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Abstract. The geoelectrical tomography survey was carried out to explore and characterize a (Zn-Pb-Ag) sulphide
deposit in Nash Creek (NC), New Brunswick province, Canada. The exploration strategy has been conducted by the 2-D
survey for a well-cut grid consisting of twelve surface lines (profiles) each around 2 km long, and 300 m apart, for the
total area around 9.5 km2, The datasets (resistivity and induced polarization) were acquired using the Iris EI-Rec Pro
system with pole-dipole electrodes array spaced 50 m apart, and ten levels of data datum. The results of the 2-D
inversion revealed that the underground resistivity and chargeability values in the exploration area have a range of (5 to
1300 Qm) and (0-9.5 mV/V), respectively. The sulphide mineralization zones in the exploration area are characterized
by moderate resistivity values (150-300 Qm) and moderate to low chargeability values (>5.5 mV/V), with a depth of
around (90-140 m) from the surface. The 3-D visualization model clearly reveals that three main zones of sulphide
mineralization are present in the exploration area. The predicted geological reserve of the sulphide ore in the exploration
area was calculated. The inverted models revealed a good agreement with the existing geological features in the
exploration area.

Introduction. Exploring underground minerals on the surface is a significant
challenge. Because of the mineral deposits are usually existed in geologically
complex formations and associated with the host rocks, so it is hard to distinguish.
Especially, to identify mineralization zones with a low-grade ore. One of the
geophysical techniques that can be applied effectively for that is the geoelectrical
technique (DCIP) (direct current (DC) resistivity and induced polarization (IP)) [1-
3]. This technique produces two parameters, namely resistivity and chargeability,
which quite well distinguishes the mineral deposit content in rocks [4-6]. The DCIP
technique has demonstrated to be a useful and effective tool in the exploration of
mineral resources (metallic and non-metallic) [7-10]. Especially, the IP method is
widely used for mineral exploration because it is the only geophysical technique that
has the ability to discriminate conductive or semi-conductive minerals disseminated
in high electrical resistivity background (host rock) [11-14].

In this work, we present the results of the 2-D geoelectrical survey from the Nash
Creek (NC) (Zn-Pb-Ag) sulphide deposit. The NC deposit is found along the western
edge of the Jacquet River Graben in NE New Brunswick province, Canada. The
metal sulphides are considered as the most important group of ore minerals for most
of the world supplies of non-ferrous metals [15]. The sulphide mineralized
environments are described by strong clay alterations and carbonization [16]. At the
study area, widespread brecciation units and alteration zones (associated typically
with a pyrite-rich accumulation) pose a problem for traditional electromagnetic
exploration methods where low-grade sulphides are imbedded in laterally wide
alteration envelopes [17, 18].

In order to produce proper exploration methodology for the NC deposit, the DCIP
datasets were acquired using the Iris EI-Rec Pro system with a pole-dipole electrodes
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array to find out the distribution of mineralized zones and underground formation
description of the massive sulphide deposits based on resistivity and chargeability values.
The DCIP datasets of this survey have been described and analysed using RES2DINV
ver. 4.8.10 software trial version of the 2-D inversion carried out based on the finite
element method [19, 20]. Also, the 3-D view of the inverted datasets was carried out to
assist in the interpretation, using Golden Software VVoxler 4.

Inversion results have confirmed to provide the accurate spatial agreement of the
information collected by the DCIP survey; this makes the geoelectrical tomography a
valuable exploration tool for mineral exploration even with low-grade ores. The inverted
models revealed a good agreement with the existing geological features in the exploration
area. The study recommends that if pre-existing information regarding the geological
environment is available, then geoelectrical tomography data (resistivity and
changeability) can be a helpful and fascinating mixture for mineral exploration.

Location and Geology. The NC area is found along the western edge of the Jacquet
River Graben in NE New Brunswick province, Canada, in Figure 1-a.
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Figure 1 — Approximate location of the Nash Creek area and distribution of the major rock units
in the area [17]
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The study area location is 5.6 km from NC, with Latitude: 47.876695° East and
Longitude: -66.113468° North. The geology of the study area is mostly underlain by the
"Lower Devonian" sequence of the "Dalhousie Group”, within the CB "Chaleur Bay
Synclinorium” belt containing sedimentary and volcanic rocks (breccias, limestones,
siltstones, volcanic mafic flows, tuffs, rhyolites, and pillow lavas) [17, 21]. The
sedimentary and volcanic rocks were deposited in the half-graben, which is fault-confined
to the west [22]. Locally, the prospective "Dalhousie Groups" is covered mainly by
Carboniferous rocks. NC sulphide mineralization is hosted within the bi-modal volcanic-
sedimentary sequence in the half-graben. In general, the different lithologic units at NC
can be divided into three main rock types: mafic rock, felsic rock, and sedimentary rock
[23-25].

In general, the NC area comprised of two main zones called the "Hickey Zone",
located to the north and the "Hayes Zone", located to the south. Our study area mainly
located in "Hickey Zone". The mineralization occurs near to the surface in the "Hickey
Zone". It extended for approximately 2.1 km along strike and interpreted as a series of
vertically stacked horizons [26]. Sulphide mineralization deposit intersected by drilling at
NC includes sphalerite, galena, pyrite, and rarely chalcopyrite. Ag grades are moderately
well correlated with the (Zn-Pb) sulphides. In general, the signature of the mineral deposit
distribution indicates an increase in assay from the northern range of the "Hickey Zone"
southwards to the "Hayes Zone". Drilling program showed mineralization deposit had
been intercepted from the surface to down a maximum depth of around 150 m at the
"Hickey Zone" [27].

Materials and Methods.

Theory of geoelectrical survey. Geoelectrical tomography consists of injecting a DC
along the survey lines, through two grounded electrodes (A, B) and two other electrodes
for measuring the resulting voltage (M, N), as shown in Figure 2. The form of quadrupole
A-B-M-N is a variety depends on the order of each electrode and the distance between
them. For each form, has a geometrical factor (K), and the apparent resistivity (p,) is

calculated from Equation 1. An accessible and convenient means to present the results of
the measurements of the survey at a profile is a 2-D "pseudo-section™ draw, which is
produced by placing each p, measurement at a mid-point of the electrode array

(horizontal axis) and a pseudo- depth (vertical axis), as shown in Figure 3 [28].

AV
Pa= kT (1)
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(M, N) respectively; AV is the measured difference potential at points M and N; 7 is the
applied electric current.
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Figure 3 — Arrangement of the model blocks and the measured data points of a pseudo-section

For IP time-domain consists of measuring the potential decay with the time after
switch-off the transmitted current to get the apparent chargeability (M,), which is a
measure of the strength of the IP effect, as shown in Figure 4. Therefore, IP
measurement of chargeability represents the integrated area under a chosen portion of
the decay potential curve (Vy), as shown in Figure 3 and Equation 2 [29]. The
potential decay is always measured for positive and negative polarities to cancel DC
effects due to self-potential and natural telluric currents.

1%

Ma = [VsOdt, o)
Pt
1

where V, is the primary voltage, V, represents secondary voltage, and V; is the
voltage decay with a time interval between t; and t,.
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Figure 4 — Time Domain IP Waveform

Field survey and processing. To explore and map the mineralization zones in the
study area, the surveying has been conducted by the geoelectrical tomography 2-D
survey for a well-cut grid consisting of twelve surface lines (profiles) each around 2
km long, and 300 m apart and the total area around 9.5 km?, as shown in Figure 5.

Figure 5 — Map of the survey profiles

The datasets (resistivity and IP values) were acquired using the Iris EI-Rec Pro
system includes the use of a multi-electrode cable, to which the different number of
steel electrodes were used according to the length of the line with pole-dipole
electrodes array spaced 50 m apart, and ten levels of data datum as shown in Figure
3. The grid (array spacing) was set to minimize topography alterations. The
guadrupole electrode configuration is pole-dipole form was chosen for this surveying



8 ISSN 1607-4556 (Print), ISSN 2309-6004 (Online) I'eotexHiuna mexanika. 2020. No 154

since it is able to a deep depth of exploration and excellent image resolution,
combined with a rapid survey speed, in Figure 2 [30-32]. Moreover, a literature
search revealed that the pole-dipole form strategy had been applied very successfully
in the past investigations of many mineral deposits [31, 33, 34]. For more details
about using Pole-dipole array, you can see, for instance, [35-40]. The GPS-data of
each electrode of the survey lines was measured by handheld Garmin GPS £ 5 m
accuracy and 10 m accuracy for the elevation, to consider a topographic effect on
the inversion processes.

For processing and inversion, the data of each line, we used the RES2DINV
inversion modelling ver. 4.8.10 software trial version of the 2-D inversion carried out
based on the finite element method developed by [19, 20]. Resistivity and
chargeability models were generated by the Robust inversion method based on the
least-squares theory. In addition, the inversion was done taking into account adjusting
the topography to reduce its effect on the calculated resistivity. The 3-D visualize
data modelling was done using Golden Software VVoxler 4 trial version.

Results and Discussion. The geoelectrical data were displayed based on
resistivity and chargeability values resulted from the inverse process using Res2DInv.
According to the inversion results, the resistivity values ranged from (5-1300 Q.m)
and chargeability values ranged from (0-9.5 mV/V). Thus, based on these results and
geological information in the study area, the mineralization zones appeared at the
medium resistivity and the highest chargeability values because most of the survey
lines lie mainly in mafic volcanic rocks, as shown in Figure 1. The zones dominated
by high chargeability and low resistivity values point to the occurrence of highly
polarized materials. This feature confirms the existence of a zone enriched in
sulphide deposits [41].

The previous petrophysical investigations revealed that high-grade sulphides are
embedded in pyroclastic units, laterally extensive alteration envelopes while low-
grade sulphides are embedded in flow banded Rhyolite units, as shown in Figure 6-a
[22]. For that, the mineralization zones appear with moderate resistivity and low
chargeability values. The inversion results have been interpreted by correlating with
the boreholes logging, as shown in Figure 6-b. According to this correlation in the
study area, the sulphide mineralization zones are characterized by moderate
resistivity values (150-300 Q.m) and the highest chargeability values (> 5.5 mV/V).
The mineralization zones appear at a depth of around (90-140 m) from the surface.
The low chargeability values indicate that most of the sulphide deposit within the
explore area is medium to low-grade. This result completely agreed with the
geological studies that indicated that the mineral sulphide grade is low in "Hickey
Zone", as mentioned above.

In Figures 7-12, the mineralized zone in profile 1 appears at a depth of around
110 m to 130 m from surface, with resistivity values (150-350 Qm) and chargeability
(* 5.5 mV/V), as shown in the marked zone with a dashed line.
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Figure 6 — a) Density log and assay (%Zn +Pb) data from one example of the boreholes surveyed
[22], b) The correlation of the resistivity and chargeability values with boreholes logging
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Figure 7 — 2-D inversion results of resistivity and chargeability for profile 1

The low chargeability value in this profile indicates that the sulphide deposit is a
low grade. In addition, the short of the mineralization zone extent indicates that the
deposit occurrence is weak along to this profile. From profile 2 to profile 4, the
mineralization zone appears at a shallow depth, approximately near to the surface
with a low grade and a short extent along to the profiles. In contrast to profiles 5 and
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6, the mineralization zone appears at a relatively higher depth and with higher grade
and extent than previous profiles.
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Figure 8 — 2-D inversion results of resistivity and chargeability for profile 2
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Figure 9 — 2-D inversion results of resistivity and chargeability for profile 3
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Figure 10 — 2-D inversion results of resistivity and chargeability for profile 4
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Figure 11 — 2-D inversion results of resistivity and chargeability for profile 5.
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In Figures 13-18, the mineralization zone appears again at a relatively shallow
depth and with a low grade and a medium extent along to profiles 7 to 9. While in
profiles 10 to 12, the mineralization zone appears at a relatively higher depth and
with higher grade and extent than previous profiles. In general, the boundaries around
the mineralized zones in the chargeability profiles are more clear than the resistivity
profiles, because of the ability of the IP method for mineral discrimination than other
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Figure 12 — 2-D inversion results of resistivity and chargeability for profile 6

geophysical methods [42-44].
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Figure 13 — 2-D inversion results of resistivity and chargeability for profile 7
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Figure 14 — 2-D inversion results of resistivity and chargeability for profile 8
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Figure 15 — 2-D inversion results of resistivity and chargeability for profile 9
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Figure 16 — 2-D inversion results of resistivity and chargeability for profile 10
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Figure 17 — 2-D inversion results of resistivity and chargeability for profile 11
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Figure 18 — 2-D inversion results of resistivity and chargeability for profile 12

The results of 2-D inversion were visualized in a 3-D model using Golden
Software Voxler 4 visualization modelling, to remove the ambiguity somewhat. The
cut-off values of the model are (150-300 Q.m) and (> 5.5 mV/V) for the resistivity
and chargeability, respectively. The model clearly reveals that three main zones of
sulphide mineralization are present in the exploration area, as shown in Figure 19.
The total volume of these zones is 3536250 m® calculated by the Voxler software.
The average density of the NC (Zn-Pb-Ag) sulphide ore is approximately 3.0 g/cm?®,
according to the result of the petrophysical study done by [22]. From the volume and
density of the sulphide ore, the predicted geological reserve of the sulphide ore is
10.61 million tons.

Figure 19 — 3-D visualization model of the occurrence of sulphide mineralization zones
in the exploration area
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Conclusions. The geoelectrical tomography survey and 2-D inversion result
revealed that the underground resistivity and chargeability values in the exploration
area have a range of (5 to 1300 Qm) and (0-9.5 mV/V) respectively. The sulphide
mineralization zones in the exploration area are characterized by moderate resistivity
values (150-300 Qm) and moderate to low chargeability values (> 5.5 mV/V). The 3-
D visualization model clearly reveals that three main zones of sulphide mineralization
are present in the exploration area. The predicted geological reserve of the sulphide
ore in exploration area was calculated. The inverted models revealed a good
agreement with the existing geological features in the exploration area. The study
recommends that if pre-existing information regarding the geological environment is
available, then geoelectrical tomography data (resistivity and changeability) can be a
helpful and fascinating mixture for mineral exploration.
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