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Abstract. Within the framework of a flat model, steady-state modes of motion of a system composed of a platform 

on isotropic elastic-viscous supports, a shaft on a platform, and a pendulum freely mounted on a shaft are investigated. 
The developed methodology was used in the studies, based on the energy method, the theory of bifurcations of motions, 
and the idea of a parametric solution to the problem. All steady-state modes of motion were found. It is established that 
these are modes of the pendulum jamming. Each mode is characterized by a corresponding jamming frequency. 
Depending on the velocity of rotation of the shaft, there may be one or three possible jamming frequencies. When there 
is only one jamming frequency, the corresponding mode of motion is globally asymptotically stable. When there are three 
jamming frequencies, locally asymptotically stable modes with the smallest and highest jamming frequencies of the 
pendulum. The smallest jamming frequency of the pendulum is close to resonance. This mode can be used to excite 
resonant vibrations in vibrating machines. The highest jamming frequency of a pendulum is close to the shaft rotation 
velocity. This mode can be used to excite non-resonant vibrations in vibrating machines. 

 

Introduction. In the mining and oil industries, vibration screens, sieves, mills, 
conveyors, etc. are widely used. Among these vibration machines are the most 
energy-efficient resonant vibration machines. To excite purely resonant vibrations, a 
method based on the use of pendulum, ball or roller auto-balancers as a vibration 
exciter can be used [1]. 

It should be noted that, depending on the parameters of the system, a vibration 
(rotor) machine with an auto-balancer can carry out motion modes corresponding to: 

– auto-balancing or synchronous rotation of weights with the rotor [2]; 
– jamming of pendulums [3], balls (rollers) or pendulums [4, 5], balls [6, 7] at the 

resonant rotor speed (caused by the Sommerfeld effect) 
– parametric and other vibrations of weights relative to the rotor [8]. 
Therefore, the problem arises of the proper selection of the parameters of the 

vibration machine for excitation and ensuring the stability of the resonant modes of 
motion. The analytical solution of such problems is associated with significant 
mathematical difficulties caused by both a large number of different modes of motion 
of the rotor machine [2, 4] and significant nonlinearity of the problems [2-8]. 
Therefore, it is important to develop a methodology for the numerical study of 
steady-state modes of motion of vibrating machines with auto-balancer. Below, such 
a technique is developed using the example of a vibration machine, in which the 
pendulum is freely mounted on a rotating shaft with respect to an elastic-viscous 
fixed platform. 

The aim of research is to develop, using the specified vibration machine, as an 
example, a methodology for studying possible steady-state motion modes and 
assessing their stability. This will allow to solve similar problems for other vibration 
machines, in particular – single-mass and multi-mass, with different kinematics of the 
motion of the vibrating platform. 
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To achieve the aim, the following tasks were set: 
– develop a methodology for the study of the steady-state motions of the 

specified vibration machine; 
– using the methodology, find all the steady-state modes of motion of the 

vibration machine with specific values of its parameters, asses the stability of 
various modes; 

– determine the applicability of various jamming modes of the pendulum to 
excite platform vibrations. 

Methods of searching for all possible steady-state modes of system motion 
and studying their stability. To build a mechanical-mathematical model of a 
mechanical system, elements of the theory of machines with passive auto-
balancer [1-8], classical mechanics [9] are used. 

The equation of the steady-state motions of the system is obtained from the 
application of the energy approach described in [2] on the generalized potential 
and the linear part of the dissipative function. 

The search for all possible modes of pendulum jamming is carried out using 
the results obtained in [5] using a special technique. The occurrence and 
disappearance of various modes of jamming is interpreted from the point of view 
of the theory of bifurcations of motions [10]. According to this theory, the 
pendulum jamming modes can acquire or lose stability only at the points of 
bifurcations of motions. From an energetic point of view, when several jamming 
modes are nucleated, there is a stable mode, in which the potential is brought to 
the least value [2]. Solutions of nonlinear equations are sought in a parametric 
form. 

A research technique has been developed that is verified by specific 
numerical calculations. 

Results and discussion. 
Mechanical-mathematical model of the system.  
Description of the mechanical-mathematical model of the system. 
The dynamics of the system is studied in the framework of a flat model (Fig. 1).  
 

       
a        b 

Figure 1 – A flat model of the system: a – a platform on isotropic elastic-viscous supports;  
b – kinematics of the pendulum motion 
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A platform of mass mpl (kg) is contained by isotropic elastic-viscous supports 

(Fig. 1, a). Stiffness and damping coefficients in the supports – 
s/m).(N~(N/m),~ ⋅bc The platform makes translational motion. An absolutely rigid 

shaft of mass ms (kg) is mounted on the platform. The shaft axis is perpendicular 
to the platform and passes through its center of mass. The shaft rotates relative to 
the platform with a constant angular velocity ω (rad/s). A pendulum is mounted 
on the shaft (Fig. 1, b), which mass is mpn (kg), physical length l (m) and the 
main central axial moment of inertia )( pn

CI  (kg⋅m2). Let’s neglect the forces of 
weight. 

With a stationary system, the center of the shaft, point O is at point K. During the 
motion of the platform, the shaft, point O, deviates from point K, and a restoring 
force and the force of viscous resistance begin to act on the platform. 

To describe the motion of the system, let’s use the following axis systems: 
– KΞΗ – right system of fixed rectangular axes; 
– KXY – right system of moving rectangular axes, which rotates around the axis of 

rotation (point K) with a constant angular velocity Ω (rad/s) synchronously with the 
pendulum; 

– OXOYO – right system of movable rectangular axes, which starts in the center of 
the shaft and parallel to the KXY axis system. 

The rotation angle of the KXY axis system around the point K is Ωt, where t (s) is 
the time. Shaft angle ωt. The position of the pendulum is determined with respect to 
the OXOYO axis system by a constant angle α (rad). When the pendulum rotates 
relative to the shaft, the moment of viscous resistance forces )(~ 2 Ω−ωβl acts on it, 
where β~ (N⋅s/m) – coefficient of viscous resistance forces and )( Ω−ω  – angular 
velocity of rotation of the pendulum relative to the shaft. 

For the investigated system 
 

,pnspl mmmM ++=Σ   Σ=ω Mc /0      (1) 
 

where MΣ (kg) – total system mass, ω0 (rad/s) – resonant rotation velocity of the 
shaft. 

Generalized potential, dissipative function, and equations of steady-state system 
motions 

System potential energy 
2/)(~ 22 yxcV += , (N⋅m).                      (2) 

 

On steady-state motion, the kinetic energy of the shaft and platform is the sum of 
the kinetic energies of the translational motion of the shaft and platform together with 
the center of mass (point O) and the rotation of the shaft around the center of mass 
[9]: 
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,2/2/))(( 2)(222
, ω+Ω++= s

Osplspl IyxmmT  (N⋅m),               (3) 
 

where ( )s
OI  (kg⋅m2) – axial moment of inertia of the shaft relative to the longitudinal 

axis. 
On steady-state motion, the pendulum stops moving relative to the moving axes. 

Its kinetic energy can be represented as 
 

( ) 2/2Ω= pn
Kb IT ,  (N⋅m),       (4) 

 

where ( )pn
KI  (kg⋅m2) – axial moment of inertia of the pendulum relative to point K. 

In turn 
 

[ ]=α++α++= 22)()( )sin()cos( lylxmII pn
pn

C
pn

K  

[ ],sin2cos2)( 22)( α+α+++= ylxlyxmI pn
pn

O                     (5) 
 

where 2)()( lmII pn
pn

C
pn

O +=  (kg⋅m2) – axial moment of inertia of the pendulum 
relative to point O. 

Thus, the kinetic energy of the system in steady-state motion 
 

=+= pnspl TTT ,0  

[ ] .2/)sincos(22/2/)( 2)(2)(222 Ωα+α++ω+Ω+= Σ ylxlmIIyxM pl
pn

O
s

O (6) 
 

The generalized potential (let’s omit the constant ( ) 2/2ωs
OI ): 

 

[ ] m).(N,2/)sincos(22/))(( 2)(222
0 ⋅Ωα+α+−+Ω−=−=Π Σ  ylxlmIyxMcTV pl

pn
O  (7) 

 

Dissipative function  
 

[ ] m/s).(N,2/)(2/)()( 2222 ⋅α−Ω−ωβ+Ω++Ω−=  lxyyxbD        (8) 
 

Component linear with respect to generalized velocities 
 

   m/s).(N,)()( 2
1 ⋅αΩ−ωβ−+−Ω=  lxyyxbD                         (9) 

 

The equations of stationary motions of a mechanical system have the form [2] 
 

,0)~cos~~sin~()(~//~ 22
1 =α−αΩ+ω−Ωβ=α∂∂+α∂Π∂= yxlmlDL pl  

,0~cos~~~)~(//~ 22
1 =αΩ−Ω−Ω−=∂∂+∂Π∂= Σ lmybxMcxDxL plx   

.0~sin~~~)~(//~ 22
1 =αΩ−Ω−Ω−=∂∂+∂Π∂= Σ lmxbyMcyDyL ply         (10) 
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The statement of the problem of studying the steady-state modes of motion of the 
system in a dimensionless form 

Let’s introduce dimensionless time, variables, and parameters 
 

,tΩ=τ ,
l
xu = ,

l
yv = ,

0ω
ω

=n ,
~

0ω
β

=β
plm

,
0ω
Ω

=v ,
~

0 Σω
=

M
bb .

Σ
=ε

M
m pl   (11) 

 

From (10) let’s obtain the following dimensionless equations of stationary 
motions 

 

,0)~cos~~sin~()(~ 2)0( =αν−α+−β= uvnvL  
,0~cos~)1(~ 22)0( =αε−ν−ν−= vbvuLu  .0~sin~~)1( 22)0( =αε−+ν−= vubvvLv   (12) 

 
Dimensional generalized potential in steady-state motion 
 

[ ] ,2/)sin~cos~(2~2/)~~)(1()/( 2)(2222* vuIvuvcl pn
O αν+αε+−+−=Π=Π  (13) 

where 
./)/()/(~ 222)()(

ΣΣΣ === MmlMlmlMII pn
pn

O
pn

O pn
          (14) 

 

From the last two equations in (12) let’s find 
 

,~)1(~~cos 22 ν−−=αε bvvuv .~~)1(~sin 22 ubvvv +ν−=αε    (15) 
 

Substituting this into (7), let’s obtain the dimensionless reduced generalized 
potential 

.2/~2/)~~)(1(~ 2)(222* vIuv pn
O−ν+−−=Π                        (16) 

 

It is more convenient to use the potential *~
Π  for assessing the stability of various 

steady-state modes of motion, because it does not depend on an undefined parameter 
α~  unlike *Π  

Let’s introduce the angle ϑ
~

 between the vector KO  (the shaft displacement vector) 
and the X axis. Then 

 

,~/~~cos pu=ϑ ,~/~~sin pν=ϑ ,~~~ 22 ν+=ρ u      (17) 
 

and the equations of steady-state motions (12) are transformed into: 
 

,0~sin~)(~ 2)0( =ϕρ−−β= vnvL  

,0~cos~~)1(~~~~ 222)0()0( =ϕρε−ρ−=ν+ vvLLu vu ,0~sin~~~~~~ 22)0()0( =ϕρε+ρ=− vvbLvLu vu (18) 
 

where 
 

.~~~ α−ϑ=ϕ           (19) 
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The resulting system of three nonlinear equations with respect to three unknowns 
,ρ  ν, .ϕ  System (18), up to the notation, coincided with the equations obtained in [5] 

for a balanced rotor with isotropic bearings, on which shaft a pendulum is mounted. 
Therefore, in the future let’s use the results of this work. 

Study of steady-state motions of the system. 
Formal solution to the problem. 
According to the results of [5], there is no mode of motions on which the 

pendulum rotates synchronously with the shaft in the considered vibration machine. 
The machine has only modes in which the pendulum is behind the shaft. 

The system of equations (18) is solved as follows [5]. From polynomial 
 

[ ] ,0)1()()( 54
2

3
3

2
4

1
5

0
22225 =+++++=+−−−χ= avavavavavavbvvnvvP (20) 

 
where  
 

,/βε=χ b ,10 χ+=a  ,1 na −=  ),2( 2
2 ba −−=  ),2( 2

3 bna −=   ,14 =a  .5 na −=  (21) 
 

the frequencies ,iv at which the pendulum is jamming are determined. The 
polynomial is easier to solve in parametric form: 
 

[ ] ).,0(,)1(/)( 22225 +∞∈+−χ+= vvbvvvvn                      (22) 
 

Then, for a particular pendulum jamming frequency, 
 

,)1(/)/()(~ 22222




 +−χβ=−εβ=ρ vbvbvvbvn  





>γπ−γ
≤γγ

=ϕ
,0,

;0,~  ,
1

arctan
2 









−
=γ

v
bv ,~~~ ϕ−ϑ=α  ,~cos~~ ϑρ=u  .~sin~~ ϑρ=v      (23) 

 

Taking into account (17), (23), the generalized potential (16) is calculated by the 
formula 

 

[ ]{ } .2/~)1(2/)1(~ 2)(222224222* vIvbvbvv pn
O−+−χβ−−=Π       (24) 

 

Let’s note that the values  vu ~,~,~α  are calculated for a specific (but any) value of 
the parameter ϑ. 

Numerical studies of system performance. 
Let’s consider the dimensionless angular velocity of rotation of the shaft n as a 

bifurcation parameter. As n changes from 0 to +∞, the roots of equation (20) will 
change. Let’s look for the real roots and bifurcation angular velocities of rotation of 
the shaft (in which various modes of jamming arise or disappear). 

Since it is difficult to find the roots of the fifth polynomial, let’s solve the problem 
parametrically. According to the parameter, let’s take the frequency of the pendulum 
jamming. Then the solution of equation (20) in parametric form has the form (22). 
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In Figure 2, a graph of the function n(ν) is constructed in the (n, ν) plane for a 
different ratio of smallness between the parameters χ and b [5]. 

Figure 2 shows that when χ~1, b<<1 or χ<<1, b<<1 in the system, depending on 
the rotation velocity of the shaft, there are one or three possible frequencies of 
jamming of the pendulum. At b~1 in the system, there is the only possible frequency 
for the jamming of the pendulum close to the shaft rotation velocity. 

 

 
– ⋅ – χ~1, b<<1; – – b~1 (∀χ); ––– χ<<1, b<<1 

Figure 2 – The dependence of the number and conditions for the existence of frequencies of a 
jammed pendulum on the ratio of smallness between the parameters χ and b 

 
In the future, let’s consider the case of small viscous drag forces in the supports 

[5]. Let’s introduce for this case two bifurcation velocities of rotation of the shaft. 
The number of possible frequencies of the jamming of the pendulum changes in the 
case of their transition. At the same time 211 nn <<<  and at shaft velocities: 

– less than 1n  )0( 1nn << there is a unique jamming frequency ν1, with 0 < ν1 < 1; 
– exceeding 1n  but less then 2n  )( 21 nnn << there are three jamming frequencies 

ν1, 2, 3, such that 0 < ν1 < ν2 < ν3 < n (and always 1 < ν2< ν3); 
– exceeding 2n  ),( 2nn >  there is a single jamming frequency ν3, such that  

1 << ν3 < n. 
At point n1, the jamming modes ν2 and ν3 appear, and at point n2, the jamming 

modes ν1 and ν2 disappear (through merging). According to the theory of bifurcations 
of motions, various modes of jamming can acquire or lose stability only when 
passing through the points of bifurcations of motions [10]. When several motions 
arise, only the one on which the reduced potential is the least can be stable [2]. 

Figure 2 shows that in a critical case (nucleation or fusion of various jamming 
modes) 

[ ] ,0)1(/)(/)(
22222 =+−= vbvvFdvvdn  

where 
 

[ ] .1)2(232)2()32)(2()1()( 22422628 +−−χ++−+χ+−−χ+= vbvbvbvvF (25) 
 

The carried out studies allow to conclude that the excitation of resonant 
oscillations is possible only in the case of small external and internal resistance 
forces. 
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Calculation algorithm for studying the quantity, conditions of existence and 
stability of various modes of pendulum jamming. 

The results obtained with a qualitative assessment of the behavior of the system 
allow to develop such a computational algorithm. 

1. The critical frequencies of jamming of the load are determined from the 
equation .0)( =vF  From the graphs in Figure 2 shows that there are two such 
frequencies: .:, 1221 cccc vvvv >  

2. Using the formula (22), two bifurcation angular rotational velocities of the rotor 
are determined .:/2,1/),( 21 nnivnn cii <==  

3. For each jamming mode, according to formula (22), the corresponding rotor 
velocities are calculated in parametric form 

 
),()(1 vnvn = [ ];,0 1cvv∈ ),()(2 vnvn = [ ];, 21 cc vvv∈ ),()(3 vnvn = [ ).,2 +∞∈ cvv    (26) 

 
Based on the results of calculations in the (n,ν) plane, graphs /3,2,1/),),(( 1 =ivvn  

are constructed. 
4. For each jamming mode, according to formula (26), the corresponding 

vibration amplitudes are calculated in a parametric form 
 

),()(1 vv ρ=ρ [ ];,0 1cvv∈ ),()(2 vv ρ=ρ [ ];, 21 cc vvv∈ ),()(3 vv ρ=ρ [ ).,2 +∞∈ cvv   (27) 
 
Based on the results of calculations in the (n,ρ) plane, graphs 

/3,2,1/)),(),(( =ρ ivvn ii  are constructed. 
5. For each jamming mode, according to formula (22), the corresponding values 

of the reduced potential are calculated in parametric form 
 

),(~)( *
1 vv Π=Π [ ];,0 1cvv∈ ),(~)( *

2 vv Π=Π [ ];, 21 cc vvv∈  
),(~)( *

3 vv Π=Π [ ).,2 +∞∈ cvv                                       (28) 
 
Based on the results of calculations in the (n,Π) plane, graphs /3,2,1/)),(),(( =Π ivvn ii  

are constructed. Based on these graphs, the stability of various modes of vibration 
machine motion is estimated. 

Computational experiment. 
Calculations are carried out for the following values of dimensional parameters: 
 

kg;04.0=plm m;1.0=l N/m;10000=c kg;96.3=M  

s/m;N10~
⋅=b .s/mN05.0~ ⋅=β  

 
They correspond to the following values of dimensionless parameters 
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;05.0=b ;025.0=β ;01.0=ε ;02.0/ =βε=χ b .01.0~ )( =pn
OI  

 
Bifurcation shaft rotational velocities and corresponding jamming velocities 
 

,440.11 =n ;242.11 =cv ,012.92 =n .001.12 =cv  
 
Figure 3 shows graphs of the angular velocities of the pendulum jamming (Fig. 3, 

a), the oscillation amplitudes of the platform (Fig. 3, b), and the generalized potential 
(Fig. 3, c). 

 

 
a 

 
b 

 
c 
 

Figure 3 – Bifurcation diagrams of motions constructed by: a – angular velocity of the pendulum 
jamming; b – amplitude of the oscillations of the platform; c – generalized (reduced) potential 
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Stability or instability of jamming modes is determined by the graph of the 

reduced potential constructed for various jamming modes (Fig. 3, c). The dotted line 
shows the second jamming mode, which is always unstable. 

Since no other steady-state modes of system motion are found, then for the system 
under consideration it is possible to construct a complete bifurcation diagram in 
which the shaft rotation velocity is selected by the bifurcation parameter. 

Such a diagram can be represented in the form of graphs depicted in Figure 3a, 
Figure 3b or Figure 3, c. But only according to Figure 3, it is possible to determine 
that in the range of angular velocities of rotation of the shaft: 

1) (0, n1) jamming mode ν1 is globally asymptotically stable; 
2) (n1, n2) jamming modes ν1, ν3 are locally asymptotically stable, and jamming 

mode ν2 is unstable; 
3) (n2, +∞) jamming mode ν3 is globally asymptotically stable. 
Discussion. The conducted studies show the effectiveness of the developed 

methodology for studying the modes of jamming of pendulums (balls, rollers) in 
systems similar to this one. The technique is based on the energy method, the theory 
of bifurcations of motions, and the idea of a parametric solution to the problem. 

Application of the technique to a specific mechanical system shows that the 
system has only such steady-state modes of motion in which the pendulum rotates 
around the longitudinal axis of the shaft with a constant angular velocity and lags 
behind the shaft. In this case, there are two bifurcation velocities of shaft rotation 

1 2,n n , and they are of the resonance ).1( 21 nn <<<  At shaft velocities: 
– less than 1n  ),0( 1nn << there is a unique jamming frequency ν1, with 0<ν1<1; 
– exceeding ,1n but less then 2n  ),( 21 nnn << there are three jamming frequencies 

ν1, 2, 3, such that 0<ν1<ν2<ν3<n (and always 1<ν2<ν3); 
– exceeding 2n  ),( 2nn > there is a single jamming frequency ν3, such that 1<<ν3<n; 
– in the range of angular velocities of shaft rotation (0, n1), the jamming mode ν1 

is globally asymptotically stable; 
– in the range of angular velocities of shaft rotation (n1, n2), the jamming modes 

ν1, ν3 are locally asymptotically stable, and what mode is established depends on the 
initial conditions, and the jamming mode ν2 is unstable; 

– in the range of angular velocities of shaft rotation (n2, +∞), the jamming mode 
ν3 is globally asymptotically stable. 

The smallest angular velocity of the pendulum jamming is close to resonance. 
Therefore, the corresponding jamming mode of the pendulum can be used to excite 
resonant vibrations in vibrating machines. The highest frequency of a pendulum 
jamming is close to the shaft rotation velocity. This mode can be used to excite non-
resonant vibrations in vibration machines. 

It should be noted that the developed technique is applicable only in the case of 
isotropic supports. 

In the future, it is planned to investigate the existing modes of motion of two-
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mass and three-mass resonant vibration machines with a vibration exciter in the form 
of a pendulum. 

Conclusions. 
1. The conducted studies show the effectiveness of the developed methodology 

for studying the jamming modes of pendulums (balls, rollers) in systems similar to 
this one. The technique is based on the energy method, the theory of bifurcations of 
motions, and the idea of a parametric solution to the problem. 

2. Using the methodology for a particular system, all steady-state modes of 
motion are found in which the pendulum rotates at a constant angular velocity. It is 
established that these are modes of the pendulum jamming. 

Depending on the shaft rotation velocity, there may be one or three possible 
velocities of the pendulum jamming. When there is only one angular velocity, the 
pendulum is jammed, the corresponding mode of motion is globally asymptotically 
stable. When there are three jamming velocities, locally asymptotically stable modes 
with the smallest and highest jamming velocities of the pendulum. 

3. The jamming mode of the pendulum with the lowest angular velocity (close to 
the resonant) can be used to excite resonant vibrations in vibration machines. The 
highest frequency of a pendulum jamming is close to the shaft rotation velocity. This 
mode can be used to excite non-resonant vibrations in vibration machines. 

________________________________ 
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