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Abstract. The article concerns the determination of the optimal parameters of tubular belt conveyors transporting
bulk load. Purpose of work: to determine the permissible distance between the roller supports of the tubular belt
conveyor. A mathematical model of the stress-strain state of a tubular conveyor belt filled with bulk load is obtained. The
belt is considered as a thin elastic inextensible cylindrical shell located between the roller supports and filled with bulk
eoad in extreme condition. At the same time, distributed tensile forces along the forming of the shell, bending moments
in the cross section and torques from the side of the roller support around the axis of symmetry of the shell act on the
shell filled with bulk load. From the side of bulk load, active and passive normal lateral pressures act on the conveyor
belt, which depend on the degree of filling of the belt and the angular coordinate of the points of the normal section of the
belt. In this case, active normal stresses act on the belt from the load side to the middle of the span between the roller
supports, and passive normal stresses act on the tape from the load side from the middle of the span to its end. In
addition, from the side of the bulk load, the friction forces of the load on the conveyor belt act along the tangents to the
circle of the normal section of the shell. The article assumes that the shell movements are small, and bending moments
can be neglected. As a result, we obtained a system of differential equilibrium equations for a tubular belt with a bulk
load with respect to the forces and bending moments in the belt, which was reduced to a fourth-order differential
equation for the deflections of the belt. Based on this mathematical model, the analytical dependences of the deflections
of the balt of the tubular conveyor on the parameters of the conveyor, the radius and properties of the belt, as well as the
properties of bulk load, were obtained and analyzed. As a result, the maximum allowable distance between the roller
supports of the tubular conveyor is determined. It was found that the allowable distance between the roller bearings is
directly proportional to the tension of the belt and inversely proportional to the square of the radius of the belt and the
bulk weight of the load. The research results can be used in the design of tubular belt conveyors transporting bulk load.

Keywords: tubular belt conveyor, roller supports, belt, bulk load.

Tubular belt conveyors are currently widely used in various industries: mining,
metallurgy, construction and chemical. The main advantages of tubular conveyors,
unlike ordinary belt conveyors with a grooved belt, are environmental friendliness
and the ability to transport bulk load along curvilinear routes without overload
devices. However, their effective use in industry is constrained by the lack of
scientifically based methods for calculating the basic parameters of the tubular
conveyor. In particular, there is no calculation of the maximum allowable distance
between the roller supports of the tubular conveyor depending on the parameters of
the conveyor, the elastic properties of the belt, as well as the physical and mechanical
properties of the bulk load.
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To solve this problem, it is necessary, first of all, to develop a mathematical
model of the stress-strain state of a belt filled with a bulk load as it moves along the
tubular conveyor roller supports.

Questions of creating a mathematical model of the stress-strain state of a belt
filled with a bulk load were dealt with by V.G. Dmitriev, E.E. Sheshko,
V. M. Gushchin, A. V. Dyachenko, D. S. Kulagin [1-3] and V. D. Chernenko [4]. In
these works, the normal distributed forces of spreading bulk loads, acting on the belt
from the bulk load as it moves along the roller conveyors, are investigated. At the
same time the bulk load on the conveyor belt was in extreme equilibrium.

As a result, the analytical dependences of the distribution of these forces on the
angular coordinates of the normal belt cross section were obtained. In this case, the
deformation of the belt was not taken into account.

In the work of V. D. Chernenko, a mathematical model of the stress-strain state of
a tubular belt filled with a bulk load was developed, based on the general theory of
elastic shells and the limit state of a flowing medium. As a result, complex systems of
partial differential equations were obtained, determining the strain stresses in the
shell and the flowing medium, which for particular cases were solved by a numerical
method.

In this paper, we developed a mathematical model of the stress-strain state of a
tubular conveyor belt filled with a bulk load, based on the S. P. Timoshenko theory of
thin elastic cylindrical shells. It was assumed that the shell is inextensible, and its
deformations are small. As a result, analytical dependencies of the belt deflection on
the parameters of the conveyor, the elastic properties of the belt, and the physical and
mathematical properties of the bulk load are obtained. This relationship made it
possible to determine the maximum allowable distance between the roller e support
tubular belt conveyor.

Imagine a section of the tubular conveyor belt, located between the roller-supports,
as a thin elastic cylindrical shell, clamped between the roller-supports (Fig. 1).

Figure 1 — Normal cross-section of a tubular conveyor belt
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In fig. 1 marked: ¢ is the current angular coordinate, rad; 6, and 0, are the angular
coordinates of the intersection of the surface of the tubular section of the belt with a
bulk load, rad.

According to the theory of thin elastic cylindrical shells [5, 6], forces and
moments act on the element of the middle surface of the shell when it is deformed,
and the deformation of the shell is considered to be essentially small compared to its
radius R (m).

In this case, taking into account the simplifications of the system of equilibrium
equations [5], after the elimination of the corresponding component equations, the
system will have the form:
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As in [5], it is assumed: the z axis is directed along the normal to the deformed
middle surface of the conveyor belt, the x axis is directed tangentially to the middle
surface, the y axis is directed perpendicular to the xz plane; N, is the intensity of
membrane tensile forces along the x-axis, N/m; N, is the intensity of the membrane
forces in the cross section in the coordinate ¢, N/m; Ny, is intensity of tangential
membrane forces, N/m; Q, is intensity of shear forces in the direction of the x-axis,
N/m; Q, is intensity of shear forces in the direction of the coordinates ¢, N/m; M,,
My, My, My are the intensities of bending and torsional moments of normal sections
of a cylindrical shell element, N; g is normal distributed force acting on the tape from
the bulk load, N/m?; and 7 is shear stress acting on the conveyor belt from the side of
bulk load, N/m?.

We also consider small displacements of the shell points u (m), v (m) and w (m)
respectively along the axis of symmetry x of the belt shell, in the circumferential
direction ¢, and also along the normal to the surface z of the belt shell.

Since the displacements u, v, w are small, then, according to Hooke’s law, the
bending forces and moments are determined by the formulas [5, 6]:
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Here ¢, is the deformation in the direction of the x axis; ¢, is deformation in the
direction of o; yy, is angular deformation; x, is change of curvature in the direction of the
x-axis, m™; ; %o — Change of curvature in the dlrectlon of the section, m™; ; %o 1S Change of
curvature in the direction of the section xp, m™; D is the cylindrical stiffness of the belt,
N-m; h is conveyor belt thickness, m; £ is elastlc modulus of the belt material, N/m?; and
vy IS Poisson's ratio of the belt.

The cylindrical rigidity of a tubular belt according to [5] according to the formula
D = Eh¥/12(1 - v49).

Given the fact that the longitudinal forces, i.e. the tension forces of the belt N, are
many times greater than the lateral forces N,, they can be neglected, i.e. N, = 0. Since
the tape twisting forces are also absent, the moments from these forces are
respectively zero, i.e. My, = My = 0. In addition, in our case, in addition to the
tension forces N, acting on the belt, it is necessary to take into account the membrane
tangential forces acting in the normal and longitudinal sections of the tubular
conveyor belt, i.e. Ny # 0; Ny, = Nyy = 0.

Since My, = My = 0, then from the last two equations of system (1) there are
equalities:
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Substituting these equations in the second and third equations (1), then the system
of equations (1) takes the form:
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Differentiating the second equation of system (4) by ¢ and substituting the
obtained equality into the third equation of this system, taking into account the first
equation and equalities (3), after the transformation we get:

2 3 2 2
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Assuming that the tape along the x axis is not stretchable, therefore the tensile
force N, does not depend on x and ¢, i.e. Ny = s = const, then equation (5) after the
transformation takes the form

2 3 2
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where s is the intensity of tensile tensions (s = Sy/B), N/m; S, is tension of the belt, N;
and B is conveyor belt width (B ~ 2nR), m. tension of the belt
According to (2) we have:
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From the last relations we get

o%w
ox2
Let us differentiate equality (7) twice in x and substitute it in (6) taking into

account the fact that M,, = const, i.e. assuming that the longitudinal bending moments
in the belt do not depend on the x coordinate, we obtain

M, =—D(1—v12) +viM,,. (7)
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where Dy = D(l— v12 )
Suppose that the tensile deformation of the cross section of the belt is zero, that is,
&, = 0. Then according to (2) we have
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From the last equality we have
X w. 9)
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Differentiating equality (9) twice in x and substituting it in (8), we obtain the
differential equation for the deflection of the conveyor belt

-0. (10)

Since the belt is not supposed to be deformed in the radial and circumferential
directions, i.e. is clamped, then the boundary conditions take the form:

ow ow
Moo =Wsa, Xlyg OX

where |, is the distance between the rollers, m
Assuming that the tangential stresses acting on the tape from the bulk load, obey
the Amont-Coulomb law, we have

-0, (11)

x=l,

t=f,0. (12)

where fy is the coefficient of friction of the bulk load on the conveyor belt.
Equation (10) in view of (12) we write in the form
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According to [2], when the belt moves along the roller conveyors of the tubular
conveyor, active and passive normal distributed loads, equal to:

Ja = Ry(cos2 @+ msin 2 (chosze + COS(p);
(14)

.2
q, = Ry{cos2 o+0 (PJ(COSZO+ C0SQ),
m

where @, is the active distributed load on the conveyor belt associated with its
compression, N/m?; q, is passive distributed load on the conveyor belt, associated
with its collapse, N/m*; ¢ is the current angular coordinate in the cross section of the
tubular conveyor belt, rad; 0 is the angle that determines the degree of filling with a
bulk load of the cross-section of the ribbon contour, rad (see Fig. 1); m is the
coefficient of mobility of the bulk load, m = 1+2f2— 2f(1+ f2)"? [7]; f is coefficient of
internal friction of bulk load; and y is the bulk density of the bulk load, N/m*;

The average value of the normal distributed load on the belt from the bulk load is
determined by the formula
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q=a . (15)
In the case of an asymmetrical arrangement of the bulk load in the cross section of
the belt, we define g by the known g, and g, separately for two sections of the
circular section of the belt — the left 0 < ¢ < 726, and the right —(n—20,) < ¢ <0,
where 0, and 0, are the degrees of filling of the left and right sides of the belt section,
rad (see Fig. 1).
Substituting (14) into (15) for the left and right halves of the belt section, we
obtain the average values of the distributed normal load g on the conveyor belt on the
part of the bulk load in the form:

2

0,5Ry(c0s26; + coscp)(Zcos2 o+ m +1sin 2 (pJ at 0<op<oq;

q(e) = (16)

2
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where ¢ = 7'[—291; ¢ = —(75—262).
In the case of the absence of friction forces (t = 0), equation (10) takes the form:
o*w o%w
D;—- —2s— —q(p)=0. (17)
. ox? X
Solving equation (17) taking into account the boundary conditions (11), we obtain

the equation of deflections of the tubular conveyor belt without taking into account
the friction forces of the bulk load on the conveyor belt [5]:

) ch{u(l—?xﬂ
_ qly . r /1 40, q(l, _X)X’ (18)
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Similarly, solving equation (10), taking into account the boundary conditions
(11), we obtain the equation of the deflection of the tubular conveyor taking into
account the friction forces of the bulk load on the conveyor belt (t = 0)
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Analysis of formulas (18) and (19) showed that since S, >> D; (u >> 1, u' >> 1),
the first terms in these formulas are an order of magnitude smaller than the second
and can be neglected. As a result of the equation of deflection, the belt will look like

— in the absence of friction forces, i.e. (t = 0):

w=alr =X)xB. (20)
25y,

— in case of presence of friction forces, i.e. (t # 0):

_ Q1(|r4 ;bx)xB | (21)

w

In addition, if we imagine a belt with a load of a tubular conveyor in the form of a
flexible thread loaded with a distributed load, then its deflection is determined by the
formula [7]

W o (I, —x)x

25, ¢2)

where qp is the maximum linear load on the conveyor belt (g, = 7R%y), N/m.

Suppose that the tubular conveyor belt is fully loaded with a bulk load. Then
0:=0,= 0, and the deflection at the lowest point of the tubular belt with ¢ = 0 is
determined by the formula (19), where g = q; = 2Ry.

From the analysis of formulas (20), (21) and (22), it follows that the deflections of
the tubular conveyor belt without considering the friction forces are twice the
deflections of the belt, taking into account the friction forces of the same tubular
conveyor, and the deflections of the tubular conveyor belt taking into account the
friction forces two times more deflections of a flexible thread loaded with the same
distributed load as the tubular belt.

Figure 2 shows the graphs of the deflection of a belt of a tubular belt, loaded as
much as possible with a bulk load in the absence of friction forces, i.e. t =0 (curve
1), and taking into account the friction forces, i.e. T = 0 (curve 2), and deflection of
the thread loaded with the same distributed load as the tubular belt (curve 3), from the
x coordinate (0 < x <1;). The parameters of the belt and the properties of the load took
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the following values: S, =20000 N; R = 025 m; h = 001 m; I, = 1 m;
E=2-10" N/m? y ~ 10.000 N/m°.
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1 — tubular belt without friction; 2 — tubular tape with regard to friction forces; 3 — flexible thread

Figure 2 — Graph of the deflection of the belt on the x coordinate

It can be seen from the graphs (see Fig. 2) that the maximum deflection of the
tubular belt and the flexible thread loaded with the same maximum distributed load is
in the middle of the roller supports, i.e. at x = I,/2.

Based on the results of analytical studies, we will now determine the allowable
distance between the roller supports of the tubular conveyor.

Substituting in (20)—(22) x = I,/2, we obtain the maximum deflections of the tubular
belt and the flexible yarn loaded with the same distributed load as the tubular belt:

— tubular belt without friction

212
TRyl
W = : 23
1max ZSb ( )
— tubular belt taking into account friction forces
212
mRyly
W = : 24
2max 4Sb ( )
— flexible thread
212
TRy,
W = : 25
3max 8Sb ( )

It follows from formulas (23)—(25) that the maximum deflection of a tubular belt,
completely filled with a bulk load, in the absence of friction forces of a bulk load on
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the belt is twice the maximum deflection of the tubular belt, taking into account the
friction forces and four times the maximum deflection flexible yarn loaded with the
same distributed maximum running load as the tubular conveyor belt.

According to [8], the allowable maximum deflection of the belt f4 is in the range
fs=(0.0125+0.025)I, or

fy =Ky, (26)

where k, = 0.0125+-0.025.

Substituting in formulas (23)—(25) instead Of Wimax, Womaxs Wamax fg from
expression (26) and determining from the obtained equalities |, we obtain the
maximum allowable distance between the roller supports for:

— tubular belt without friction

25k
limax = —2p; (27)
Ry

— tubular tape taking into account friction forces

4Sbkp
2max = 5 s (28)
Ry
— flexible thread
88bk
3max — _2p (29)
Ry

Putting S, = 20000 N; R = 0.25 m; y = 10000 N/m?; ko, = 0.025, according to
formulas (27)—(29) we have

IlmaX ~ 05 m; I2maX zllo m; I3maX ~ 21 m.

Conclusions

1. Developed a mathematical model of the stress-strain state filled with a bulk
load belt as it moves along the roller of the tubular conveyor. In this case, the belt is a
thin elastic cylindrical inextensible shell, and the bulk load is in the limit state.

2. Analytical dependences of the deflections of the tubular conveyor belt on the
tension and radius of the belt, its elastic properties, the distance between the roller
supports, and the physic and mechanical properties of the bulk load are obtained. It
was found that the maximum deflection of a tubular belt, completely filled with a
bulk load, in the absence of friction forces of a bulk load on the belt, is twice the
maximum deflection of the tubular belt, taking into account the friction forces, and
four times the maximum deflection of the flexible thread loaded with the same
distributed maximum running load as the tubular conveyor belt.
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3. Based on the obtained dependency, the maximum allowable distance between
the roller supports of the tubular conveyor is determined. It was determined that the
maximum allowable distance between the roller supports is proportional to the
tension of the belt, inversely proportional to the square of the radius of the belt and
the volume weight of the transported load.
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AHoTauisi. CTaTTa CTOCYETHCA BU3HAYEHHS ONTUMAnbHUX NapameTpiB TPyBYacTUX CTPIYKOBKMX KOHBEEPIB, LUO
TPAHCMOPTYIOTb CUMKI BaHTaxi. Meta poGoTW: BWM3HAUMTM AOMYCTWMI BIACTaHi MK ponmkoonopamu TpyByactoro
CTPIYKOBOrO KOHBeepa. B poboTi oTpuMaHo MaTtemaTuyHy MOAEnb HamnpyXeHO-4eOpPMOBAHOr0 CTaHy CTPIYKM
Tpy64acToro KoHBeepa, 3anoBHEHOI CUMKUM BaHTaxeM. CTpiyka pos3rnsafacTbCs K TOHKA MPYXHA HEepo3TskHa
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UuniHapuyHa 060MOHKa, PO3TalioBaHa MiX POMMKOOMOpaMW i 3anOBHEHA CUMKUM BaHTAXEM, LU0 3HAXOAWTbCA B
rpaHuyHOMy cTaHi. MMpu LUboMy Ha OGOMOHKY, 3aMOBHEHY CUMKWM BaHTaXEM, LitOTb PO3NOAINEHI PO3TAryBanbHi Cuim
Y300BX TBIPHOI ODOMOHKM, 3rMHAnNbHI MOMEHTM B MONEPEYHOMY Mepepisi Ta KpyTHUA MOMEHT 3 Goky ponukoonop
HaBKOJIO BiCi CUMETPIi 060MOHKM. 3 BOKY CUMKOro BaHTaXy Ha CTPIUKY KOHBEEpa Ail0Tb aKTUBHI Ta MacyBHI HOPMasbHi
BiuHi TUCKK, SKi 3anexarb Bif CTYNeHs 3aNOBHEHHS CTPIYKM | KyTOBOI KOOPAMHATM TOUOK HOPMATBHOTO NEPETUHY CTPIYKU.
Mpn UbOMY OO CepeauHu NPonbOTYy MiX POMMKOOMOpami Ha CTpiuky 3 GOKy BaHTaxy Ail0Tb aKTMBHI HOpMasbHi
HanpyXeHHsl, a Bi4 CepeanHW NponboTy OO WOro KiHUSA Ha CTpiuky 3 OOKy BaHTaxy Ail0Tb NaCKBHI HOPMAasbHi
HanpyxeHHs. Kpim Toro, 3 GoKy CMMKOro BaHTaxy Ha OBOMOHKYy [Ait0Tb CWUMKM TEPTS BaHTaxy 06 CTpiuKy KOHBeepa,
CNpsSIMOBaHI N0 AOTMYHWM A0 KOna HOpManbHOro nepetuHy oBonoHku. Y cTaTTi nepeabaqacTbes, WO NepeMiLLeHHs
OBOMOHKM Manmi, a TaKoX 3rMHanNbHUMW MOMEHTaMW MOXHA 3HexTyBaTh. B pesynmbraTi OTpUMaHo cuctemy
AvdepeHLianbHIX piBHAHb PiBHOBArK TpyG4YacToi CTPIUKM 3 CUMKM BaHTaXEM BiGHOCHO 3yCUNb i 3rMHANbHUX MOMEHTIB
y CTpiyli, Sika 3Benacs 40 AudepeHLianbHUX PiBHSHL YETBEPTOrO MOPSAKY BiHOCHO MPOTMHIB CTPiYkKM. Ha oCHOBI L€l
MaTeMaTUYHOI MOZeni OTPUMaHO Ta NPOaHani3oBaHO aHaNITUYHI 3aNeXHOCTI MPOrMHIB CTPiYkW TpyG4acToro koHeeepa
Bifl NapameTpiB KoHBEEpa, padiycy Ta BMNacTMBOCTEN CTPIYKM, @ TaKOX BIaCTUBOCTEM CUMKOrO BaHTaxy. B pesynbrari
BM3HAYEHO MaKcMasnbHy 4OMYCTUMY BiACTaHb MiX ponmvkoonopamu TpyByacToro koHseepa. [pyu LbOMy BCTaHOBMEHO,
Lo AONyCTUMa BiACTaHb MiX pOnMKOOnopamu NpsiMo NPONOpLiHa HaTAry CTpiyku Ta 06epHeHo NponopuiiHa keagpaty
pagiycy cTpiyku Ta 06'eMHiN Basi BaHTaxy. Pe3ynbTatn QOCTIDKEHb MOXYTb BYTW BUKOPUCTAHUMW NPU MPOEKTYBaHHI
TPy64aCTVX CTPIYKOBMX KOHBEEPIB, LLO TPAHCNOPTYIOTb CUMKi BaHTaXi.
KntouoBi cnoBa: Tpy6uacTuin CTpiuKOBMIN KOHBEEP, POSIMKOOMOPK, CTPIUKA, CUMKUIA BAHTaX.

AnHoTauua. Cratbsl kacaetcs onpefenieHns OnTUMarnbHbIX NapameTpoB TPy6uaThiX NEHTOYHbIX KOHBEMEPOB,
TPaHCMOPTUPYIOWWX Cchinyyue rpysbl. Llenb paboTbl: onpeaenuts AOMyCTUMbIE PAcCTOSHWS Mexay POonMkoonopamm
Tpy64aTOro NEHTO4HOro KoHeerepa. B pabote nonyyeHa maTemaTtudeckas MOZenb HanNPsKEHHO-4eOPMMPOBAHHOMO
COCTOSIHWS NEHTbI TPYBUATOro KOHBEEPa, 3aNONHEHHOM Chify4M rpy3oM. JleHTa paccMaTpuBaETCs kak TOHKas ynpyras
HepacTsKMas LunuHapudeckas 0bonoyka, pacnonoxeHHas Mexay ponmMkoonopamit U 3anosHEHHAs CbinyyYnM rpy3oM,
HaxoZAWMMCS B NPeAernbHOM COCTOSHUK. [pu aTOM Ha 060MOYKY, 3anOMHEHHYKD CbiMy4ydM [PY30M, LEeNCTBYHOT
pacnpeferneHHble pacTsarvsaiole cunbl BOONMb 0bpasylowen 060rouku, narnbarowme MOMEHTbI B NONEpPeYHOM
CEYEHUM U KPYyTALLME MOMEHTbI CO CTOPOHbI POSIMKOOMOP BOKPYr OCW CUMMETpuM 060noykn. COo CTOPOHBI Chinyyero
rpy3a Ha NeHTy KOHBerepa AEeNCTBYIOT akTUBHbIE U NAaCCKBHble HOpMarbHble HOKOBble AaBNEHNS, KOTOPbIE 3aBUCAT OT
CTeneHn 3anoriHeHUs NEHTLI W YIMOBOM KOOPAMHATBI TOYEK HOPMAribHOMO CEeYeHWs NneHTbl. [pn 9TOM 4O cepeamHbl
nponeTa Mexay porvKoonopamm Ha NEHTY CO CTOPOHbI rpy3a AEUCTBYIOT aKTUBHbIE HOPMarbHble HaMpsKeHus, a oT
cepeauHbl NponeTa 40 ero KOHLa Ha NEHTY CO CTOPOHbI rpy3a AeNCTBYIOT NacCUBHbIE HOPMarbHbIE HAaNpskeHNs. Kpome
TOr0, CO CTOPOHbI ChIMyYero rpysa Ha 060M04Ky AEMCTBYIOT CUMbl TPEHUS MPy3a O NEHTY KOHBEWepa, HanpaBieHHbIe Mo
KacaTenbHbIM K OKPYXXHOCTW HOPMarbHOro ceveHust obonoyku. B cratbe npegnonaraetcs, YTo nepemeLLeHms 06004Km
Masbl, @ TaKkke 13rnbaroLMmm MOMEHTaMN MOXHO NpeHebpeyb. B pesynbTtarte nonyyeHa cuctema anddepeHumancHbIx
YPaBHEHUI paBHOBECKS TPYBYaTON NEHTbI C ChiMyYMM rPY30M OTHOCUTENBHO YCUMNA U N3rMBatoLLMX MOMEHTOB B NEHTE,
KoTopas ceenach K AuddepeHumansHOMy ypaBHEHMIO YETBEPTOrO NOpsiaka OTHOCUTENBHO NPOrboB neHTbl. Ha ocHose
9TON MaTeMaTW4yecKoM MOAENM NoMyyeHbl W NpoaHanu3upoBaHbl aHANWUTUYECKME 3aBUCUMMOCTW NPOrMOOB NEHTHI
Tpyb4aToro KOHBenepa OT NapaMeTpoB KOHBEiepa, padnyca M CBOWCTB NEHTLI, @ TAKKE CBOWCTB Cbimyyero rpysa. B
pesynbTaTe OnNpeaeneHo MakcumarbHoe AoNyCTUMOe PacCcTOsHIE MeXay ponnkoonopamu Tpybuatoro koHeemnepa. Mpu
9TOM YCTaHOBIEHO, YTO AOMYCTUMOE PACCTOSIHUE MEXAY POMMKOONOpamMm NpsiMO NPOMOPLIMOHANBHO HATSXKEHMIO NIEHTbI
1 06paTHO NPOMOPLMOHANEHO KBaapaTy paguyca NeHThl U 00bEMHOMY BecCy rpysa. PesynbTaTel UCCNEA0BaHWA MOTYT
ObITb MCNONb30BaHbI NPK MPOEKTUPOBAHNW TPYBUATLIX NEHTOYHBIX KOHBEMEPOB, TPAHCMOPTUPYIOLLMX ChiNyyme rpy3bl.

KntoueBble cnoBa: TpybuaTbIii EHTOUHBIN KOHBEWEP, PONMMKOONOPEI, NIEHTA, ChIMy4uiA rpy3.
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