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thickness less than 14 km; continental cover has
thickness varying from 24 km up to more than
38 km; and cover of transitional zones has thick-
ness value from 14 to 24 km.

The Vietnam territory and its adjacent areas seis-
mic lithosphere does not pick out for all territory.
On the whole, thickness of the lithosphere of Viet-

Geyko V. S. � general theory of the seismic travel-
time tomography // Geophys. J. — 2004. — 26,
� 2.  — P. 3—32.

nam  territory and its adjacent areas is varying from
50 km to larger 110 km. The seismic lithosphere
picks up under central part of North Calimantan
block up to 50 km, under South China block up to
75 km, under Indochina block up to 50 km. The
maximum lithosphere depth is under blocks Cen-
tral East Sea and East East Sea — 110 120 km.
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Geophysical media as open thermodynamic systems actively display synergetic properties, ability to
creation of localized dissipative structures, and an order. Experimental investigations show that dynamics
of physical processes in nonequilibrium media is determined substantially by hierarchy and discreteness
of a media structure, the set of internal relaxing processes, the nonlocality of interaction between struc-
ture elements, the directed exchange of energy between the degrees of freedom. In the papers [Danylen-
ko, Skurativsky, 2007; Danylenko et al., 2008] it is proposed to take into account these features of internal
media structure in the dynamical equation of state. This leads to the nonlocal nonlinear mathematical
model for structured media:
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where  is the density of a medium, u is the velocity, p is the pressure, m  is the external mass force, 
is the relaxing time,  and h are parameters of spatial and temporal nonlocalities, the parameters æ and 
are proportional to the squares of equilibrium and frozen speeds of the sound. The function pp �� ,,,11

describes hysteretic reaction of a medium under the deformation,  is the scale parameter.
Previous investigations of the wave solutions of model (1) in the form [Danylenko, Skurativsky, 2009]

R , Pp , Utu 2 , 2tx (2)

shown that accounting the spatial and temporal nonlocal effects in the dynamical equation of state ex-
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pands substantially the class of solutions in comparison with the local model ( , , h are infinitesimal). In
particular, the set (2) contains periodic, quasiperiodic, multiperiodic, and chaotic regimes, which are
connected with each other by means of bifurcational scenarios. The solitary waves with the oscillating
asymptotics were discovered as well.

Thus, basing upon the results of investigations of models that do not take into account the hysteretic
character of media deformations, we shall study the influence of the hysteretic function �1 in the dyna-
mical equation of state on the structure of solutions (2). The function �1 describes the histeretic loop in the
plane ( ; p) under the harmonic loading. The form of this loop is defined by the following relation
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where C2<C1. In the case, when C2<C 1, the area bounded by the loop is zero. We should note that the set
of enclosed loops appears in the plane ( ; p) instead of one loop, if we use the loading, distinct from
harmonic one. The elements of function (3) can be used for description of the simplest cases of enclosed
loops (Fig.  1).

Fig.  1. The construction of two (a) and three (b) encloset histeretic loops in the plane ( ; p).

Substituting solution (2) into system (1), we obtain the quadrature UR=S=const and the dynamical
system:
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Here dd /�� , ZWPRFF ,,,  is the nonlinear function. The analitical expression for the function
F  is omitted due to its length. Note that analitical expression (3) for the histeretic loop can also be written
in terms of invariant variables (2).

Nonlinear dynamical system (4) is investigated by means of the qualitative and numerical methods.
Equating the right parts of system (4) to zero, we get the coordinates of the fixed point
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which do not depend on the parameters of the histeretic function 1 . Analyzing the stability of fixed point

(5) under the neglecting the histeretic function �1 we state that at = 16; S = 3.2; = 1; æ = 0.9; = 0.5;
h = 6.74; = 0; = 0.6; n = 4; m = 8; b = 3.8 the fixed point changes the type from unstable node-focus to

stable one. In the vicinity of fixed point (5) the unstable limit cycle appears at increasing the parameter h .
Bifurcational analysis of dynamical system (4) in the case when �1 0 and zero area of histeretic loop
shown that for C2 = C1 >0 fixed point (5) is a stable node-focus surrounded by both unstable and stable
cycles. Consider the case, when C1 C2 and function (3) describes the loop with nonzero area. Then as a
consequence of histeretic loop including the structure of the phase space of system (4) becomes more
complicated at increasing the parameter C1. In particular, at C2 = 7.5; C1 = 27 there are several localized
and separated regimes in the phase space of dynamical system (4), namely, fixed point (5), both stable
and unstable cycles surrounding it (Fig.  2,  a), and the chaotic attractor in addition (Fig.  2,  b). Note that
the chaotic attractor does not exist neither at C1 = C2 = 7.5 nor at C1<C2 = 27. So that the chaotic attractor
is created due to accounting the histeretic loop.

Fig.  2. The structure of the phase space of system (4) at C1=27 (a) and C2=7.5 (b).

Fig.  3. Poincare diagrames of the limit cycle development at increasing : a — C1=C2=9.5; b — C2=9.5, C1=19.

Another manifestation of the histeretic function �1 adding is regularization of chaotic oscillations. According
to the numerical experiments, at S = 3.8, C1 = C2 = 7.5, = 0,1 the complicated periodic trajectory exists in the
vicinity of the fixed point. Analyzing the development of the periodic trajectory by Poincare diagram we show
that the period doubling cascade with chaotic attractor creation is actualized at C1 [7.5;  8]. But if we fix C2 = 7.5
and vary C1 [7.5;  8], then the periodic regime exists only instead of the chaotic attractor.

The existence of new wave regimes for model (1) is connected with the effects of spatial nonlocality,
which are described by terms with the parameter . Analyzing the Poincare diagram of the limit cycle
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development at increasing  and C1 = C2 (zero loop area) we see that the size of T-period cycle is growing
and there is an interval of  corresponding to the existence of 2T-period cycle (Fig.  3,  a). The structure of
solutions (2) is much more complicated in the case of nonzero histeretic loop area at C2 = 9,5, C1 = 19.
Studying the Poincare diagram in picture 3b we can distinguish several period doubling cascade, intervals
of the different type chaotic attractor existence, moment of the histeretic transition from one attractor to
other.

Thus, the accounting a histeretic loop in the dynamical equation of state causes new wave regimes
creation. The histeretic loop is the way of elastic energy utilization and in the same time it is the nonlinear
element of media, which can cause unstability generation in media and produce localized dissipative
structures.
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What does Grace satellite mission tell us about
seismic cycle?

 M. Diament1, V. Mikhailov2,1, I. Panet3,1, F. Pollitz4, 2010
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Launched in March 2002, the GRACE mission
measures the temporal variation of the gravity field
at a spatial resolution of about 400 km, and at a
temporal resolution from ten days to one month.

These information complements ground based
geodetic and geophysical ones. The temporal vari-
ations of the Earth gravity field are dominated by
the effect of the water circulation between the at-
mosphere, the oceans, the land hydrological sys-
tems and the polar ice caps. Such mass redistribu-
tions cause geoid variations of a few millimetres at
various temporal and spatial scales. Locally, large
seismic events also generate geoid variations of si-
milar amplitude, which may also be detectable by
GRACE [Gross, Chao, 2001; Mikhailov et al., 2004;
Sun, Okubo, 2004; de Viron et al., 2008].

One of the largest earthquakes in recent decades,
the Mw 9.2 Sumatra-Andaman, earthquake, occur-

red on December 26
th
 2004 at a particularly com-

plex subduction boundary, along which the Indian
and Australian plates subduct below a set of micro-
plates comprising the forearc sliver plate, the Bur-
ma and the Sunda ones. The Sumatra-Andaman
earthquake ruptured at least 1300 km of this sub-
duction boundary. It was followed by numerous af-
tershocks and by a second very large earthquake,
the Mw 8.7 Nias earthquake, on March 28th, 2005.
During the following years, slip at depth has conti-
nued, as showed by the sequence of recorded af-
tershocks and regional GPS data.

The December 2004 Sumatra-Andaman event is
associated with a large gravity co-seismic anomaly
in the Andaman Sea and very fast post seismic re-
laxation that is well monitored by Grace [Panet et
al., 2007; 2010]. This gravity variation is due to ver-
tical displacement of density interfaces (mostly the


