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Abstract. The relevance of considering filtration problems taking into account adsorption-desorption processes is
associated with the safety of mining and coal developments in the presence of adsorbed gas deposits in the rock, as
well as when solving environmental problems, in particular, the storage of greenhouse gases in soils and coal seams.

In this work, according to modern concepts, the porous medium is presented in the form of two types of pore chan-
nels, hydrodynamically connected to each other, but very different from each other in their characteristic diameters. It is
also accepted that the surfaces of both types of channels are covered with a solid deposit of adsorbed gas, which begins
to be released when the pressure drops. The main attention is paid to the filtration features of the process of desorbing
gas flow in the seam. The developed model is based on the theory of inertia-free gas movement in two-scale interpene-
trating porous media, differing by orders of magnitude in porosity and permeability. It is accepted that gas velocities in
the seam are small, so the Darcy equation was used, written in each zone separately. The desorption component of the
flow rate is determined by a linear relationship.

The calculations were carried out numerically using an explicit scheme. It is shown that the accuracy of the calcula-
tions is quite satisfactory. The change in pressure in two different channel systems is presented depending on the inten-
sity of desorption and on the intensity of gas flow from one pore branch of the system to another. With intense flows,
pressure differences between areas are insignificant. With weak flows, the differences are large, which should lead to
large internal stresses. The effect of the desorption rate on the pressure distribution in the considered range of parame-
ter changes is insignificant. Despite the fact that the pore channels in the considered medium belong to the same class,
the patterns of filtration flows in channels of different sizes are very different from each other, which greatly affects the
adsorption processes.

The detailing of the pore space presented in this article leads to a greater physical understanding of the kinetic
stage of the mass transfer process in porous media.
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1. Introduction

Consideration of filtration and mass transfer processes in bidisperse porous layers
has recently gained wide popularity. This is due to the fact that many porous bodies,
for example, rocks and coal seams, are fractured-porous media, having, as it were,
two characteristic sizes of porous channels. So in [1, 2] as a result of studies of the
pore space of coal, the following conclusions were made that coal has extremely low
porosity and permeability, but a high percentage of microcracks.

Measurements made in [2] showed two distinct increases in the distribution of
pore channels by characteristic size: one in the region of twenty - thirty micrometers;
the second, wider and higher, in the region of tenths and hundredths of micrometers.
To some extent, these results are confirmed by studies of coal impregnation [3]. Such
heterogeneity of the pore structure should lead to nonequilibrium of mass transfer
processes, as was pointed out in [4].

The introduction of relaxation components into the porous structure, in particular,
pore sizes that differ significantly from each other, has largely brought the theoretical
results into agreement with experiment [5]. The ideas of bidispersity were used when
considering unsaturated fluid flows in soils [6, 7], as well as when considering heat
and mass transfer processes [8, 9]. In the last two works, bidispersity was trans-
formed into a source of relaxation to study the initial period of the process.

An approach similar in mathematical description was used in [10], where a diffu-
sion-filtration model of methane release from a coal seam was considered. In the lat-
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est work, it was possible to obtain the distribution of methane in a coal seam taking
into account gas pumping due to desorption from blocks penetrated by a network of
micropore channels. The issues covered in [10] are extremely relevant and not only in
this specific area, so other formulations are also of interest.

The purpose of this work is to construct a high-quality physical picture of pres-
sure changes in a complex pore space, characteristic of coal seams, which is of not
only theoretical, but also practical interest, because this is due to safety issues.

Taking into account the above, to achieve this goal, it is necessary to construct a
mathematical model of filtration flow in a two-scale pore system, taking into account
gas desorption, which describes the most important initial stage of the process - pres-
sure release from the seam. Let us base it on the theory of inertia-free gas movement
in two-scale interpenetrating porous media that differ from each other in porosity and
permeability [11].

2. Theoretical part

Let us consider the one-dimensional problem of gas desorption and filtration in a
seam. But in contrast to the above-mentioned works, we consider filtration flow in
pores, the sizes of which are very different from each other, but allow the gas medi-
um to flow in these channels. The second group of small-scale channels shown in [2]
can be divided into two zones: the first has channels of the order of 10 7 m or more,
and the second - 10® m or less. Then, in the first group and in the first zone of the
second group, one can still consider the filtration flow with adsorption and desorption
of the substance on the surface of the channels, and in the second zone of the second
group, according to the theory of volumetric filling, it is preferable to consider the
diffusion transfer of the adsorbing or desorbing substance. Although the indicated
size range practically does not extend beyond the boundaries of macropores accord-
ing to the modern classification of porous systems [12], such a difference may affect
the kinetic characteristics of mass transfer.

We assume that the pore space of the seam consists of two types of channels with
diameters that are very different from each other, for example, 20 um and 0.1 pm, but
somehow connected with each other. Accepted assume that the gas velocities in the
seam are small, therefore, the theory is based on the Darcy equation [13], written in
each zone separately

K, op
uy ==L, (1)
MU Ox
where u is filtration velocity, m/s; p — pressure, Pa; K — gas permeability, m?; u — co-
efficient of dynamic viscosity, Pa's; index J — refers to a particular area. Let us now
write out the equation for the conservation of mass in these two regions
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where ¢ — time, s; x — coordinate, m; ¢ — porosity; p — gas density, kg/m?; g, — flow
rate associated with gas desorption, kg/(s'm?®); g» — flow rate associated with gas
flows from one porous structure to another, kg/(s'm?).

Let us further assume that the seam is at a constant temperature 7 (for example,
293 K) and at a relatively low pressure (py = 50-10° Pa), then from the gas equation
of state

_Ps 3
Py RT (3)
The flow rate for internal flows from the second region to the first, taking into ac-
count the large length of the process in time, will be determined as [8, 9, 12]

gp2 :S21p2(p2 _p1)9 (4)

where S»1 are coefficient characterizing flow rate per unit length, s/(kg m). We deter-
mine the desorption component of the flow rate by the linear relation

8 :_SWJ7J(pJ_p*)/pA: (5)

where ¥, is the coefficient characterizing the intensity of deadsorption, kg/(s m 2);
Sw;, — value characterizing the internal surface, m™! ; p* — equilibrium gas pressure,
which we also take as the initial pressure, Pa; p, - atmosphere pressure.

The possibility of such an approximation is determined by an analogue in mass
transfer, when the flow rate of some component is defined as SW}/(C—C% [14] (y —

coefficient, kg/(s m?); c* - concentrations, respectively, current and limit). In addi-
tion, for Langmuir adsorption the relation [14] is well satisfied

da .

s a)(a a ), (6)
where « - adsorption, kg/m?®; a" — its limit value; w — coefficient 1/s. Considering that
in a certain area (see [12]) adsorption is almost linear to pressure, i.e. o = rp (r is the
coefficient), then expression (5) may be acceptable for consideration.

Let us also introduce into relation (4) the inclusion coefficient of this equality f. It
is due to the fact that when the surface of the channels is covered with adsorbed gas,
then part of the connecting isthmus between them is covered (the throughput is less),
so we assume that the coefficient f is linearly related to the total current porosity

ﬂ:l—ﬂgl_gl—l_gz_gz’ (7)

* *
& +€2



ISSN 1607-4556 (Print), ISSN 2309-6004 (Online) Geo-Technical Mechanics. 2024. Ne 168 91

where ¢" is a certain maximum porosity of a particular zone; A is a certain coefficient
that regulates the flow capacity (in our case it is taken equal to 0.9). At small values
of A (overgrown channels), the coefficient f is minimal; for clean channels, f= 1. In
calculations, when the coefficient f reaches this value, it means that at a given point
the adsorption film has disappeared. Now, from relation (5) we determine the law of
change in the radius of the channel with the adsorption layer Rw,

ORw,

ZERWJPA :_gAJ7 (8)

where p, is the conditional mass density of the adsorption layer, which we take equal
to 3000 kg/m? . Integration of this equation is carried out from some initial value Rw,

to the final value ij, which can be associated with local porosity in each zone

‘- [RLJ ;. ©)

Rw),

Let us now make one more correction for gas permeability and internal surface.
Taking into account the thickness of the adsorption layers, we assume that

K, = (%}Kj and  Sw, = {wa ]Sw;, (10)

*
J RWJ

where K, Sw, — limiting values of gas permeability and internal surfaces without
adsorption layers. If, for assessment, Sw, we imagine a porous system in the form of
straight tubes (this is the simplest, but still widely used system of pore channels [11]),

then per unit area Sw’ =N, -2zRw,’, where N, :8—"*2 is the number of such tubes
Rw,

per square meter. Let us now write down the main equations in the form

M+g_1£6 (O-l ): RT TM-}/-Swl(a;—al)+,BMTMS(GZ—0'1), (11)
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where o, =p,/py, vt =Ty, {=x/h; T, =2 u — time scale, (& — seam width,

£

1 pA
m). In these calculations, the width of the seam is taken to be 1 m, and the time scale
Ty1s equal to 78.4 s. The boundary conditions for equations (11) and (12) are the re-
lations:



92  ISSN 1607-4556 (Print), ISSN 2309-6004 (Online) Geo-Technical Mechanics. 2024. Ne 168

at (=0
90, _00, _ (13)
oc oc

at (=1
o, =0, =1. (14)

3. Results and discussion

In the calculations, based on the results of work [2], we assume that & = 0.02,
& = 0.1, and the conditional radii of the capillaries Rw,” =20-10°m, Rw," = 10" m.
In accordance with [15], we take the gas permeability coefficients K;* and K>" equal
to 10¥* m?and 10" m?.

Figures 1 and 2 show curves of changes in relative pressure across the width of
the seam (1 m) for two points in time at different values of S21.
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Figure 1 — Pressure changes in area 1 across the width of the seam (y = 10)
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Figure 2 — Pressure changes in area 2 across the width of the seam (y = 107?).

From Figure 1 and Figure 2 it is clear that the pressure in each of the areas drops
over time, reaching atmospheric pressure at the outer boundary of the seam. As the
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coefficient S21 decreases, the curves in region 1 go lower than the curves in region 2,
while at the initial moment significant pressure gradients arise (dotted curves 3, 4 in
Figure 2). This is natural, since flows between regions are decreasing. It is also clear
from Figure 1 that the first three curves in region 1 for 7 = 0.06 are very close to each
other. This indicates that at large times the curves should merge with each other.

Let us now show the curves for the case when S,, is constant, for example,
5-10%, and y varies within wide limits, in particular: 102, 10, 103, 10 . From Fig-
ure 3 and Figure 4 it follows that the value of y has little effect on the pressure distri-
bution. From Figure 3 it is clear that only for a short time the curves are somewhat
fluffy; for a longer time, within the scale of the figure, they practically merge.
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Figure 3 — Pressure changes in area 1 across the width of the seam (S21=5-10%).

In Figure 4, both for short and large time, the curves on the scale of this figure are
also merged. The consistency of the curves for a long time indicates that the gas mass

(G= pJ-(ul +u, it ) leaving the channels at { = 1 should be the same. Let us present
0

these values for 7 = 0.09: aty =102 G =0.6142 kg/ m*>; aty = 10* G =0.6126
kg/m?; at y = 10° G = 0.6085 kg/ m?; at y = 10° G = 0.6154 kg/m? . Considering
that the coefficient y determines the rate of desorption, and not the amount of gas re-
leased, the numbers given indicate the accuracy of the calculation, since the error is
less than one percent of the average value, the accuracy is quite satisfactory.
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Figure 4 — Changes in pressure in area 2 across the width of the seam ( S,; = 5-10%).
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In conclusion, we will show curves of changes in the flow rate of gas leaving the
pore space of the formation over time for the case when narrow pores are clogged and
gas comes out only from wide pores
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Figure 5 — Change in flow rate over time ( S,;=2-10%).

In this case, boundary condition (14) has a slightly different form:

oo,

74

at F=1 o =1, -0. (15)

Figure 5 shows the curves g = p(u1 + u2) at =1 from the beginning of the filtra-
tion process to the time of disappearance of the adsorbed film up to the point {= 0.
This figure clearly shows the influence of the parameter y. At relatively large y
(curves 1, 2), the desorption process occurs quickly; for the fourth option, it is de-
layed and ends at the point 7 = 0.01022. The graph shows that the flow rate first in-
creases and then begins to decrease. The increase is associated with the opening of
the pore, and the subsequent decrease is associated with a decrease in pressure.

4. Conclusions

The problem of desorption and filtration of gas in seam with double permeability
is considered. A mathematical model has been created that takes into account the
two-scale nature of the pore system. The influence of internal flows on the pressure
distribution in each region is shown. With intense flows, the pressure drops between
regions are insignificant; with weak flows, the differences are large, which should
lead to large internal stresses. The effect of the desorption rate on the pressure distri-
bution in the range of changes in our parameters is insignificant. Despite the fact that
the considered pore system belongs to the same class of pore channels, the patterns of
filtration flows can differ greatly from each other, which can greatly influence ad-
sorption processes.

Thus, taking into account the heterogeneity of the pore space when constructing a
mathematical model leads to a more complete description of the physical process un-
der consideration.
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®INbTPALIA OECOPBYOYOIO rA3y Y 6iAUCNEPCHOMY MOPUCTOMY LLAPI
€nicees B., JlyueHko B.

AHoTauif. AKTyanbHICTb po3rnsay GinbTpauiiHMX 3aBaaHb 3 YpaxyBaHHAM aacopOuiiHo-gecopbuiiHux npouecis
noB's3aHa 3 6e3nekoto ripHMYMX Ta BYTiNbHUX PO3pobOK 3a HASBHOCTI B NOPOAi agcopboBaHWX rasoBuMx BigknageHb, a
TaKOX NpW BUPILLEHHi €KONOTiYHUX 3aBAaHb, 30KpeMa 36epiraHHs NapHUKOBKX rasiB y FpyHTax Ta BYrifbHUX NnacTax.

Y uin poboTi, 3rigHO 3 Cy4acHUMM YSBREHHSMU, MOPUCTE CEPENOBWLLE NMPEACTABIEHO Y BUMMSLi ABOX TMMIB MOPO-
BWX KaHanis, rigpoaMHaMiYHO MOB'A3aHWX OUH 3 OOHMM, ane siki CUINbHO BIAPI3HSIOTLCS OAMH Bid OOHOrO CBOIMM Xapak-
TEPHUMU JiameTpamu. TakoX MPUIAHATO, LIO MOBEPXHi KaHaniB 060X TUMIB NOKPWUTI TBEpAMM OCagoM aacopboBaHOro
rasy, SIKUA NOYMHAE BUAINATUCH NPK CKngaHHi Tucky. OCHOBHA yBara npuainaeTbes GinbTpayinHum 0cobnmnBocTamM npo-
Lecy Teuil rasy, WwWo aecopbyetbes, B nnacTi. B ocHoBy po3pobreHoi mogeni noknageHo Teopito BesiHepuinHoro pyxy
rasy y B3aeMOMPOHUKHUX MOPUCTUX CEepedoBULLaX, L0 HA NOPAAKW BIAPI3HAOTLCA OAMH Bif OAHOMO NPOHWKHICTIO. BBa-
XaEMO, L0 LUBMAKOCTI rasy B Nnactax HEBENMKi, TOMy BUKOPUCTAHO PIBHSHHA [lapci, 3anuMcaHe B KOXHIN 30Hi OKpeMo.
[ecopbuiiHy cknagoBy BUTPATW BUSHAYEHO MiHIHWM CMIBBILHOLLEHHAM.

Po3paxyHku NpoBeAEHi YACENbHO 3 4OMOMOrOH SBHOI cxeMu. [okasaHo, Lo TOYHICTb PO3PaXyHKIB € LiIKOM 3ag0-
BiNbHOK0. HaBeaeHO 3MiHY TUCKY Y ABOX Pi3HWUX KaHaNbHUX CUCTEMAX 3anexHO Bif WBMAKOCTI Aecopbuii Ta Big iHTEHCU-
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BHOCTI NepeTiKaHHS ra3y 3 OAHi€i NOPOBOI MifIKK CUCTEMM [0 iHWOI. [TpK IHTEHCUBHUX NEPETIKaHHAX Nepenagu TUCKY Mix
obnactamn HesHauHi. [py cnabkux nepeTikaHHsIX, nepenaaun BEMNMKI, WO NOBUHHO NPU3BOAMUTU A0 BENMKUX BHYTPILLHIX
Hanpyr. Bnnue wamakocTi aecopbuji Ha po3noain TUCKy B PO3TNSHYTOMY iHTEPBasi 3MiHM NapameTpiB He3HauHui. He-
3BaXatouu Ha Te, Lo NOpPOBi KaHanW B PO3rNSHYTOMY CepeaoBULL BIZHOCATLCSA O OAHOTO Kracy, KapTuHu dinbTpaliit-
HWX TEiN y KaHanax pisHMX PO3MIpIB CUIbHO BiAPI3HSAIOTLCS OAMH Bifg OLHOTO, L0 3HAYHOK MipOI0 BMNMBa€e Ha agcopb-
LiHi npouecy.

HaBepneHa y Uit cTaTTi AeTanisauis NopoBoro NpOCTopy NpU3BOANUTE A0 BINbLIOTO ¢i3MYHOrO PO3YMIHHS KIHETUYHOT
CTagii npouecy MacoobMiHy B MOPUCTVX CEPELOBMLLAX.

Knro4oBi cnoBa: nopucte cepefoBuLLe, ras, audysia, MacoobMiH, GinbTpauis, ecopbuis, Mikponoposi kaHanu.
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