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DETECTION OF GEODYNAMIC ANOMALIES
IN GNSS TIME SERIES USING MACHINE LEARNING METHODS

One of the applied geodetic tasks in geodynamics is the detection of anomalous deviations in GNSS time
series, which may indicate deformations of the Earth’s surface caused by various geophysical phenomena. It is
important to note that geodynamic anomalies may be of a local nature, manifesting at a single GNSS station, or
of a regional nature, occurring simultaneously across a group of GNSS time series. The objective of this article is
to develop a method for detecting geodynamic anomalies in GNSS time series using machine learning
algorithms. The method has been implemented in the Python environment and allows for the semi-automated
analysis of large datasets. Among the machine learning methods, the Isolation Forest algorithm was selected for
this study. The research provides a detailed step-by-step description of the program’s operation and its stages,
enabling the analysis of both individual time series for identifying local anomalies and groups of time series for
detecting concurrent regional geodynamic anomalies. The developed method was tested on data from 37 GNSS
stations of the GeoTerrace network located in western Ukraine. As a result, seven distinct groups of horizontal
and vertical anomalies were identified. One of the detected anomalies was established to correspond with
previously investigated vertical crustal deformations caused by non-tidal atmospheric loading in December
2019. The study presents maps of the spatial distribution of the detected group height anomalies in November
2022 and January 2013. Some anomalies observed at certain GNSS stations are of unknown origin and may be
due to unidentified local geodynamic factors or measurement errors. In addition to its relevance for geophysicists
and geologists in detecting collective geodynamic anomalies, the proposed method also demonstrates potential
for use in structural health monitoring of large engineering constructuctions using data from GNSS station
networks.

Key words: GNSS time series, geodynamic anomalies, anomaly detection, machine learning algorithms,
Isolation Forest, GeoTerrace GNSS network

synchronization discrepancies between satellites and
receivers, orbital errors, ionospheric delays, the Earth's
magnetic field, tropospheric delays, receiver-generated
noise, and multipath errors [Bhardwaj, et al., 2020].
Initially, orbital errors were the primary source of inac-
curacies during the early stages of GPS development.
However, today tropospheric delays and specific mul-
tipath effects are considered the dominant contributors to
error [Steigenberger, 2017].

The increased precision of GNSS solutions ren-
ders the detection of anomalies in time series more
relevant, as such anomalies may have previously been
undetectable due to insufficient accuracy. Anomalies
are deviations from the expected trend values that
may arise from various influencing factors. This crea-
tes significant challenges in analyzing GNSS time
series for geodynamic research, which involves two
key aspects. The first concerns the accumulation of
large data volumes, emphasizing the need for auto-

Introduction

The number of permanent Global Navigation Sate-
llite System (GNSS) stations is steadily increasing.
These stations serve a variety of purposes: they
function as active, continuous operating reference sta-
tions (CORS) for real-time applications [Pipitone, et
al., 2023], providelocal networks for monitoring the
structural state of facilities [Tretyak, et al., 2024a],
and are utilizedfor earthquake monitoring and volca-
nology. Data obtained from GNSS time series can be
employed to address important applied geodetic tasks,
such as the measurement and analysis of deformations
and the modeling of local geodynamic processes.

In addition to the growing number of GNSS CORS,
the precision of individual GNSS solutions is
continuously improving, which consequently enhances
the quality of time series data. The total error in GNSS
observations comprises measurement errors, model

errors used for parameter estimation, and errors in the
estimated parameters themselves [Steigenberger, 2017].
GNSS errors can arise from various sources, including
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mated detection of concurrent anomalies across time
series. The second pertains to the analysis of geo-
physical causes of these anomalies.
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In addition to the instrumental errors listed above,
which directly affect the accuracy of each daily
solution, other factors may influence changes in time
series. It is essential to exclude operational factors,
particularly any alterations to tracking antenna or
receivers at each GNSS station. In current GNSS
CORS networks, such equipment changes are typi-
cally recorded in log files, facilitating the traceability
of these events during time series analysis.

Once operational factors have been excluded,
specific geophysical causes of anomalies can be conside-
red. By geophysical phenomena, events such as seismic
activity, non-tidal atmospheric loading (NTAL) [Brusak
& Tretyak, 2021], non-tidal ocean loading (NTOL)
[Williams & Penna, 2011], and hydrological loading
[Michel, et al., 2021], among others. Identifying and
confirming the nature of these anomalies typically re-
quires additional data. Forecasting or even detecting
them remains challenging. For instance, the impact of
NTAL can be evaluated using models developed by the
Earth System Modelling division at GFZ Potsdam,
Germany [Earth System Modelling at GFZ]. This online
platform also offers up-to-date NTOL and hydrological
loading models.

When analyzing anomalies for each GNSS CORS
individually, it is also crucial to understand that local
geodynamic factors may affect only a specific station.
For example, anomalies in time series may be caused by
anthropogenic disasters, landslides, karst processes, or
other geodynamic phenomena in the given area
[Savchyn, et al., 2019]. At the same time, major
earthquakes produce abrupt changes in the coordinate
time series of several GNSS stations in the affected
region. Similarly, while NTOL affects coordinate shifts
in coastal GNSS stations, NTAL influences coordinate
changes in groups of stations subject to atmospheric
variations. For instance, in December 2019, height
displacements of up to 2 cm were observed in more than
500 GNSS time series across Europe within ten days
[Brusak & Tretyak, 2020]. Accordingly, individual and
group anomaly analyses should be conducted con-
currently within GNSS time series.

When automatically analyzing large amounts of
GNSS data to detect specific anomalies, traditional
analytical methods, such as the least squares method
and spectral analysis, encounter certain limitations.
Although these methods are widely used for para-
meter estimation and time series analysis [Savchyn, et
al., 2021; Savchuk, et al., 2024; Doskich & Serant,
2024], they are not always effective for large and
complex datasets, especially when the objective is to
identifycomplex and unpredictable anomalies. Spect-
ral analysis allows the examination of periodic com-
ponents in signals. However, identifying non-periodic
or irregular anomalies can be challenging, especially

38

when they are obscured by noise or other signal
components [Costantino, et al., 2024]. Moreover, the
analysis of long-duration time series with high-
frequency measurements presents issues related to
computational complexity and highlights the need for
automation in the analytical process.

Machine learning methods
for time series analysis

Today, researchers increasingly turn to machine
learning (ML) methods to address the challenges of auto-
mating time series analysis, unlocking new possibilities
for anomaly detection. ML enables the identification of
complex patterns and interrelationships that are difficult
to detect using traditional methods, particularly when
dealing with large volumes of GNSS data [Butt, et al,
2021, Ramavath & Perumalla, 2023, Heizmann &
Braun, 2022, Breiman, 2001]. Special attention has been
given to studies focused on using of specific ML
algorithms and ensemble methods to enhance the
accuracy of GNSS data analysis. For instance, Ozarpaci
et al., [2024] demonstrate how different ML algorithms
can improve velocity estimation from GNSS data,
emphasizing the importance of advanced techniques for
analyzing complex time series. Butt, et al., [2021] con-
ducted a comprehensive review of ML applications in
geodesy, highlighting the value of such methods in un-
covering hidden patterns and improving geospatial ana-
lysis through classification, regression, and clustering
algorithms. This demonstrates the significant potential of
ML in solving geodetic tasks, particularly in the
detection of anomalies in GNSS datasets. Moreover, the
concept of GeoAl, which integrates geospatial data with
artificial intelligence, is gaining prominence in geospatial
research [Pierdicca & Paolanti M., 2022]. GeoAl pro-
vides tools for automating the analysis of large geo-
spatial datasets, significantly reducing processing time
and increasing the precision of results. This is especially
important for efficient anomaly detection and GNSS
network monitoring, where ML methods facilitate the
integration of various techniques for deeper and more
accurate analysis.

Machine learning techniques are already being
applied to analyzing of time series in regions with
high geodynamic activity, detecting both local and
group anomalies that point to geophysical processes
or anthropogenic changes, such as in Turkey [Ozbey
et al., 2024].

The Isolation Forest algorithm is among the most
effective algorithms for detecting isolated anomalies in
time series [Liu, et al., 2008, Liu, et al., 2012, Hariri, et
al., 2021]. This algorithm is based on the principle of
isolating anomalous data points through recursive
partitioning of the data space and offers advantages in
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speed and efficiency when processing large datasets.
Extended versions of the Isolation Forest algorithm
further enhance its performance for geodetic
applications. A study by Ozarpac: et al. [2024] reaffirms
the importance of employing advanced ML algorithms,
such as the Isolation Forest, to analyze complex GNSS
datasets and detect anomalies in time series. The
algorithm has also been applied to develop a semi-
automated method for detecting isolated anomalies
induced by earthquakes using GNSS time series from the
Japanese archipelago [Haidus & Brusak, 2024].

Compared to other methods, the Isolation Forest is
characterized by near-linear time complexity and
minimal parameter tuning requirements. It is particularly
well-suited for large network datasets and GNSS CORS
observations. Density-based algorithms typically exhibit
higher computational complexity and are more sensitive
to parameter selection (e. g., neighborhood radius in
DBSCAN, number of neighbors in LOF). Similarly,
traditional statistical time series models such as ARIMA
may offer better interpretability for individual stations
but often require the assumption of stationarity and may
be less effective under high signal nonlinearity or
synchronized multistation deviations [Nguyén & Tran,
2023; Li et al., 2025].

Furthermore, the Isolation Forest algorithm
balances detection accuracy and computational per-
formance, even under dynamic GNSS data conditions
that include seasonal effects and periodic outlier
surges. While neural network-based methods may
sometimes achieve higher detection rates for complex
patterns, they typically demand large volumes of
training data, greater computational resources, and
specialized tuning [Nguyén et al., 2024]. In contrast,
the Isolation Forest method, as applied in the study by
Haidus, et al. [2024], does not require complex
hyperparameter optimization and yet achieves robust
performance in identifying both local and network-
level anomalies.

The aforementioned studies confirm the effect-
tiveness of the Isolation Forest algorithm in geodetic
applications, particularly for the analysis of large
datasets and the detection of complex anomalies that
may be associated with geophysical, anthropogenic,
or operational factors in GNSS station networks.
Building upon previous research in this field, the
authors of this article aim to develop an algorithm
based on the Isolation Forest ML method for
detecting anomalies in GNSS time series. An essential
component of this work is the supplementary

interpretation of the causes of detected anomalies
through comparison with findings from related stu-
dies.

Method

A step-by-step algorithm of the method for
detecting anomalies in GNSS time series is presented
below, and the corresponding block diagram is shown
in Fig. 1.

At the initial stage, key Python libraries are
imported for numerical operations (NumPy, Pandas)
and the practical implementation of machine learning
methods, notably the Isolation Forest algorithm from
the scikit-learn package [Pedregosa et al., 2011]. The
Plotly module is used for results visualization. While
these technical components are critical for method
construction, the methodological core lies in the
theoretical foundations of the Isolation Forest as an
algorithm optimized for isolating anomalous points
through strategic partitioning of the feature space.

Unlike density or distance-based approaches, Iso-
lation Forest applies a more straightforward strategy
based on the principle that “anomalies are few and
different”. Its core involves constructing an ensemble
of random decision trees: each tree recursively splits
the data using randomly selected attributes and split
values. Anomalous observations, those deviating
significantly in one or more components (N, E, or
Up), are “isolated” faster, as their coordinates lead to
partition boundaries at shallower tree depths. The
anomaly score is computed as a generalized path
length to the node, aggregating estimations from all
trees.

After loading and cleaning the GNSS time series
(removing gaps and invalid values), the data are
grouped by station. Additional statistical features such
as moving averages or standard deviations may be
calculated for each GNSS CORS to enhance the
model’s sensitivity.

The definition of Isolation Forest hyperparameters
is preceded by evaluating the typically low rate of
anomalous events in geodetic measurements. The
n_estimators parameter sets the number of decision
trees: increasing this value improves distribution
detail but also lengthens computation time.

The contamination parameter contamination, the
expected fraction of anomalies — is typically set low
(e. g., 0.01) because GNSS time series usually exhibit
smooth trends with isolated outliers.
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Fig. 1. Block diagram of the proposed method utilizing the Isolation Forest algorithm
for detecting geodynamic anomalies in GNSS time series.

Optimal hyperparameter values were selected using a illustrated by the results for station VARA (Fig. 2), the
grid search procedure, with particular attention paid to the ~ choice of this parameter is a compromise: increasing it
sensitivity analysis of the contamination parameter. As  (e.g., from 0.005 to 0.015) leads to an increase in the
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number of detected anomalies (from 10 to 26), but reduces
their average significance, or absolute deviation (from
16.92 mm to 15.86 mm). This pattern, stable even when
other hyperparameters are changed, emphasizes the
critical role of contamination in tuning model sensitivity.
Thus, the final parameter value was chosen as a balance
between effective detection of significant deviations and

Number of Anomalies

Anomaly Count
-~
Average Absolute Anomaly (mm)
3 -

o0 0.015

Contamination

Average Absolute Anomaly

0.0 0.015

Contamination

avoiding false positives of fluctuations close to the back-
ground noise of the signal.

Also, with contamination equal to 0.01, the num-
ber of expected geodynamic anomalies for the study
period corresponds to the authors’ experience in this
region and for these GNSS data.

Average of All Absolute Values

mm)

{
\

0.01 0.015

Average of All Absolute Values

Contamination

Fig. 2. Dependence of the number and values of detected anomalies
on the contamination parameter in the Isolation Forest model
for Up component on example of VARA GNSS station.

A key advantage of Isolation Forest is that it does
not require assumptions about the data distribution,
making it particularly suitable for time series affected
by seasonal, stochastic, or operational fluctuations.
During model training, each daily coordinate solution
receives an anomaly score: higher values indicate
easier isolation and potential outliers. Alongside local
anomaly detection, it is essential to identify group
anomalies — synchronous spikes at multiple stations.
For this, a four-day sliding window is analyzed: if
>20 % of stations register outliers within the window,
a potential regional geophysical or atmospheric
influence is inferred. This threshold is adjustable and
tailored to the geodynamic behavior of GNSS time
series.

The results are displayed using interactive graphs,
where GNSS time series and detected anomalies are
overlaid on a single canvas, enabling rapid identification
of segments that deviate from the expected trend. Com-
paring local and group anomalies in the graph facilitates
assessment of whether a deformation affects a single or
multiple GNSS stations. A final report consolidates all
findings for subsequent analysis and comparison with
known events.

Ultimately, the “early isolation” principle embed-
ded in Isolation Forest proves highly relevant for
GNSS stations, where outliers are typically driven by
short-term but significant factors, such as operational
changes or geodynamic phenomena. The proposed
methodology provides a flexible and robust solution
for anomaly detection by combining Isolation Forest
with station-specific preprocessing and network-wide

anomaly checks. Furthermore, cross-referencing de-
tected anomalies with known events (e. g., seismic
events, non-tidal atmospheric loading) significantly
supports interpretation. In general, applying the pro-
posed Isolation Forest-based method demonstrates
that a data-oriented, distribution-agnostic approach
can effectively monitor large volumes of GNSS time
series.

Validation of the method

The GeoTerrace GNSS CORS network was
selected to validate the proposed method. The
Institute of Geodesy at Lviv Polytechnic National
University actively developed this national network of
GNSS CORS in Ukraine. The development of the
GeoTerrace network began in 2007 in the Lviv region
and has since expanded to approximately 90 stations,
forming a unified network that covers most Ukrainian
regions. Real-time network management is performed
using the integrated SinoGNSS CDC.NET software.
Daily GNSS solutions are computed in post-pro-
cessing using the Bernese GNSS Software for geo-
dynamic studies. A portion of the processed data was
analyzed directly by the authors. In contrast, another
portion was obtained from the Institute of geodesy
Geodesy laboratory for scientific purposes.

The average distance between adjacent GeoTer-
race stations is approximately 70 km, which is effec-
tive for differentiating current geodynamic processes
across the covered regions. The spatial distribution of
the stations is shown in Fig. 3.
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Fig. 3. Location of GNSS stations from the GeoTerrace network used in this study.

Numerous scientific studies utilize data from the
GeoTerrace network. Short-term anomalies caused by
non-tidal atmospheric loading were identified using
data from the GeoTerrace and Dnister Hydro Power
Plants GNSS networks [Brusak & Tretyak, 2021].
The validation of GNSS time series for further
geodynamic research is currently ongoing [Doskich,
2021; Doskich & Serant, 2024; Brusak, et al., 2024].
These results are employed to identify current
geodynamic processes occurring in the Ukrainian
region [Tretyak, et al., 2024b; Doskich, et al., 2023].
The data are also provided to the Main Astronomical
Observatory of the National Academy of Sciences of
Ukraine for forming and disseminating reference
frames in Ukraine. Velocity assessments indicate
mean repeatability of coordinate components of
1.69 mm (North), 1.40 mm (East), and 3.63 mm (Up)
[Khoda, 2024]. Other studies have confirmed seasonal
fluctuations at some permanent stations in Eastern
Europe [Bem, 2024; Maciuk, 2016; Savchuk, et al.,
2023].
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For validation, daily GNSS solutions from the
GeoTerrace network were analyzed for the period
2019-2024. To confirm anomalies caused by seismic
events, USGS data were used [Search Earthquake
Catalog at USGS], including event date, type,
magnitude, and location. Anomalies associated with
non-tidal deformations were compared to GFZ model
data [Earth System Modelling at GFZ]. The date
difference between the event and anomaly was
calculated for each detected anomaly: a maximum
difference of 7 days was considered indicative of a
potential correlation. A list of matching events was
compiled to assess the individual geodynamic impacts
on GNSS time series.

Figs. 4 and 5 show the time series of the Up
component for GNSS stations VARA and KLCH
from the GeoTerrace network. Detected anomalies
using the proposed method are marked with vertical
black lines: solid lines indicate group anomalies (also
present in nearby stations), dashed lines indicate local
anomalies affecting only that station
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Fig. 4. Time series of vertical (Up) component for GNSS station VARA
and detected local and group anomalies using the proposed method.
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Fig. 5. Time series of vertical (Up) component for GNSS station KLCH
and detected local and group anomalies using the proposed method.

A detailed visual analysis of group anomalies re-
vealed clear patterns associated with NTAL anomalies,
which correlate with modeled atmospheric pressure va-
riations [Earth System Modelling at GFZ]. In particular,
height anomalies identified in December 2019 at stations
VARA (see Fig. 4) and KLCH (see Fig. 5) coincide with
previously studied NTAL effects [Brusak & Tretyak,
20201, confirming the method’s capability to detect such
geodynamic influences. Some anomalies are also asso-
ciated with operational factors, such as equipment re-
placement. For example, the hardware upgrade (antenna
and receiver) at KLCH in early 2022 was identified as a
local anomaly (see Fig. 5).

Additionally, Fig. 6 provides a full overview of
anomalies recorded at all stations in the western part
of the GeoTerrace GNSS network from 2019 to 2024.
The horizontal axis displays time, and the vertical axis
lists the stations. Blue markers indicate horizontal
anomalies (N, E components), and red markers indi-
cate vertical anomalies (Up).

Seven group anomalies were recorded in the pe-
riod from 2019 to 2024. The determined dates for
horizontal anomalies are: August 29, 2020; December
11, 2021; and June 27, 2024. The dates for height
anomalies are November 5, 2019; December 20,
2019; November 30, 2022; and January 1, 2023.
Summarized data for these periods, including the
determined time ranges (where sequential recordings
of anomalies of the same type were combined if the
gap between them did not exceed 3 days) and a list of
stations where the corresponding anomalies were
detected, are given in Table.

The detected anomaly in December 2019 that
corresponds to the period 2019-12-16 — 2019-12-26
for the Up component (see Table) covers a large
number of stations (16 stations, as indicated in Table)
and corresponds to a previously documented change
in the vertical component under the influence of non-
tidal atmospheric loading [Brusak & Tretyak, 2020].
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Fig. 6. Horizontal (blue) and vertical (red) group anomalies detected by the proposed method based on
the Isolation Forest algorithm for GNSS stations in the GeoTerrace network from 2019 to 2024.

Periods of group anomalies and GeoTerrace network GNSS stations that recorded them (2019-2024)

Anomaly type Date range Stations where anomalies were detected (count)
. BRGN, BLZT, BYCH, CRNT, KLCH, KOVE, NOVC, PUTL,
Vertical 2019-11-03 - 2019-11-07 SOKA, VLVL (10)
. ANTN, BYCH, CRNT, GORD, KAMK, KLCH, KLMN, KOSP,
Vertical 2019-12-16 - 2019-12-26 | | /e pUTL, SOKA, SULP, SVLV, VLVL, VYNO, VARA (16)
. BLZT, BRZD, KAMK, KOSP, KOVE, LUTK, MYKO, NEMR,
Vertical 2022-11-27 — 2022-12-05 NOVC, SVLV, VARA, YASN, ZARN (13)
BLZT, BRGN, CRNT, KOLM, LUBE, LUTK, MYKO, NEMR,
Vertical 2022-12-31 — 2023-01-04 [ NOVC, RDVL, SOLT, SOKA, SVLV, SULP, VLVL, ZBAR,
ZOLH (17)
Horizontal 2020-08-28 — 2020-09-01 | BRGN, BYCH, CHOP, MYKO, SKOL, VLVL, ZOLH (7)
Horizontal 2021-12-09 — 2021-12-14 g)AMK, KOLM, KOSP, MYKO, NDNS, PUTL, RDVL, SAMB
Horizontal 2024-06-24 — 2024-06-28 | CRNT, KLCH, KLMN, SOKA, SULP, VLVL, VYNO, ZARN (8)

Let’s consider in detail the changes in the  to 2023-01-04 (see Table). The spatial distribution and
vertical GNSS time series during the group events  magnitudes of vertical anomalies by maximum
identified in Table. For example, let’s consider two  displacement dh (mm) and daily velocity dV (mm/day)
recorded cases: the period of activity from 2022-11-  for these periods are shown in Figs. 7 and 8, respec-
27 to 2022-12-05 and the period from 2022-12-31 tively.
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Fig. 7. Spatial distribution of vertical anomaly characteristics at the end of November 2022:
maximum subsidence dh in mm (left) and daily subsidence rate dV in mm/day (right) detected
by the proposed method for GeoTerrace GNSS network stations.
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Fig. 8. Spatial distribution of vertical anomaly characteristics at the beginning of January 2023:
maximum subsidence dh in mm (left) and daily subsidence rate dV in mm/day (right) detected
by the proposed method for GeoTerrace GNSS network stations.

The total number of studied GNSS stations is 37,
but the figures above show fewer stations due to
missing daily solutions during the recorded anomaly.
Accordingly, such GNSS stations were excluded.
Average data integrity for all GNSS stations is
sufficient and is 83.4 % in 2022 and 91.4 % in 2023.
Operational problems with GNSS stations were
particularly evident in the period from October 2022
to February 2023 due to unstable energy supply
caused by russian attacks and missile strikes on
Ukraine’s energy infrastructure [Brusak et al., 2024].

This period coincides with the anomalies in the
Figs. 7 and 8.

In the study, we do not dwell on interpreting the
nature of these anomalies, as this is not the purpose of
this article. However, it is worth noting that other
narrower anomaly clusters may relate to regional
geodynamic processes, although their nature requires
further investigation. The joint visualization of planar
and height anomalies confirms the method’s ability to
detect synchronous regional geodynamic deforma-
tions.

Conclusions
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This study presents a method for analyzing GNSS
time series using Isolation Forest, one of ML algo-
rithms for geodynamic purposes. The method is fully
automated in Python. It can be applied to both indi-
vidual time series for local anomaly detection and
GNSS station networks for identifying synchronous
group geodynamic anomalies. Anomalies are catego-
rized into height (Up component) and planar (N and E
components) types.

Data from the Ukrainian GNSS CORS network
GeoTerrace were analyzed to validate the proposed
method. 37 daily GNSS time series from 2019 to
2024 were examined. Seven group anomaly periods
were identified across the network: three planar and
four height. One height anomaly period in December
2019 coincided with a known geodynamic anomaly
caused by non-tidal atmospheric loading (NTAL)
[Brusak & Tretyak, 2020; 2021]. Maps of the spatial
distribution of the detected altitude anomalies in
November 2022 and January 2023 are presented.

The identified anomalies require further interpre-
tation to ascertain their nature. Group anomalies are
particularly valuable, as they appear simultaneously at
multiple stations and can only be detected through
comprehensive network analysis.

Certain limitations exist, despite the effectiveness of
the proposed method. First, generalized model settings
may not detect similar anomalies across all stations. For
instance, although the December 2019 group anomaly
was detected at most stations, it was absent at BLZT,
LUTK, NOVC, and ZBAR, potentially due to local
effects or data specifics. Nonetheless, previous studies
confirm geodynamic deformations at these locations
[Brusak & Tretyak, 2020]. Second, the initial setting of
the expected anomaly fraction (contamination para-
meter) significantly impacts result quality. Improper tu-
ning of this parameter can result in either missing
significant events or generating false positives. Despite
these potential challenges, the model demonstrated satis-
factory performance. In the case of the December 2019
NTAL anomalies, it achieved an accuracy of 76 %, va-
lidating the method’s effectiveness in detecting signi-
ficant deviations. Group anomaly analysis in height data
confirmed successful identification of most abnormal
subsidence or trend shifts cases.

Future developments may include preliminary
classification of anomaly causes. Even now, the re-
sults could interest researchers investigating geody-
namic anomalies using GNSS station network data
that require further in-depth analysis with comple-
mentary geological and geophysical studies.

The proposed approach also promises broader
applications, such as structural monitoring of large
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engineering constructions. When GNSS receivers are
installed on critical infrastructure such as dams,
hydroelectric power plants, or nuclear facilities, detec-
ted local or group anomalies may indicate structural
deformations.
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BUSBJIEHHS TEOJJMHAMIYHUX AHOMAJIIA Y YACOBUX PSJIAX THCC 3 BUKOPUCTAHHSIM
METOJIB MAIIIMHHOI'O HABUAHHAA

OpHa 13 IPUKIAAHUX T'€OJC3UYHUX 337ad I T€OAWHAMIKM — BHSBICHHSA aHOMAJbHHX BIIXWIEHb Y YacOBHX
pamax T'HCC, mo MoxyTh cBimunTH 1po Aedopmariii 3eMHOT MOBEpXHi, COPUYMHEH] BIUIUBOM PI3HUX reo(iznuHUX
SIBUIL. Ba)<JTHBO 3a3HAYMTH, 110 TEOAWHAMIYHI aHOMAIii MOXKYTh OyTH JIOKQIBHUMHM Ta TMPOSIBILATUCS JIUILE HA OJHIN
I'HCC-cranmii a6o perioHanbHUMH 1 HpOSBIATHCA OoxHOuYacHO y rpymi 9acoBux I'HCC-paamiB. Meta mi€i ctaTti —
PO3pOOJICHHST METO/Ty BHSBJICHHS T€OAMHAMIYHHX aHOMatiH y yacoBux paaax [HCC i3 BUKOPUCTAHHAM aJrOpUTMIB
MAIIIMHHOTO HaBYaHHs. MeToj peanizoBanuii y cepemoBuii Python Ta mae 3Mory aHami3yBaTH BeJIMKI MaCHBU TAHHUX
y HamiBaBTOMaTH4YHOMY pekumi. Cepel MEeTO/IiB MAIIMHHOTO HABYaHHS JUIS I[bOTO BHOPAHO alnropuT™ [3ossmiitHoro
Jicy. Y IOCHiKEeHHI JETalbHO TMOKPOKOBO ONMMCAHO POOOTH MporpaMu Ta il eramu, MO Ja€ 3MOTy He JIHIe
aHaJTi3yBaTH OKPEMHUI YaCOBHM PsJI JUIS BUSABIICHHS JIOKATFHUX AaHOMAJIiH, ajte ¥ TPyIH YacOBHX PAMIB JUIS BUSBIICHHS
CNIPHUX OJJHOYACHHX TeOoJMHAMIYHMX aHoMaiii. Po3pobnenuii merox anpoboBaHo Ha ganux 37 'HCC-cranuii
Mmepexi GeoTerrace, po3raioBanux y 3axiqHiil yacTuHi YKpaiHu. 3a pe3y/bTaMy BHSBICHO CIM OKPEMHX IPYIIOBUX
TOPU30HTAJIFHUX Ta BUCOTHHUX aHOMaNTii. BcTaHOBIIEHO, 1110 0/1HA i3 BUABICHUX aHOMAIiH 30iracThesl 13 MONepeTHbO
JIOCTI/DKEHUMHA BHUCOTHUMH  AeopMallisiMd  3eMHOI KOpH, CIIPUYMHEHHUMH HENPWIMBHUMH aTMOC(EPHUMH
HaBaHTaXeHHsMH y rpyni 2019 p. HaBexeHo KapTu MPOCTOPOBOTO PO3MOAUTY BHSBJICHHX TIPYNOBHUX BHCOTHHX
anomadiit y sucronaai 2022 p. ta ciuni 2023 p. [Ipupona yactunu aHomatiii Ha neskux ['HCC-craHIisx HeBizoMma,
MOXJIMBO, BOHH CIIPUYMHEHI I He 1eHTH(HIKOBAaHUMH JIOKATFHUMH T'€0JJMHAMIYHIMH (paKTOpaMu Y MOMIJIKAMH
BuMipiB. OKpiM TOTO, IO 3AMPONOHOBAHHUN METO] MOXE 3aIlikaBUTH Te0(]i3UKiB Ta Te0JIOTIB sl BUABICHHS CIITBHUX
reoMHAMIYHUX aHOMAJIilf, BiH Mae€ TMOTEHIUaN JUIi BHUKOPUCTAHHA y CTPYKTYPHOMY MOHITOPHHTY BEJIMKHX
iEKeHepHHUX 00 exTiB 3a qanuMu Mepex [ HCC-ctanmiit.

Kmouoei crnosa: wacosi psinu 'HCC, reonuHamMigHi aHOMallii, BUSIBJICHHS aHOMaiH, allfOPUTMH MAIIUHHOTO
HaBuaHus, [3omsiitauii tic, THCC-mepexa “GeoTerrace”.
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