined if the 
gap between them did not exceed 3 days) and a list of 
stations where the corresponding anomalies were 
detected, are given in Table.  

The detected anomaly in December 2019 that 
corresponds to the period 2019-12-16 – 2019-12-26 
for the Up component (see Table) covers a large 
number of stations (16 stations, as indicated in Table) 
and corresponds to a previously documented change 
in the vertical component under the influence of non-
tidal atmospheric loading [Brusak & Tretyak, 2020]. 
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Fig. 6. Horizontal (blue) and vertical (red) group anomalies detected by the proposed method based on 
the Isolation Forest algorithm for GNSS stations in the GeoTerrace network from 2019 to 2024. 

 
 

Periods of group anomalies and GeoTerrace network GNSS stations that recorded them (2019–2024)   

Anomaly type Date range Stations where anomalies were detected (count) 

Vertical 2019-11-03 – 2019-11-07 BRGN, BLZT, BYCH, CRNT, KLCH, KOVE, NOVC, PUTL, 
SOKA, VLVL (10) 

Vertical 2019-12-16 – 2019-12-26 ANTN, BYCH, CRNT, GORD, KAMK, KLCH, KLMN, KOSP, 
KOVE, PUTL, SOKA, SULP, SVLV, VLVL, VYNO, VARA (16) 

Vertical 2022-11-27 – 2022-12-05 BLZT, BRZD, KAMK, KOSP, KOVE, LUTK, MYKO, NEMR, 
NOVC, SVLV, VARA, YASN, ZARN (13) 

Vertical 2022-12-31 – 2023-01-04 
BLZT, BRGN, CRNT, KOLM, LUBE, LUTK, MYKO, NEMR, 
NOVC, RDVL, SOLT, SOKA, SVLV, SULP,  VLVL, ZBAR, 
ZOLH (17) 

Horizontal 2020-08-28 – 2020-09-01 BRGN, BYCH, CHOP, MYKO, SKOL, VLVL, ZOLH (7) 

Horizontal 2021-12-09 – 2021-12-14 KAMK, KOLM, KOSP, MYKO, NDNS, PUTL, RDVL, SAMB 
(8) 

Horizontal 2024-06-24 – 2024-06-28 CRNT, KLCH, KLMN, SOKA, SULP, VLVL, VYNO, ZARN (8) 
 

Let’s consider in detail the changes in the 
vertical GNSS time series during the group events 
identified in Table. For example, let’s consider two 
recorded cases: the period of activity from 2022-11-
27 to 2022-12-05 and the period from 2022-12-31 

to 2023-01-04 (see Table). The spatial distribution and 
magnitudes of vertical anomalies by maximum 
displacement dh (mm) and daily velocity dV (mm/day) 
for these periods are shown in Figs. 7 and 8, respec-
tively. 
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Fig. 7.  Spatial distribution of vertical anomaly characteristics at the end of November 2022: 
maximum subsidence dh in mm (left) and daily subsidence rate dV in mm/day (right) detected  

by the proposed method for GeoTerrace GNSS network stations. 

     

Fig. 8. Spatial distribution of vertical anomaly characteristics at the beginning of January 2023: 
maximum subsidence dh in mm (left) and daily subsidence rate dV in mm/day (right) detected  

by the proposed method for GeoTerrace GNSS network stations. 

 
The total number of studied GNSS stations is 37, 

but the figures above show fewer stations due to 
missing daily solutions during the recorded anomaly. 
Accordingly, such GNSS stations were excluded. 
Average data integrity for all GNSS stations is 
sufficient and is 83.4 % in 2022 and 91.4 % in 2023. 
Operational problems with GNSS stations were 
particularly evident in the period from October 2022 
to February 2023 due to unstable energy supply 
caused by russian attacks and missile strikes on 
Ukraine’s energy infrastructure [Brusak et al., 2024]. 

This period coincides with the anomalies in the 
Figs. 7 and 8. 

In the study, we do not dwell on interpreting the 
nature of these anomalies, as this is not the purpose of 
this article. However, it is worth noting that other 
narrower anomaly clusters may relate to regional 
geodynamic processes, although their nature requires 
further investigation. The joint visualization of planar 
and height anomalies confirms the method’s ability to 
detect synchronous regional geodynamic deforma-
tions. 

Conclusions 
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This study presents a method for analyzing GNSS 
time series using Isolation Forest, one of ML algo-
rithms for geodynamic purposes. The method is fully 
automated in Python. It can be applied to both indi-
vidual time series for local anomaly detection and 
GNSS station networks for identifying synchronous 
group geodynamic anomalies. Anomalies are catego-
rized into height (Up component) and planar (N and E 
components) types. 

Data from the Ukrainian GNSS CORS network 
GeoTerrace were analyzed to validate the proposed 
method. 37 daily GNSS time series from 2019 to 
2024 were examined. Seven group anomaly periods 
were identified across the network: three planar and 
four height. One height anomaly period in December 
2019 coincided with a known geodynamic anomaly 
caused by non-tidal atmospheric loading (NTAL) 
[Brusak & Tretyak, 2020; 2021]. Maps of the spatial 
distribution of the detected altitude anomalies in 
November 2022 and January 2023 are presented. 

The identified anomalies require further interpre-
tation to ascertain their nature. Group anomalies are 
particularly valuable, as they appear simultaneously at 
multiple stations and can only be detected through 
comprehensive network analysis. 

Certain limitations exist, despite the effectiveness of 
the proposed method. First, generalized model settings 
may not detect similar anomalies across all stations. For 
instance, although the December 2019 group anomaly 
was detected at most stations, it was absent at BLZT, 
LUTK, NOVC, and ZBAR, potentially due to local 
effects or data specifics. Nonetheless, previous studies 
confirm geodynamic deformations at these locations 
[Brusak & Tretyak, 2020]. Second, the initial setting of 
the expected anomaly fraction (contamination para-
meter) significantly impacts result quality. Improper tu-
ning of this parameter can result in either missing 
significant events or generating false positives. Despite 
these potential challenges, the model demonstrated satis-
factory performance. In the case of the December 2019 
NTAL anomalies, it achieved an accuracy of 76 %, va-
lidating the method’s effectiveness in detecting signi-
ficant deviations. Group anomaly analysis in height data 
confirmed successful identification of most abnormal 
subsidence or trend shifts cases. 

Future developments may include preliminary 
classification of anomaly causes. Even now, the re-
sults could interest researchers investigating geody-
namic anomalies using GNSS station network data 
that require further in-depth analysis with comple-
mentary geological and geophysical studies. 

The proposed approach also promises broader 
applications, such as structural monitoring of large 

engineering constructions. When GNSS receivers are 
installed on critical infrastructure such as dams, 
hydroelectric power plants, or nuclear facilities, detec-
ted local or group anomalies may indicate structural 
deformations. 
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ВИЯВЛЕННЯ ГЕОДИНАМІЧНИХ АНОМАЛІЙ У ЧАСОВИХ РЯДАХ ГНСС З ВИКОРИСТАННЯМ 
МЕТОДІВ МАШИННОГО НАВЧАННЯ  

Одна із прикладних геодезичних задач для геодинаміки – виявлення аномальних відхилень у часових 
рядах ГНСС, що можуть свідчити про деформації земної поверхні, спричинені впливом різних геофізичних 
явищ. Важливо зазначити, що геодинамічні аномалії можуть бути локальними та проявлятися лише на одній 
ГНСС-станції або регіональними і проявлятися одночасно у групі часових ГНСС-рядів. Мета цієї статті – 
розроблення методу виявлення геодинамічних аномалій у часових рядах ГНСС із використанням алгоритмів 
машинного навчання. Метод реалізований у середовищі Python та дає змогу аналізувати великі масиви даних 
у напівавтоматичному режимі. Серед методів машинного навчання для цього вибрано алгоритм Ізоляційного 
лісу. У дослідженні детально покроково описано роботи програми та її етапи, що дає змогу не лише 
аналізувати окремий часовий ряд для виявлення локальних аномалій, але й групи часових рядів для виявлення 
спільних одночасних геодинамічних аномалій. Розроблений метод апробовано на даних 37 ГНСС-станцій 
мережі GeoTerrace, розташованих у західній частині України. За результами виявлено сім окремих групових 
горизонтальних та висотних аномалій. Встановлено, що одна із виявлених аномалій збігається  із попередньо 
дослідженими висотними деформаціями земної кори, спричиненими неприливними атмосферними 
навантаженнями у грудні 2019 р. Наведено карти просторового розподілу виявлених групових висотних 
аномалій у листопаді 2022 р. та січні 2023 р. Природа частини аномалій на деяких ГНСС-станціях невідома, 
можливо, вони спричинені ще не ідентифікованими локальними геодинамічними факторами чи помилками 
вимірів. Окрім того, що запропонований метод може зацікавити геофізиків та геологів для виявлення спільних 
геодинамічних аномалій, він має потенціал для використання у структурному моніторингу великих 
інженерних об’єктів за даними мереж ГНСС-станцій. 

Ключові слова: часові ряди ГНСС, геодинамічні аномалії, виявлення аномалій, алгоритми машинного 
навчання, Ізоляційний ліс, ГНСС-мережа “GeoTerrace”. 
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