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Abstract. The Volmer diffusion coefficient of methane adsorbed in the micropores of coal in the elastic zone of the 

coal seam bearing pressure, which normally is under conditions of significant compressive stress, was calculated with 
taking into account the energy of the methane sorption connection with coal, the energy of Volmer diffusion activation in 
the porous space of coal, and the stressed state of the elastic zone with its influence on the change of Volmer porosity. 
During the calculations, such parameters as the diameter of Volmer micropores and the length of the descending branch 
of the bearing pressure diagram were varied. As a result of the approximation of these calculations, both pairwise depend-
ences of the Volmer diffusion coefficient on the listed parameters and its multifactorial relationship with them were estab-
lished. Therefore, it is concluded that the process of methane diffusion in the elastic zone of bearing pressure is not 
blocked by the rock pressure, as previously thought, but is actively developing. The diffusion of free methane will be 
determined by the established regularity of changes in the Volmer diffusion coefficient in the elastic zone of the coal seam 
bearing pressure. The calculations show that as the distance from the maximum of the bearing pressure increases, the 
Volmer diffusion coefficient of methane in the coal seam increases, which is due to a decrease in the pressure of rocks in 
the descending branch of the bearing pressure diagram. However, this growth is not great due to the weak compressibility 
of pores. Therefore, for pores of the same diameter, the Volmer diffusion coefficient in the elastic zone of the coal seam 
bearing pressure for the given mining geological conditions can be considered a constant. For depths of, for example, 
1000 m and pore diameters of 10 Å, the value of the Volmer diffusion coefficient will be approximately 3.77·10-8 m2/s. This 
confirms that methane gas release is caused not only by filtration of free gas, but also by Volmer diffusion of adsorbed 
methane. In turn, the reserves of the latter are known to be the main reserves of methane in coal. Therefore, the estab-
lished regularity makes it possible to more accurately calculate the volumes of methane, which will be released from the 
coal massif during mining operations, in order to assess safety of conditions for coal deposits mining and to develop 
technologies for coal mine methane production. 

Keywords: adsorbed methane, microstructure of a coal seam, Volmer pores, area of bearing pressure, elastic zone, 
Volmer diffusion coefficient. 

 
1. Introduction 

Today, when developing the highly efficient technologies for coal and CMM pro-
duction, the main live task is to establish the regularities of diffusion-filtration flows 
of methane mass transfer in the coal massif. At the same time, one of the most im-
portant areas in the carbon-based massif during mining operations is an elastic area of 
the bearing pressure, which determines the volumes and regularities of methane re-
lease into the mined-out space of the mining massif. For many years, it was believed 
that since this zone was under significant mining pressure, the mass transfer of me-
thane was blocked in it, a priori, due to the compression mechanism of the coal struc-
ture deformation. However, the data of recent studies have shown that the mechanism 
of methane mass transfer in the elastic zone of the bearing pressure is more compli-
cated due to the diversity of the hierarchical structure of coal [1, 2], which causes dif-
ferent types of diffusion in the coal seam, in particular, Volmer diffusion [3]. The lat-
ter is important because it connects solid-state diffusion [4] with the diffusion of free 
methane. Besides, it overcomes the forces of interphase interaction between methane 
and coal, which are important factor for gas-dynamic phenomena development in the 
mining massif. Therefore, the purpose of this work was to investigate the change in 
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the Volmer diffusion coefficient of methane desorbed from the microsorption struc-
ture of the elastic zone of the coal seam - from the maximum bearing pressure to the 
virgin massif during mining operations.  

The purpose of the work - to establish the regularity of changes in the Volmer dif-
fusion coefficient of methane in the microsorption structure of the elastic zone of the 
coal seam bearing pressure. 

 
2. Methods 

It is known that the hierarchical microstructure of the coal medium, which forms 
various desorption channels in itself, can be represented by the scheme shown in Fig-
ure 1. With taking into account this scheme, the process of methane desorption during 
the gas release from the coal medium will proceed in the following way. Since the 
main volumes of adsorbed methane are located in the micropores of coal, its gas re-
lease will be directed to the area of the lowest sorption pressure. That is, in the initial 
period, desorption is directed to supermicropores and mesopores (Fig. 1) according to 
the law of solid-state diffusion. Further, this process will develop towards the inter-
layer space according to the law of Vollmer diffusion. Free diffusion will take place 
in the interlayer space, and free methane filtration will take place in the macrocracks 
(Fig. 1). 

 

 
 

1 – methane molecule; 2 – micropore wall; 3 – supermicropores and mesopores, where Volmer dif-
fusion takes place; 4 – interlayer space; 5 – macrocrack 

 
Figure 1 – The scheme of desorption channels during methane gas release from the hierarchical 

structure of the coal medium 
 
Beyond the zone of maximum bearing pressure, the Volmer pores will be com-

pressed. The dimensions of these pores depend on the stress state in this zone. The 
diameter of the Volmer pores can be determined from the ratio [5]: 
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where df0 is the diameter of the Volmer pore in the undisturbed coal massif; Hi γεε ',  is 
the porosity of coal in the unloaded and loaded massif, respectively, at a depth H in 
rocks with specific gravity – γ (N/m2). The latter are described by exponential func-
tions presented in [6]. 

As the calculations by formula (1) show, diameters of the Volmer pores in the 
zone of the bearing pressure vary within (12–8) m. At the same time, according to 
[1], the main parameters, which describe the state of methane adsorbed in these 
pores, are the energy of adsorption – Q, the energy of Volmer diffusion activation – 
Eaf, and the reservoir temperature – T. For the smallest Volmer pores, these parame-
ters are equal to Q = 9100 J/mol, Eav = 6500 J/mol [7]. For larger pores, these param-
eters can be approximated by exponential functions in the form of [7]: 

 

)t/dexp(AD)df(Q QfQQ −+= ;   (2) 
 

)t/dexp(AD)d(E EfEEfaf −+= ,   (3) 
 

where the first component in (2)–(3) sets the value of the parameter when the pore 
diameter tends to infinity; Аi is amplitude of the parameter change; ti  is the rate of the 
parameter change when the pore diameter changes. 

In general, the Volmer diffusion coefficient can be determined by the formula [8]: 
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where Df is the Volmer diffusion coefficient, m2/s; D0f is pre-exponential factor, 
m2/(s·K); Q is adsorption energy, J/mol; Rг is gas constant, J/(mol·K); Еav is the ener-
gy of Volmer diffusion activation, J/mol; T is temperature, K.  

The average temperature, for example, at depths of the order of 1000 m will be 
T=307.9 K [9].  

The pre-exponential factor D0f in formula (4) will also depend on the diameter of 
the pores. Its numerical values are presented in Table 1. 

 
Table 1 – Numerical values of the D0f parameter for some pores [7]. 

D0f×1011, m2/(s·K) 
Diameters of pores, m 

8 10 12 
3.21 4.44 5.75 

 

Therefore, the ratio (4) with taking into account the approximate dependencies 
(2)–(3) and the data in Table 1 allows establishing the Volmer diffusion coefficient of 
methane in the zone of maximum bearing pressure for different pore diameters. The 
range of changes in the diameters of the Volmer pores in the elastic zone of the bear-
ing pressure at different distances from its maximum can be established by formula 
(1). 
 

3. Results and discussion 
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The results of the calculation of the change in the Volmer diffusion coefficient of 
methane in the coal pore with initial diameter of 12 m in the elastic area of the bear-
ing pressure are presented in Fig. 2 

 

  
 
Figure 2 – The regularity of changes in the Volmer diffusion coefficient of methane Dv in the coal 

pore with diameter of 12 m in the elastic zone of the bearing pressure σ(l) 
 
As data in Fig. 2 show, the Volmer diffusion coefficient of methane changes 

slightly with increase of distance from the maximum bearing pressure – b. However, 
in this case, there is a large length of the stabilization section. Therefore, expression 
(4) was approximated by an exponential function similar to formulas (2) and (3) in 
the form of: 

 
)t/bexp(ADD DDfv −+= 0 .    (5) 

 
The dependence of the Volmer diffusion coefficient of methane on the distance of 

the maximum of the bearing pressure deep into the massif, i.e., the length of the de-
scending branch of the bearing pressure, for different diameters of the Volmer pores 
is shown in Fig. 3. 

The results of approximating the graphs in Fig. 3 by function (5) are presented in 
Table 2. 

 
Table 2 – Results of approximation of the dependence of the Volmer diffusion coefficient on the 

distance parameter of the maximum bearing pressure deep into the massif – b. 

Diameter of a pore, m - Approximation parameters  
D0f, m2/s - АD, m2/s tD, m 

12 3.77·10-8 -8.65·10-11 15.99238 
10 2.31·10-8 -1.09·10-10 15.9937 
8 6.11·10-9 -1.51·10-10 16.021 
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Figure 3 – Dependence of the Volmer diffusion coefficient on the length of the descending 

branch of the bearing pressure for different pore diameters: 1 – 12 m; 2 – 10 m; 3 – 8 m. 
 

According to the algorithm described above, the data in Table 2 were approximat-
ed in order to obtain the dependence of the Volmer diffusion coefficient on the diam-
eter of the Volmer micropores. This was done by using an exponential function in the 
form (5), where the approximation parameters were replaced for convenience by 
functions that had the form: 

 
)t/dexp(ADD ff 1110 −+= ;    (6) 

 
)t/dexp(ADA fd 222 −+= ;    (7) 

 
)t/dexp(ADt fd 333 −+= .    (8) 

 
The results of approximating the data in Table 2 by functions (6) – (8) are pre-

sented in Table 3. 
 

Table 3 – Results of approximation of the dependence of the Volmer diffusion of methane in coal 
on the diameter of micropores 

Approximation parameter - Values 
D1 1.2679·10-7 
D2 -6.08444·10-11 
D3 15.99231 
A1 -2.2182·10-7 
A2 -1.12714·10-9 
A3 5.2485702 
t1 13.14218 
t2 3.17427 
t3 0.66023 
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After that, the dependence of the Volmer diffusion coefficient of methane in coal 
on the length of the descending branch of the bearing pressure was studied according 
to the calculation algorithm. The results of calculations of the Volmer diffusion coef-
ficient of methane in coal at different lengths of the descending branch of the bearing 
pressure for pores with diameter of 12 m are presented in Fig. 4. 

 

 
 

1 – b=100 m; 2 – b=150 m; 3 – b=200 m 
 

Figure 4 – Changes in the Volmer diffusion coefficient of methane in coal at different lengths of the 
descending branch of the bearing pressure – b 

 
In order to describe the obtained regularities by dependence on the length of the 

descending branch of the bearing pressure diagram, the approximation of the ob-
tained data, which changed with the length of the descending branch of the bearing 
pressure, was performed similar to expressions (6) – (8). As the results of the approx-
imation show, such parameters as D1, A1 and t1 in (6) – (8) do not depend on the 
length of the descending branch of the bearing pressure diagram, which determine the 
limit value that the Volmer diffusion coefficient of methane tends to at a distance 
tending to infinity.  

In order to obtain the final dependence of the Volmer diffusion coefficient of me-
thane in coal on micropore diameters and the distance from the maximum bearing 
pressure deep into the massif, the approximating functions were set as follows: 

 
 )t/bexp(ADD iiii 111 −+= ; (9) 

 
 )t/bexp(ADA iiii 222 −+= ; (10) 
 
 )t/bexp(ADt iiii 333 −+= . (11) 
 
The results of approximation of functions (9)–(11) are presented in Table 4. 
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Table 4 – Generalized approximation parameters for determining the Volmer diffusion coefficient 
of methane 

Approximation parameter Index і 
2 3 

D1i -6.1124·10-11 -24.72178 
D2i -1.15121·10-9 83.26867 
D3i 3.15165 -0.90912 
A1i 9.6757·10-14 27.32296 
A2i 1.21563·10-11 12.23113 
A3i 0.00909 0.82605 
t1i -94.17467 -250.72274 
t2i -146.3866 108.32334 
t3i -109.76187 -155.82118 

 
By substituting the data of Table 4 into formulas (9)–(11), the values of the ap-

proximating parameters in expressions (6)–(8) were specified: 
 

07-101.27D ⋅=1 ;     (12) 
 

)94.17-/bexp(109.6810-6.11D -14-11 −⋅+⋅=2 ;  (13) 
 

)250.72-/bexp(27.32-24.72D −+=3 ;   (14) 
 

07-10-2.22A ⋅=1 ;     (15) 
 

)146.39/bexp(101.2210-1.15A -119- ⋅+⋅=2 ;   (16) 
 

)108.32/bexp(12.2383.27A −+=3 ;    (17) 
 

 13.14218t =1       (18) 
 

)109.76/bexp(0.0093.15t +=2 ;   (19) 
 

)155.82/bexp(0.83-0.91t +=3 .    (20) 
 

By substituting formulas (12)–(20) into (6)–(8), the following expressions were 
established for the parameters of formula (4) in the form of approximation depend-
ence (5): 

 
)13.14218/dexp(102.22-101.27D f

07-07-
f −⋅⋅=0   (21) 
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In turn, by substituting approximate dependencies (21)–(23) in (5),  the regularity 

of changes in the Volmer diffusion coefficient of methane in the elastic zone of the 
coal seam bearing pressure is established with taking into account the diameter of the 
Volmer micropores – dv  and the length of the descending branch of the bearing pres-
sure diagram – b. 

Formerly, it was believed that in the elastic zone of the bearing pressure of the 
coal seam, the diffusion of methane adsorbed from the coal microstructure was 
blocked by the compressive forces of the rock pressure. However, calculations of the 
Volmer diffusion coefficient of methane have shown that in this zone, where pore 
compression occurs, Volmer diffusion, like solid-state diffusion [1, 2, 10], continues 
to develop. That is, in the elastic area of the bearing pressure, the diffusion process of 
methane adsorbed in the microstructure of coal is not blocked, but develops fully - 
from the activation of solid-state diffusion to the development of Volmer diffusion, 
which leads to the free diffusion of methane in coal. Thus, mass transfer of methane 
from the undisturbed rock massif to the area of maximum bearing pressure takes 
place in the elastic zone. Moreover, since it is known that adsorbed methane is con-
nected with the microstructure of coal by the forces of interphase interaction, it will 
be released in a pulsed way at reaching the desorption activation energy. This can 
lead to the development of gas-dynamic and fire-hazardous phenomena. Therefore, it 
is necessary to estimate the outburst hazard of the coal-bearing massif not only by 
bearing pressure zone in the face area [5], but also by assessment of diffusion pro-
cesses in the elastic zone. In this regard, the development of methods for forecasting 
the gas-dynamic hazard of the entire bearing pressure zone of the coal seam is the 
question of the day. When developing these methods, it is necessary to take into ac-
count the results of this work, which are given below in conclusions. 

 
4. Conclusions 

1. The regularity of changes in the Volmer diffusion coefficient of methane ad-
sorbed in the microstructure of the elastic zone of the coal seam bearing pressure is 
determined for different diameters of the Volmer micropores and lengths of the de-
scending branch of the bearing pressure diagram, which is described by relations (5), 
(21)–(23), which take into account the energy of sorption connection of methane with 
coal and energy of Volmer diffusion activation.  
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2. It is established that as the distance from the maximum bearing pressure in-
creases, the Volmer diffusion coefficient of methane in the coal seam increases, 
which is caused by a decrease in rock pressure in the descending branch of the bear-
ing pressure diagram. This growth is not great due to the weak compressibility of 
pores. For example, at a depth of 1,000 m, the Volmer diffusion coefficient is 
3.775·10-8 m2/s in the case when the length of the descending branch of the bearing 
pressure diagram is 200 m, and is 3.772·10-8 m2/s when the length of the descending 
branch is 100 m.  

3. The performed calculations show that for the same depth of coal deposit devel-
opment and pores of the same diameter, the Volmer diffusion coefficient in the elas-
tic zone of the coal seam bearing pressure can be considered a constant. Its value is 
determined from the regularity established in the work. 
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Анотація. Виконані розрахунки коефіцієнта фольмерівської дифузії адсорбованого у мікропорах вугілля ме-
тану в пружній зоні опорного тиску вугільного пласта, котра знаходиться в умовах значних компресійних напру-
жень. При цьому враховувалася енергія сорбційного зв’язку метану з вугіллям, енергія активації фольмерівської 
дифузії у пористому просторі вугілля, а також напружений стан пружної зони та його вплив на зміну фольмерівсь-
кої пористості. При розрахунках варіювалися такі параметри, як діаметр фольмерівських мікропор і протяжність 
спадної вітки епюри опорного тиску. В результаті апроксимації цих розрахунків встановлені, як парні залежності 
коефіцієнта фольмерівської дифузії від перелічених параметрів, так і його багатофакторний зв’язок з ними. Зроб-
лено висновок, що дифузійний процес метану в пружній зоні опорного тиску не заблокований гірським тиском, як 
рахувалось раніше, а активно розвивається. При цьому дифузія вільного метану буде обумовлена встановленою 
закономірністю змінення коефіцієнта фольмерівської дифузії у пружній зоні опорного тиску вугільного пласта. 
Розрахунки показали, що в міру віддалення від максимуму опорного тиску коефіцієнт фольмерівської дифузії 
метану у вугільному пласті зростає, що обумовлено зниженням тиску гірських порід у спадній вітці епюри опорно-
го тиску. Однак, це зростання не є сильним внаслідок слабкої стисливості пор. Тому для пор одного діаметра 
коефіцієнт фольмерівської дифузії в пружній зоні опорного тиску вугільного пласта для даних горногеологічних 
умов можна вважати за константу. Для глибин, наприклад, 1000 м і діаметрів пор 10 м значення коефіцієнта фо-
льмерівської дифузії буде дорівнювати, приблизно, 3.77⋅10-8 м2/с. Це підтверджує те, що газовіддачу метану обу-
мовлює не тільки фільтрація вільного газу, але і фольмерівська дифузія адсорбованого метану. В свою чергу, 
запаси останнього, як відомо, є основними запасами метану у вугіллі. Тому встановлена закономірність дозволяє 
точніше обчислювати об’єми метану, що буде виділятися з вугільного масиву при гірничодобувних роботах для 
оцінки безпечних умов відпрацювання вугільних родовищ та при розробці технологій видобутку шатного метану. 

Ключові слова: адсорбований метан, мікроструктура вугільного пласта, фольмерівські пори, область опор-
ного тиску, пружна зона, коефіцієнт фольмерівської дифузії. 
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