THTEJIEKTYAJIbHI
IHOOPMAILIIMHI TEXHOJIOI'T

INTELLECTUAL
INFORMATION TECHNOLOGIES

https:/ /doi.org/10.15407 /intechsys.2025.02.081
UDC 004.91

A.H. ADAMCHUK, Student,

National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”,
37, Beresteyskyi ave., Kyiv, 03056, Ukraine

ann.adamchuk2002@gmail.com

V.I. SUSHCHUK-SLUSARENKO, Senior Lecturer,

National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”,
37, Beresteyskyi ave., Kyiv, 03056, Ukraine

https:/ / orcid.org/0000-0002-6096-3832

Sushchuk.Viktoriia@Ill.kpi.ua

A.L. DYCHKA, PhD (Engineering), Assistant,

National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”,
37, Beresteyskyi ave., Kyiv, 03056, Ukraine

https:/ / orcid.org/0000-0003-0578-2788

andriydychka@gmail.com

AUTOMATED AUTHORSHIP

IDENTIFICATION OF PROGRAM
CODE BASED ON A METRIC SYSTEM

The paper reviews existing methods for automated program code authorship attribution and
then proposes an original method based on a system of metrics. The proposed method uses a
metric system grounded in the “fingerprinting” technique. The metrics reflect the individual
stylistic features of a programmer, regardless of the programming language.

Keywords: metrics, attribution, source code, authorship identification, information system..

Terminology

Metric — a numerical indicator used to measure and analyze the charac-
teristics of a specific object, system, or process.

Author Profile — a set of characteristics (metrics) that define an in-
dividual’s coding style.

Cite: Adamchuk A H., Sushchuk-Slusarenko V.1, Dychka A.l. Automated Authorship
Identification of Program Code Based on a Metric System. Information Technologies and
Systems, Kuis, 2025, Tom 2 (2), 81-89. https:/ /doi.org/10.15407/ intechsys.2025.02.081
© Bupmasens B «Axanemmiepiomyka» HAH Yxpairaw, 2025. Crarrs orry6riikopaHa Ha yMo-
Bax Bimkpuroro noctyiy 3ainensiero CCBY-NC-NDlicense (https:/ / creativecommons.
org/licenses/by-nc-nd/4.0/)

ISSN 3083-6573. Information Technologies and Systems. 2025. No. 2 (2) 81

A.H. Adamchuk, V.I. Sushchuk-Slusarenko, A.l. Dychka

Cyclomatic Complexity — a software metric that evaluates the num-
ber of independent paths through a program.

Introduction and Problem Statement

Determining the authorship of program code is an extremely important
aspect of detecting unlawful activities in various domains. In particular,
it applies to identifying the authorship of malicious code that has infiltrat-
ed an information system through unauthorized access, as well as detect-
ing information theft using specially designed software. Given the contin-
uously growing number of cyber threats, the ability to accurately attribute
authorship to malicious programs is critically important for ensuring the
security of information systems. Additionally, program code authorship
identification plays a key role in detecting copyright violations and ensur-
ing academic integrity, which is especially relevant in the digital era.

Currently, automated methods for determining the authorship of
texts written in natural languages are considered well-developed. Howe-
ver, attempts to apply these methods to artificial languages, particularly
programming languages, do not yield the desired results. This is due to
the fact that artificial languages have a significantly smaller vocabulary
and much stricter syntactic rules for constructing statements. Thus, deve-
loping a new method for automated authorship identification of program
code is a relevant challenge today.

The goal of this study is to improve the accuracy of program code
authorship identification by developing a method that can be adapted to
any programming language and focuses on the individual coding style of
different authors. To achieve this goal, it is necessary to review existing
solutions for program code authorship attribution, analyze their advan-
tages and disadvantages, and, based on the findings, develop a new me-
thod and implement its software realization.

Literature Review

The most common method for determining the authorship of program
code is the n-gram attribution method, which analyzes sequences of 1 ele-
ments consisting of adjacent letters, syllables, or other lexical units in the
examined text [1]. This method is independent of a specific programming
language since it operates on low-level data. However, it has a significant
drawback: the core elements of this method are susceptible to subjective
manipulation. Specifically, if an attacker knows the frequency of an author’s
characteristic n-grams, they can easily forge that author’s style.
Metric-based methods are also used to determine the authorship of
texts written in artificial languages. These methods differ in the number
and type of indicators used to construct metrics. For example, one of the
earliest code attribution methods, Holsted’s metrics [2], relies on only 16
indicators, which is insufficient for accurate authorship identification.

82 ISSN 3083-6573. Incpopmayinini mexroaoeii ma cucmemu. 2025. No 2 (2)

Automated Authorship Identification of Program Code Based on a Metric System

Another method, IDENTIFIED [3, 4], developed for the C++ program-
ming language, utilizes cyclomatic complexity and graph-based metrics.
Additionally, this method takes into account comments in the code.

A more recently developed method, program “fingerprinting” [5], in-
cludes 48 different metrics. This method works specifically for Java pro-
grams and achieves an accuracy of approximately 73%. The research sug-
gests that source code metrics can indeed help in identifying authorship.
However, a major limitation of such metrics is their dependence on the
programming language.

To this review, it is worthwhile to add an analysis of contemporary
achievements in this field. In particular, study [6] presents an innovative
approach that achieves 93-95% accuracy through:

e an expanded set of metrics including: stylistic formatting features,
patterns of language construct usage, and abstract syntax tree character-
istics;

» a language-agnostic approach that works with various programming
languages, unlike most existing methods focused on specific languages
(e.g., Java in the “fingerprinting” method);

e deep analysis of structural code features that are more resistant to
intentional modification, significantly complicating attempts to forge au-
thorial style.

It is important to note that this method demonstrates substantially
higher accuracy (93-95%) compared to the aforementioned “fingerprint-
ing” method, while also having broader applicability due to its language
independence. However, like other metric-based approaches, it requires
significant computational resources for analyzing large codebases.

Other modern approaches to code authorship attribution should also
be analyzed. For instance, Graph-Based methods (e.g., GraphCodeBERT
[7]) utilize analysis of code dependency graphs (DFG) combined with tex-
tual features, enabling detection of unique function call patterns. A draw-
back of such methods is the requirement for preliminary graph construc-
tion for each code sample, which complicates analysis of large projects.

Another employed solution is Ensemble Learning [8]. This approach
involves combining predictions from multiple classifiers (SVM, Random
Forest, CNN), improving accuracy to 94%. Its disadvantages include high
computational complexity and the need for repeated model training.

Thus, the aforementioned methods cover scenarios where classical ap-
proaches are ineffective (binary analysis, small datasets). However, many of
them require specialized computational resources or deep ML expertise.

A Metric System for Automated Authorship
Identification of Program Code

For further modification in this study, we selected the metric system de-
fined in the program “fingerprinting” method. This system was expanded
by adding new indicators, such as the frequency of logical operators, com-

ISSN 3083-6573. Information Technologies and Systems. 2025. No. 2 (2) 83

A.H. Adamchuk, V.I. Sushchuk-Slusarenko, A.l. Dychka

parison operators, increments and decrements, the presence of prefixes
and suffixes in variable names, and others. The number of metrics in the
expanded system increased to 65.

Next, all metrics were divided into two groups: basic metrics — adap-
table to any programming language, and specialized metrics — those that
differ depending on the programming language. For convenience, the
basic metrics were further categorized into four groups: keywords, ope-
rators, delimiters, identifier names.

The specialized metrics include language-specific keywords and op-
erators for Java, Python, C++, and JavaScript. Below, we examine these
metric groups in more detail.

Keywords. This category measures the frequency of different key-
words, revealing a programmer’s specific preferences. For instance, some
developers favor “if” statements over “switch/case” even when both op-
tions are interchangeable, or they might prefer “for” loops over “while”
loops. Another example is the preference for “try + catch” blocks instead
of handling errors with conditional statements. Analyzing such patterns
helps track a developer’s unique stylistic choices, particularly their incli-
nation toward certain conditional statements and constructs.

Operators. This category includes metrics that reflect the frequency of

VAR T/ A

operators such as “+”, “-"”, “*” * /7 “%” and others. It also examines how
a developer uses comparison operators (“==", “1=",“>” “<”) and logical
operators (&&, | |). Additionally, the use of increment (“++”) and decre-
ment (“--") operators versus more explicit expressions (e.g., “x =x +17) is
considered. This category helps determine how a programmer structures
mathematical operations, conditions, and logical checks in their code.

Delimeters. This category analyzes the frequency and style of using
various delimiters, such as spaces, tabs, and newlines, which affect the
structure and readability of the code. These symbols help organize text
blocks and highlight nested structures (e.g., conditional statements or
loops). The placement of spaces around operators is also taken into ac-
count. Some developers prefer writing “x = y + z”, while others use a more
compact style like “x=y+z".

Additionally, this category considers the use of optional symbols in
some programming languages, such as semicolons (“;”), as well as differ-
ent types of quotes and commenting styles. Metrics in this category reveal
how carefully a programmer formats their code, ensuring readability and
adherence to stylistic conventions.

Identifier names. This group includes metrics that analyze variable,
class, and method naming styles. First, it considers naming conventions
(camelCase, PascalCase, etc.). Second, some programmers prefer short
names (i, tmp) in small functions, while others use descriptive names (in-
dexCounter, temporaryStorage) for clarity. Third, it accounts for cultural dif-
ferences, such as using transliterated words from the developer’s native
language (knyga instead of book). Finally, the use of standard prefixes and

84 ISSN 3083-6573. Incpopmayinini mexroaoeii ma cucmemu. 2025. No 2 (2)

Automated Authorship Identification of Program Code Based on a Metric System

suffixes is assessed, such as is, get, and others to indicate boolean variables
or getter methods (e.g., isAvailable, getName). The correct use of suffixes
for data structures (list for arrays/lists, map for dictionaries) is also eva-
luated. These characteristics can reveal a programmer’s experience, edu-
cation, and habits.

Specialized metrics. Specialized metrics account for unique keywords
and operators in each programming language. This is crucial because dif-
ferent languages have unique constructs that reflect their design philo-
sophy. For example, null in Java has analogous representations in other
languages: None in Python, nullptr in C++, null in JavaScript.

Automated Method for Determining
Source Code Authorship

The previously described metrics are applied in the developed method
for automated authorship identification of source code to establish an
author’s stylistic characteristics. The method consists of six stages.

Stage 1. Collecting source code from projects

At this stage, software projects with known authorship are selected to
form a reference database, along with one project under investigation that
needs analysis. The source code of each selected project serves as the basis
for calculating metric values, which will be used for further analysis.

Stage 2. Removing auxiliary files from the project

To ensure accurate analysis and prevent bias in the results, all auxi-
liary files that do not contain core source code are removed. These may in-
clude configuration files (XML, JSON, YAML), compiled files (.class or .0),
test files, or other files unrelated to the program’s primary functionality.

Stage 3. Calculating basic metrics.

For each project, the values of basic metrics are computed.

Stage 4. Calculating special metrics.

If the project contains source code files in C++, Java, Python, or
JavaScript, the special metrics are also computed.

Stage 5. Comparing the investigated project’s metrics with other pro-
jects” metrics

The basic metrics are compared across projects. If both projects con-
tain special metrics, those are also included in the comparison. The devia-
tion of the investigated project’s metric values from those of other projects
is calculated.

Stage 6. Presenting the results.

The analysis results are presented as a percentage similarity between
the investigated project’s metric values and those of other projects. The
project with the highest similarity percentage should belong to the same
author as the investigated project.

ISSN 3083-6573. Information Technologies and Systems. 2025. No. 2 (2) 85

A.H. Adamchuk, V.I. Sushchuk-Slusarenko, A.l. Dychka

Is there code
on C++, Java,

Yes

Software - Python, or JS?
projects Calculat}on
of the project's
specific metric
values
Removing | >
all service files
from the project Comparing the metrics
of the analysed
project with those
of other projects
Calculation
of the project’s

basic metric Results of the
values comparison
as a percentage
ratloy

End

Fig. 1. Sequence of stages of the proposed method

Software Implementation of the Method

In the software implementation of the proposed method, metric values
of the investigated project are compared not with the metric values of
other projects but with the metric values from author profiles. Initially, for
each author’s projects — there may be one or more — the method’s stages
2 to 4 are applied, meaning auxiliary files are removed, and either basic or
both basic and special metrics are calculated. Based on these metric values,
an author profile is created: the metric values of all projects by a single
author are averaged.

For the development of the software project implementing the pro-
posed method, Python was chosen due to its powerful data processing
capabilities. The following libraries were used: NumPy, pandas, and
SQLAIchemy. The database management system PostgreSQL is used for
database interaction. The server side of the project is built using the Flask
framework, which handles request processing, routing, database interac-
tion, and API implementation. The front-end interface is developed using
Vuejs, enabling the creation of a dynamic and user-friendly interface.

The web application follows a modular architecture.

The client-side includes the following modules:

86 ISSN 3083-6573. Incpopmayinini mexroaoeii ma cucmemu. 2025. No 2 (2)

Automated Authorship Identification of Program Code Based on a Metric System

o API interaction module — responsible for communication between
the user interface and the server, sending requests to the server API and
receiving responses to be displayed in the graphical interface;

e graphical interface components — implement user interaction
features.

The server-side includes an API controller module, which processes
requests from the client side and calls appropriate modules to perform
tasks, along with separate functional modules.

The API controller module contains the following submodules:

e module for working with data about authors, which provides crea-
tion, deletion and update of information about project authors;

» module for working with data about projects, which provides addi-
tion, deletion of information about projects;

e module for working with metrics, which provides addition, deletion
and update of metrics;

» module for working with results, which provides storage of results
of determining authorship.

Additional server-side modules:

 a module for calculating the values of basic metrics;

e a module for calculating the values of special metrics;

e a module for calculating the results, in which the deviations of the
metric values are calculated and the results are calculated in percentages;

e a module for interacting with the database, which performs the ope-
rations of saving, updating and retrieving data from the PostgreSQL da-
tabase.

The PostgreSQL database serves as a storage system for all necessary
information, including author data, project data, analysis results, and met-
ric values.

Conclusions

This study reviews existing methods for automated authorship attribution
of source code and proposes a new method based on an extended system
of metrics.

The proposed method utilizes a metric system based on the “finger-
print» approach to code analysis. These metrics capture the individual
stylistic characteristics of a programmer, regardless of the programming
language used. By computing metric values for projects, author profiles
can be generated, forming the basis for further authorship identification.

As a next step in the project, the authors consider it appropriate to
conduct experiments to evaluate the effectiveness of the proposed method
using different input data across various programming languages. Ad-
ditionally, they plan to compare the results obtained with the proposed
method against those derived using the Halstead metrics-based approach.

ISSN 3083-6573. Information Technologies and Systems. 2025. No. 2 (2) 87

A.H. Adamchuk, V.I. Sushchuk-Slusarenko, A.l. Dychka

REFERENCES

1.

Frantzeskou G., Stamatatos E., Gritzalis S., Chaski C. Identifying Authorship by
Byte-Level N-Grams: The Source Code Author Profile (SCAP) Method. International
Journal of Digital Evidence, Trier, Germany, 2007, Vol. 6 (1), 139-148. URL: https://
www.researchgate.net/publication/220542545_Identifying_Authorship_by_Byte-
Level _N-Grams_The_Source_Code_Author_Profile SCAP_Method [Accessed 12
Nov. 2024].

. Frantzeskou G., MacDonell S., Stamatatos E., Georgiou S., Gritzalis S. The significance

of user-defined identifiers in Java source code authorship identification Computer
Systems Science and Engineering. Samos, Greece, 2011.

. GrayA., Sallis P., MacDonell S. IDENTIFIED (Integrated Dictionary-based Extraction of

Non-language-dependent Token Information for Forensic Identification, Examination, and
Discrimination): a dictionary-based system for extracting source code metrics for software
forensics. IEEE Computer Society Press, Dunedin, New Zealand, 1998, 252-259 pp.
https:/ /doi.org/10.1109/SEEP.1998.707658

. Sallis P., Aakjaer A., MacDonell S. Software Forensics: Old Methods for a New Science.

IEEE Computer Society Press, Dundin, New Zealand, 1998, 367-371 pp. https://
doi.org/10.1109/SEEP.1996.534037

. Ding H., Samadzadeh M.H. Extraction of Java program fingerprints for software

authorship identification. The Journal of Systems and Software, 2004, Vol. 72 (1),
49-57. https:/ / doi.org/10.1016/S0164-1212(03)00049-9

. Abuhamad M., AbuHmed T., Mohaisen A., Nyang, D.H. Large-scale and language-

oblivious code authorship identification. Proceedings of the ACM SIGSAC Con-
ference on Computer and Communications Security, 2018, 101-114. https://doi.
org/10.1145/3243734.3243738

.Daya G. et al. GraphCodeBERT: Pre-training Code Representations with Data

Flow Proceedings of the ICLR 2021. URL: https://www.researchgate.net/publi-
cation/344294734_GraphCodeBERT_Pre-training_Code_Representations_with_
Data_Flow [Accessed 14 Nov. 2024]

Abbasi A., Javed A.R., Igbal F. et al. Authorship identification using ensemble learn-
ing. Scientific Reports, 2022, Issue 12. https:/ /doi.org/10.1038 /s41598-022-13690-4

Received 06.03.2025

88 ISSN 3083-6573. Incpopmayinini mexroaoeii ma cucmemu. 2025. No 2 (2)

Automated Authorship Identification of Program Code Based on a Metric System

A.I. Adamuyk, CTy/IeHTKa,

HarrioHayibHUVE TeXHIYHMI YHiBepCUTET YKpaiHu

«KwiBcpkmit mostiTexHivHmi iHCTUTYT iM. Iropst Cikopcbkoro»,
bepecreviceknit ipocrr., 37, m. Kuis, 03056, Ykpaina
ann.adamchuk2002@gmail.com

B.I. Cywyyx-Catocaperxo, cTapIil. BUKIagad,

HarioHaytbHUVI TeXHIYHU YHiBepCUTET YKpaiHu

«KwiBcpkmit mostiTexHivHmi iHCTUTYT iM. Iropst Cikopcbkoro»,
bepecrernicokni npocrtr. 37, m. Kuis, 03056, Yxpaina

https:/ / orcid.org/0000-0002-6096-3832
Sushchuk.Viktoriia@Ill.kpi.ua

A.L Huuxa, n-p dimocodii (TexH.), acucreHT Kad.,
HarrionanbHmii TeXHiYHWUIT YHiBepCUTEeT YKpaiHu

«KuiBcbkmit nonitexHiunamiz incturyT im. Irops Cikopcbkoro»,
Bepecrericbkui mpocrtr. 37, M. Kuis, 03056, Ykpaina

https:/ / orcid.org/0000-0003-0578-2788
andriydychka@gmail.com

ABTOMATWM30OBAHE BIM3HAYEHHS ABTOPCTBA
IMTPOIPAMHOI'O KOOy HA OCHOBI CMCTEMIM METPVIK

Beryn. BusHaueHHS aBTOpCTBa IIPOrpaMHOro KoAy HaOyBa€ BaK/IMBOIO 3HAUEHHS B
Cy4acHMX YMOBaXx, KOJIM 3pocTa€ KiIbKicTh Kibep3arpos, akTyali3yeTbcsa 3aXUCT
aBTOPCBKMX ITIpaB 1 3abe3meuveHHsT akazeMmiuHOl poOpouecHocTi. Y craTTi
IPOJIeMOHCTPOBAHO MeTO/], aBTOMaTM30BaHOIO BU3HAaUeHH: aBTOPCTBa IIPOrPaMHOI0O
3abe3neueHHs IUISIXOM aHaJIi3y BUXiTHOro kozy. MeTo, po3ImpIoe crcTeMy MeTPUK,
III0 3aCTOCOBAaHAa B METOIi «BiIOWMTKiB» Iporpamm, IO [IO3BOJISE IIpallloBaTu 3
MyJIBTVIMOBHMMM IIpoeKTaMm. Lli MeTpmKM BUKOPMCTOBYIOTBCS IS CTBOPEHHS
«11podisIiB aBTOPiB» Ha OCHOBI HAsIBHOI'O KOy IpOrpaMicTa, 1110 J03B0JIsI€ IIepeBipsAT
aBTOPCTBO B iHIINX IIPOTPaMHMX IIPOEKTAX.

Meta crarri. MeToo MHOCITKeHHSI € INABUINEeHHS TOYHOCTI BU3HAYEHHS
aBTOPCTBa IIPOrPaMHOIO KOy IUISXOM pO3po0JIeHHd MeTOAy, alalToBaHOIo I
OyIb-sIKi MOBY IIPOrpaMyBaHHS.

Metonmu. MeTo aBTOMaTM30BaHOTO BU3HAYeHHS aBTOPCTBa ITPOrPaMHOIO
KOy pO3pO0IeHO Ha OCHOBi CHCTeMW METPWK, 110 BKIIIOYAIOTh YOTMPW KaTeropii
0a30BVIX MeTPUK: KJIFOUOBI CJIOBa, OIepallilfHi CIMBOJIV, PO3/IUTOBi CIMBOJIV Ta iMeHa
inenTndikaropiB, a TakoX creriaapbHi MeTpuKku. IS BM3HAYEHHS aBTOPCTBA
30MpaloThcsl IIPOrpaMHi MPOEKTM 3 JIOCTOBIpHOIO iH(OpMalliclo Ipo aBTOPCTBO,
00YNCITIOIOTHCS 3HaUEHHS 0a30BVIX Ta CIIELia/IbBHMX METPVIK IIVIX IIPO€EKTIB, ITiCIISL 4YOTO
dopmytoThCs Ipodisti aBTOPiB Ha OCHOBI cepenHix 3HaueHb 11X MeTpuK. Ilomasnbire
MOpIBHSHHS 3HauYeHb METPUK OCIIKYBaHOIO KOOy 3 MeTpuKaMmu 3 Ipodisert
aBTOPiB JO3BOJIsE ieHTNdIKyBaT aBTOpa KO/y.

Pesynprar. B poOoTi IIpoBeieHO OIVIAM, iCHYyIOUNMX METOMiB aBTOMAaTU30BaHOIO
BU3HaAUeHH: aBTOPCTBA IPOrPaMHOrO KOAy, ITiCJIsI YOTo 3allpOOHOBAaHO BJIACHWM
MeTO/, Ha OCHOBiI BMKOPWICTAaHH: CHUCTeMM MeTPUK. 3aIpOIIOHOBaHWII MeTOf,
BUKOPWCTOBY€ CHUCTEMY METPWK, B OCHOBY $IKOI IIOKJIaJIeHO METOJ «BigOWMTKiB».
Merpukn BimoOpaXaroTh iHAMBIOyaTbHI CTWICTMYHI OCOOIMBOCTI IIporpamicra
He3aJIeXXHO BiJl MOBV IIpOrpaMyBaHHs.

BucHoBKM. Matepianm crarri OyayTh KOPpMCHMMM IIPWM BUPpillleHHi 3amad
aBTOMAaTW30BaHOIO BM3HAYeHHs aBTOPCTBA IIPOrPaMHOIO KOy .

Katouobi caoba: mempuxu, ampudyyis, 6Buxionuti xod, 6usnauenns abmopcmba,
iHhopMayitina cucmema.

ISSN 3083-6573. Information Technologies and Systems. 2025. No. 2 (2) 89

