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Abstract. The aim of this study is to develop analytical dependencies for the uniaxial stiffness of a spatial composi-
tion of elastic balls of same diameter, considering its volumetric structure. A review of the literature was conducted re-
garding types of ball packings that have practical applications for describing the structure of crystals, composite materi-
als, and ball mill loadings of various types. For calculating the stiffness of a three-dimensional composition of balls, the
study is based on G. Hertz's theory of elastic ball contact. According to this theory, the relationship between compressive
force and the center-to-center displacement of balls is nonlinear with an exponent of 1.5. By spatially combining individ-
ual ball contacts, the nonlinear stiffness for simple cubic and face-centered cubic packings of balls under uniaxial com-
pression was determined. These packing types were chosen as boundary cases of regular ball packings: the former as
the least dense possible packing and the latter as the densest.

Initially, the stiffness of a single layer of ball packing in a plane perpendicular to the compression force was deter-
mined by summing the parallel-connected stiffnesses of all balls. Next, the total stiffness of the spatial composition of
balls compressed between two massive plates was calculated through sequential combination of the stiffnesses of all
single layers along the height of the composition. Differences in the stiffness of elemental ball contacts, both between
themselves and with the bounding plate layer, were taken into consideration.

As a result, formulas were derived for determining the uniaxial stiffness of the spatial ball composition for the two
boundary packing types, depending on the elastic properties of the ball material and massive boundaries, the ball diame-
ter, and the dimensions of the deformed ball composition.

The comparison of packing stiffnesses did not account for the friction coefficient due to its minor influence and its
significant reduction under conditions of vibration or the presence of liquid at ball contacts. It was concluded that, firstly,
the stiffness of a ball composition in a face-centered cubic packing slightly exceeds that of a simple cubic packing, within
the permissible error margins of engineering calculations. Secondly, the formulas for face-centered cubic ball packing
are more suitable for practical calculations. Thirdly, the results of the study can be used for modeling the stress-strain
state of technological ball loadings in vibratory, planetary, and other types of mills; for modeling the behavior of layers
made of solid bulk materials with approximately isometric particle shapes; and for determining the elasticity of frames in
composite material fillers with significant differences in the elastic properties of their components.
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1. Introduction

Interest in spatial packing of balls in science arose a long time ago, since the time
of K. Gauss, and has not faded to this day, looking for newer ways of application [1].

This is because a mathematical model in the form of a set of balls with the same
diameter is well-suited for describing various natural structures, such as crystal
structures [2]. This includes the simplest loose cubic packing, simple hexagonal,
body-centered cubic, as well as the densest packings like hexagonal close-packed and
face-centered cubic.

A particular area of interest is the use of ball-based models to describe the
structure of composite materials [3]. These materials are becoming increasingly
important in fields such as mining engineering, aerospace, aviation, shipbuilding, and
other high-tech industries due to their unique properties, which result from combining
diverse components, creating a synergy more effective than each component alone.

One of the most well-known composite materials is concrete and asphalt concrete
products, which require high-quality aggregates, especially for applications involving
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high dynamic loads. This requires approximating the shape of the strong filler
particles to be isometric [4], making it possible to use ball packings as a model for
determining the elastic-deformation properties of the frame.

Research in mining machinery has a dedicated focus on analyzing ball load
behavior in various mills [5], layer deformations of processed material in crushers,
impact dampening during fragment drops on feeders, etc.

Today, various types of vibration drives of technological machines have also been
developed, in particular, the vibration impact drive [6], which is actively used in the
designs of ball vibration mills. The dynamic calculation of the mill as a system of
bodies must necessarily take into consideration the elastic and dissipative properties
of the ball load [7].

In work [8], the dependence of the force on the deformation of material rock layer
in technological machines was determined as follows:

p _AEF

C—W'(Hf'ﬁg”x)'xw, (1)

where FE is the modulus of elasticity of the material, Pa; F is the cross-sectional area
of the deformed layer, m?; A is the technological load height, m; x is the layer
deformation, m.

As we can see, the dependence has a nonlinear character with a degree of 1.5,
which coincides with the conclusions of G. Hertz's theory of contact deformation of
elastic bodies [9].

Notably, the theory of ball packing is also used to determine the porosity of the
ball load in the drum-type grinding chamber for vertical vibratory mills [10]. Here,
the average porosity of the ball load is calculated as follows:

§=80+(8c—5W)'{1—(n_22)2} (2)

n

where ¢.=0.259 is the porosity at the center of the load, representing maximum-
density packing; ¢, =0.476 is the porosity near the walls of the grinding chamber,

representing minimal-density, simple cubic packing; n is the number of balls that can
fit along the chamber diameter.

This formula was derived for specific, limiting conditions.

In study [11] on the analysis of the mechanical properties of granular powders, it
is noted that denser particle packing results in greater stiffness for their composite.

The authors of research [12] show that upon reaching a certain particle packing
density, the stiffness of the composition begins to rise sharply due to the blocking
effect of the particles' potential movements. This particle "jamming" effect is
similarly corroborated in [13].

A separate study investigated the influence of friction on the structure and
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properties of ball packing [14]. It was observed, that system stiffness increases with
higher friction coefficients, with the structure becoming more resistant to external
loads, as shown under shear loads.

Thus, despite the presence of significant data in the literature regarding ball
packing, elastic layer properties, and friction effects, it is necessary to summarize the
existing information and derive explicit dependencies for the stiffness of spatial ball
packing depending on the packing type. This would enable the prediction of the
elastic properties of a ball frame for various technical applications.

The purpose of this work is to develop analytical dependencies for the uniaxial
stiffness of a spatial composition of elastic balls of same diameter, considering its
volumetric structure.

The 1dea of work is to use the force dependencies for contact interactions of elastic
balls from G. Hertz’s theory, followed by evaluating the distribution of contact forces
in a spatially confined composition of balls.

2. Methods

An analysis of the literature sources on current research related to the topic of the
article was conducted. G. Hertz's theory dependencies for the contact interaction
force of elastic spheres were used. Formulas known from theoretical mechanics
regarding force balance and the determination of the total stiffness of elastic elements
in their series and parallel connections were applied.

3. Results and discussion

For step-by-step determination of the stiffness of an elastic ball composition, its
spatial arrangement must be divided into simpler individual elements.

For each type of regular ball packing, an elementary layer of balls can be
identified, with centers in a plane perpendicular to the direction of deformation.

This elementary layer can be reduced to a composition of individual balls, each
occupying a certain space with surrounding voids, which are the greater the higher
the porosity of packing is.

Thus, for each packing type, it is necessary to determine both the elementary
volume occupied by single ball and the stiffness of contacts (from one to several),
that this ball forms.

The stiffness of a single layer of packing will be determined by adding the
parallel-connected stiffnesses of all balls within the layer and then sequentially
combining these layers to find the total stiffness of the spatial ball composition.

We define the elementary contact stiffness of an individual ball as the resultant
stiffness of all contacts it forms in the direction of deformation, considering only one
side of the ball.

1. Determining stiffness for simple cubic ball packing.

In Figure 1, the simplest packing of balls is shown, where the rows of balls are
aligned strictly along the axes of an orthogonal coordinate system.

This packing is the least dense among the practically possible ball packings, with
a corresponding maximum porosity value of ¢, = 0.479.
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Figure 1 — Simple cubic packing of balls

We need to determine the stiffness of the ball composition under uniaxial
compression conditions. For instance, let us consider the vertical direction, i.e., z-
axis.

The elementary stiffness of contact between balls will be determined based on
G. Hertz’s theory of elastic ball contact interaction. This theory describes a nonlinear
dependence of contact force on deformation, with an exponent of 1.5 [6].

For balls of the same radius made from the same material, the nonlinear contact
stiffness, according to G. Hertz's theory, is calculated as

CO,I = ) H/MI'S. (3)

where E is Young’s modulus of the ball material, Pa; v is Poisson’s ratio of the ball
material; R is the radius of the balls, m.

It is important to note the so-called “edge effect.” When the ball composition
contacts a solid bounding obstacle, which typically has a surface curvature radius
much larger than that of the ball, the porosity in the layer between the obstacle and
the centers of adjacent balls will approximately equal the porosity of simple cubic
packing [7]. In this case, the expression for nonlinear elementary stiffness will
slightly differ from equation (3):

2ER
C2 = :\/2C01, N/ml's. (4)
2 ,
Sil—v )

2. Determining stiffness for the densest ball packing.
A simple cubic packing of balls thicker than a single layer cannot exist in pure
form due to the high degrees of freedom in ball movement, leading to spatial

instability. It is observed only near solid obstacles with a radius much larger than the
ball.
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In dense ball packing conditions, at a certain distance from solid obstacles, the
packing of balls tends to approach the densest configuration.

The densest ball packing corresponds to a minimum porosity value of
&y =0.259.

There are two known types of the densest ball packing: hexagonal and face-
centered cubic. These differ only in the arrangement of the 12 contacts that each ball

has but share the same minimum porosity of ¢, =0.259.

It is assumed, that the stiffness of a layer of balls, under otherwise equal
conditions, depends solely on the porosity value, which decreases with an increase in
the average coordination number of contacts per ball and does not depend on the
specific type of packing.

For convenience of analysis, we will consider the face-centered cubic packing
(Fig. 2), as it has identical ball arrangements relative to any axis of the three-
dimensional orthogonal coordinate system, providing uniform properties for
deformation analysis.

Figure 2 — Face-centered cubic packing of balls

During uniaxial deformation of such a packing, with pressure applied to a face
centered by a ball O, the contact forces will be distributed among four balls: 4, J, U
and Q. The distribution scheme of contact forces is shown in Figure 3.

Here, it is necessary to calculate the proportionality coefficient between the
resulting force P, acting on the ball in the direction of deformation OK, and the
nonlinear deformation OO’ in the power of 1.5 in the same direction.

Thus, the resulting force P is transmitted below through four contacts (only two
are shown in the figure; the others lie in a plane perpendicular to the figure's plane),
where each contact has a normal force component N and a tangential component 7.
The angle of inclination of the contact line OA to the compression line OK for this
packing is 45°.

It is evident, that in an unstressed state

A0=D, (3)

where D is the ball diameter, m.
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Writing the equilibrium equations for ball O:
P=4Ncosa +Tsina), (6)
where T is the friction force, calculated using Coulomb’s formula:
T=fN; (7)

fis the coefficient of friction; N is the normal force, which is also determined using
G. Hertz’s formula (1) for the direct central contact between two balls, for simplicity:

N =Cy;-AD", (8)

where axial deformation of the ball contact is
AD = A0 - AO'. 9)

P

Figure 3 — Scheme for determining the reduced elementary stiffness for face-centered cubic ball
packing

We denote the deformation of a single-layer ball packing as:
00" =Az. (10)
From triangle AKO’, the following equation is obtained:

(40') = AK* +(KO'); (11)
(D—-AD)* = AK* + (KO - Az)*. (12)
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Considering that a = 45°, we have

V2

A0=KO="7D. (13)

Substituting (13) into (12) and neglecting second-order small terms, we obtain:
Az=A+2-4D. (14)

Finally, considering expressions (6), (7), (8), and (14), the nonlinear elementary
stiffness of the face-centered cubic packing under uniaxial compression is determined
as

P

The minimum value of the elementary stiffness for a face-centered cubic packing,

for instance, in conditions of vibration or the presence of liquid at the ball contacts,
will be

Cor =3/8Cy; =1.68C,,. (16)

3. Determining the total stiffness of spatial ball compositions under compression
between two parallel massive plates.

The primary assumption here is the uniformity of compressive force transmitted
from one horizontal layer (perpendicular to the compression line) to another. In this
case, the entire ball composition behaves as a conditionally homogeneous elastic
medium.

Let us introduce the following notations:

L 1s the length of the spatial ball composition for which stiffness is determined, m;

B is the corresponding width, m;

H is the corresponding height, m.

For both simple cubic and face-centered cubic packings, the number of balls in a
single layer is determined as

LB

N )
0 DZ

(17)

if the length and the width of spatial ball packing are multiples of the ball diameter.
Assume, that the plates are made of the same material as the balls.
Thus, there will be two ball contacts with stiffness C, along the height of layer:

N, =2. (18)
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For the simple cubic packing of balls, the remaining contacts along the height will
have a stiffness C;;. The number of such contacts, assuming the height is a multiple

of the ball diameter, 1s:

H
NLIZB_I. (19)

For the face-centered cubic packing (see the schematic in Fig. 3 above), the
number of contacts C, is given as

H
NszEB—L (20)

The total stiffness of spatial ball compositions will be determined first by parallel
summation of the elementary stiffnesses for individual balls, followed by a sequential
combination of stiffnesses along the height of the layer:

- for simple cubic packing:

-1 -1
Ny, N LB[ Ny N
Csuml :NO i+_2 ) = — ,N/ml.S, (21)
’ Cor G D=\ Co; G
or, considering equations (4), (17), (18), and (19):
-1
LB(H
C., 1=Cyi—=| —+0.414 | ,N/m!'>; 22
sum,1 0,1 D2 (D j ( )
- face-centered cubic packing:
LB(Ny, N, )
Coma =—| —=+=2 |, N/m'?, (23)
T D\ G G
or, considering equations (4), (16), (17), (18), and (19):
-1
Coma =Coy %(0 842% + O.819j , N/m'>, (24)

For height-to-diameter ratios (H/D) = 5, 10 and 20, the stiffness C,,, , exceeds
Coum1 by 8%, 13%, and 16%, respectively.
In this comparison, the friction factor was not considered, primarily because of its
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minor influence and, secondarily, due to the questionable validity of accounting for
friction in face-centered cubic packing while ignoring it in simple cubic packing.

From a practical perspective, simple cubic packing is rarely encountered in real
ball compositions due to its spatial instability. However, face-centered cubic packing
is the most realistic configuration, especially under vibration conditions.

4. Applications of the research results.

The findings of this research can be applied primarily in projects related to using
material crushing, mixing, and activation technologies.

For instance, in the design of vibratory mills, determining the stiffness of ball
loading will enable the calculation of energy transfer from the chamber to the
grinding balls.

In the production of powder materials from different components, selecting
appropriate elastic properties for the ball loading can enhance the uniform
distribution of components and prevent the formation of agglomerates.

Accurately determining the stiffness of ball loading will also help predict the wear
of balls and mill linings, optimize maintenance intervals, reduce operational costs,
and extend the service life of the equipment.

Within the framework of “smart” manufacturing, accounting for the stiffness of
the loading and monitoring changes in this parameter will allow seamless integration
into automated mill control systems to improve their efficiency.

4.Conclusions

1. Analytical dependencies were derived for determining the stiffness of spatial
compositions of elastic balls for simple cubic and face-centered cubic packings,
which represent opposite boundary models in terms of layer porosity.

2. It was established that the stiffness of the face-centered cubic ball composition
slightly exceeds that of the simple cubic packing, remaining within the acceptable
margin of error for engineering calculations.

3. The formulas for face-centered cubic ball packing are more suitable for
practical calculations.

4. The results of this study can be applied in modeling the stress-strain state of the
technological ball load in vibratory, planetary, and other types of mills, for modeling
layers of solid granular materials with particle shapes approximating isometric, and
for determining the elasticity of filler frameworks in composite materials with
significantly different component elasticity characteristics.
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BU3HAYEHHS XXOPCTKOCTI OB’€MHOI KOMMO3WLII NPY)XXHUX KYNb B YMOBAX
OOHOBICHOIO CTUCKY
LllesueHko ., Tumoe O., Xaddad []x., Camodpueaa O., KpacHokymcbkud O.

AHoTauif. MeTot gaHoi poboTi € aHaniTUYHI 3aeXHOCTI OAHOBICHOI XOPCTKOCTI MPOCTOPOBOI KOMMO3MLii MPYXHMUX
KyNb OHAKOBOrO PO3MIpY Bif napameTpiB Takoi komno3uuii, 6epydi 4o yBaru ii 06’eMHy CTpykTypy. [NpoaHarnizoBaHo
niTepatypHi [pxepena Woao TUMIB YKNAZoK Kymb, siKi MaloTb MpaKTWYHE 3acTOCYBaHHA Anst onucy OyooBu KpucTanis,
KOMMO3WTHUX MaTepiania, KynMbOBOTO 3aBaHTAXEHHS MIMHIB pisHMX TumiB. [ns pospaxyHKy >KOPCTKOCTi TPUBMMIPHOI
KOMMO3MLiT Kynb B3ATO 3a OCHOBY TEOPIl0 KOHTaKTY MpyxHUX Kynb [.Tepua, 3a SKOI XapakTep 3anekHOCTi 3ycunns
CTUCKaHHS Bif 30/VKEHHST LIEHTPa KyNb Ma€e HEMiHiNHWA xapakTep 3i cTyneHem 1,5. MoeaHy0um y NpoCTopi OKPEMI KOHTAKTH
KyNb, BW3HAYEHO HEMiHiMHY XOPCTKICTb ANS MpOCTOi KyGiuHOI Ta rpaHeLeHTpoBaHoi Ky6iuHOT YKnadok Kymnb Y BUNaaky
O[HOBICHOrO CTUCKY. Lli TMNW yKNagoK B3ATO AK rpaHUuHi BUMadKW perynapHuX YKNagok Kyrb, 30Kpema, nepuy —  §K
HaliMEHLU LLifbHY 3 MOXIMBUX YKNadoK, a Apyry — sK HanbinbL winbHy. CnovaTky BU3HAYEHO XKOPCTKICTb OOMHOYHOMO
wapy yKnagku Kynb B MAOWMHI, WO NepneHauKynsapHa 00 HanpsMKy CUMM CTUCKY, LWNSXOM [OAaBaHHs napanensHo
NOeAHaHMX XOPCTKOCTEM YCIX Kynb. Ha HacTynHOMY KpoOUi, BU3HAYEHO CyMapHy XOPCTKICTb MPOCTOPOBOI KOMMO3WLi
Kynb MpW CTUCKAHHI MK JBOMa MacWMBHUMM NNWTaMu Yepe3 MOCMifZOBHE NOEJHAHHS XOPCTKOCTEN YCIX OAMHOYHWX
LapiB 3a BUCOTOK KOMNO3uLii. B3ATO 40 yBaru BiGMIHHOCTI )XOPCTKOCTEN ENEMEHTHUX KOHTaKTIB KyNb Mix COBOI0 Ta 3
oOMexyto4oio Wwap nnuTow. B pesynbrarti, 0TpUMaHO hopMynmM Ans BU3HAYEHHS! O4HOBICHOI XOPCTKOCTI MPOCTOPOBOI
KoMno3uuii Kynb ANs ABOX rPaHWYHUX TUMIB YKMNaAOK B 3aNEeXHOCTi Bif MPYXHWUX BAcTUBOCTEN maTtepiany Kynb Ta
MaCMBHWX NEpPeLKod, AiameTpy Kynb Ta rabaputis aedpopmoBaHoi komnoauuii Kynb. Ilig yac NopiBHAHHS XOPCTKOCTEN
YKMagoK He BpaxoByBaBCA KOEQiLLIEHT TepTs, SK Yepes Moro HEBENUYKMIA BNNMB, TaK i Yepes Moro piske 3MEHLUEHHS B
ymoBax BibpaLlii abo HasiBHOCTi PiaWHM Ha KOHTaKTax Kynb. 3poBneHo BUCHOBKM MPO Te, WO, MO-NepLue, XOpCTKiCTb
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KoMno3uuii Kynb ANS rpaHeLeHTPoBaHOI KyOiYHOT YKNaaKn HECYTTEBO NEPEBMLLYE XOPCTKICTb ANS NPOCTOi KyGidHOI
YKMagkW, NPakTUYHO B MEXax MNpUMyCTUMOI MOXMOKW iHXEHEepHUX po3paxyHkiB. [lo-gpyre, copmynu  ans
rpaHeLeHTPOBaHOI KyOGiuHOI yknagku Kynmb Oinbly NPUIAHATHI NS NPaKTUMHWMX PO3paxyHkiB. [o-TpeTe, pesynbTatu
po6OTN MOXYTb OYTW BMKOPUCTaHi ANS MOZENtOBaHHS HanpyXeHO-AeOPMOBAHOTO CTaHy TEXHOMOMYHOTO KynbOBOrO
3aBaHTaXEHHs BibpaLiHMX, MNAaHETaPHNX Ta iHLWWX TUMIB MAWHIB, 4719 MOLENOBAHHS MOBEHKM NPOLLAPKIB i3 TBEPAMX
CUMKUX MaTepianis 3 )opmoio WMaTkiB, HabMKEHOI 4O i30METPUYHOI, @ TaKOX AN BU3HAYEHHS MPYKHOCTI Kapkacy
3aroBHI0BaYiB KOMMNO3WUTHUX MaTepianis i3 CyTTEBOLO BIAMIHHICTIO NPYXXHUX XapakTepUCTUK KOMNOHEHTIB.
KntoyoBi cnoBa: yknaaka Kyrb, OGHOBICHUIA CTUCK, XXOPCTKICTb, KOMMO3MTHIUA MaTepian, MIvH.
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