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Reachability and Controllability Problems

for the Heat Equation on a Half-Axis

Larissa Fardigola and Kateryna Khalina

In the paper, problems of controllability, approximate controllability,
reachability and approximate reachability are studied for the control system
wt = wxx, w(0, ·) = u, x > 0, t ∈ (0, T ), where u ∈ L∞(0, T ) is a control.
It is proved that each end state of this system is approximately reachable in
a given time T , and each its initial state is approximately controllable in a
given time T . A necessary and sufficient condition for reachability in a given
time T is obtained in terms of solvability a Markov power moment problem.
It is also shown that there is no initial state that is null-controllable in a
given time T . The results are illustrated by examples.
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1. Introduction

Consider the heat equation on a half-axis

wt = wxx, x ∈ (0,+∞), t ∈ (0, T ), (1.1)

controlled by the boundary condition

w(0, ·) = u, t ∈ (0, T ), (1.2)

under the initial condition

w(·, 0) = w0, x ∈ (0,+∞), (1.3)

and the steering condition

w(·, T ) = wT , x ∈ (0,+∞), (1.4)

where T > 0, u ∈ L∞(0, T ) is a control,
(
d
dt

)m
w : [0, T ] → H−2m

©0 , m = 0, 1,

w0, wT ∈ H0
©0 = L2(0,+∞). Here, for m = 0, 1, 2,

Hm
©0 =

{
ϕ ∈ L2(0,+∞) |

(
∀k = 0,m ϕ(k) ∈ L2(0,+∞)

)
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∧
(
∀k = 0,m− 1 ϕ(k)(0+) = 0

)}
with the norm

‖ϕ‖m©0 =

√√√√ m∑
k=0

(
m

k

)(∥∥ϕ(k)
∥∥
L2(0,+∞)

)2
,

and H−m©0 =
(
Hm
©0

)∗
with the strong norm ‖·‖−m©0 of the adjoint space. We have

L2(0,+∞) =
(
H0
©0

)∗
= H−0

©0 .

In the paper, we study reachability and controllability problems for the heat
equation on a half-axis. Note that these problems for the heat equation on do-
mains bounded with respect to spatial variables were investigated rather com-
pletely in a number of papers (see, e.g., [3, 10, 12] and references therein). How-
ever, controlability problems for the heat equation on domains unbounded with
respect to spatial variables have not been fully studied. The problems for this
equation were studied in [1,2,8,9,11]. In particular, in [9], the null-controllability
problem for control system (1.1)–(1.3) with L2-control (u ∈ L2(0, T )) was studied
in a weighted Sobolev space of negative order. Using similarity variables and de-
veloping the solutions in the Fourier series with respect to the orthonormal basis
{φm}∞m=1, the authors reduced the control problem to a moment problem∫ S

0
emsũ(s) ds = αm, m = 1,∞,

where φm(y) = CmH2m−1(y/2)e−y
2/4, H2m−1 is the Hermit polynomial, αm is

determined by the Fourier coefficient of the initial state of reduced control prob-
lem, m = 1,∞. The solution to the moment problem determines a solution to
the control problem and vice versa. The authors proved that the moment prob-
lem admits an L2-solution iff αm grows exponentially as m→∞. In particular,
they proved that if αm = O(emδ) as m → ∞ for all δ > 0, then the initial state
associated with {αm}∞m=1 cannot be steered to the origin by L2-control. In [9],
it was also asserted that each initial state is approximately null-controllable in a
given time T > 0 by L2-controls.

In the present paper, we study control system (1.1)–(1.3) in H0
©0 = L2(0,+∞)

with L∞-control (u ∈ L∞(0, T )). Note that L∞-controls allow us to consider
initial states and solutions of the control system in the Sobolev space of order
zero in contrast to [9], where the system was studied in a weighted Sobolev space
of negative order as a result of using L2-controls. In Section 3, considering the odd
extension with respect to x of the initial state and the solution to (1.1)–(1.3), we
reduce this system to control system (3.1), (3.2) in spaces H̃m of all odd functions
of Hm. Further, control system (3.1), (3.2) is considered instead of control system
(1.1)–(1.3). In Section 4, we obtain the necessary and sufficient condition for an
end state W T to be reachable from the origin by using controls u ∈ L∞(0, T )
bounded by a given constant L > 0. Next, the reachability problem is reduced to
an infinite Markov power moment problem (Theorem 4.4). Moreover, it is proved
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that the solutions to the finite Markov power moment problem give us controls
bounded by L and solving the approximate reachability problem (Theorem 4.5).
The result of this theorem is illustrated by Examples 8.1 and 8.2 in Section 8.
In Section 5, we prove that each end state W T ∈ H̃0 is approximately reachable
from the origin, using controls u ∈ L∞(0, T ), in a given time T > 0 (Theorem
5.2). To prove this theorem, we develop W T in Fourier series with respect to
{ψTn }∞n=0, ψTn (x) = H2n+1(x/

√
2T )e−x

2/(4T ), n = 0,∞. First, for each n = 0,∞,
we find a sequence of controls {unl }∞l=0 that solves the approximate reachability
problem for the end state ψTn . We use the Fourier transform with respect to x
and find these controls from the relation

(
FψTn

)
(σ) = (−1)n+1i

√
2TH2n+1(

√
2Tσ)e−Tσ

2
= −

√
2

π
iσ

∫ T

0
e−ξσ

2
u(T − ξ) dξ.

Note that unl → δ(n) as l → ∞ in D′ for each n = 0,∞ (δ is the Dirac distribu-
tion). Then we find the controls uN , N ∈ N solving the approximate reachability
problem

uN =
N∑
p

UNp u
p
lNp
,

where UNp ≥ 0 is a constant, p = 0, N . The results of this section are illustrated
by Example 8.3 in Section 8. In Section 6, using Theorem 3.1 from [9], we prove
that there is no initial state W 0 ∈ H̃0 that is null-controllable in a given time T >
0 by using controls u ∈ L∞(0, T ). In Section 7, from Theorem 5.2 of Section 5 it
immediately follows that each initial state W 0 ∈ H̃0 is approximately controllable
to any end state W T ∈ H̃0, using controls u ∈ L∞(0, T ), in a given time T > 0.

2. Notation

Introduce the spaces used in the paper. For m = 0, 1, 2, denote

Hm =
{
ϕ ∈ L2(R) | ∀k = 0,m ϕ(k) ∈ L2(R)

}
with the norm

‖ϕ‖m =

√√√√ m∑
k=0

(
m

k

)(∥∥ϕ(k)
∥∥
L2(R)

)2
,

and H−m = (Hm)∗ with the strong norm ‖·‖−m of the adjoint space. We have
H0 = L2(R) =

(
H0
)∗

= H−0.

For n = −2, 2, denote

Hn =
{
ψ ∈ L2

loc(R) |
(
1 + σ2

)n/2
ψ ∈ L2(R)

}
with the norm

‖ψ‖n =
∥∥∥(1 + σ2

)n/2
ψ
∥∥∥
L2(R)

.
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Evidently, H−n = (Hn)∗.

By F : H−2 → H−2, denote the Fourier transform operator with the domain
H−2. This operator is an extension of the classical Fourier transform operator
which is an isometric isomorphism of L2(R). The extension is given by the formula

〈Ff, ϕ〉 = 〈f,F−1ϕ〉, f ∈ H−2, ϕ ∈ H2.

This operator is an isometric isomorphism of Hm and Hm, m = −2, 2 [5, Chap. 1].

A distribution f ∈ H−2 (or H−2) is said to be odd if 〈f, ϕ(·)〉 = −〈f, ϕ(−(·))〉,
ϕ ∈ H2 (or H2 respectively).

By H̃n, denote the subspace of all odd distributions in Hn, n = −2, 2. Evi-
dently, H̃n is a closed subspace of Hn, n = −2, 2.

Remark 2.1. Note that, for ϕ ∈ Hm
©0 , its odd extension ϕ(·)−ϕ(−(·)) belongs

to H̃m, m = 0, 1, 2. The converse assertion is true only for m = 0, 1, and it is not
true for m = 2. That is why the odd extension of a distribution f ∈ H−m©0 may

not belong to H̃−m, m = 1, 2. However, the following theorem holds.

Theorem 2.2 ([4]). Let f ∈ H0
©0 and there exist f(0+) ∈ R. Then f ′′ ∈ H−2

©0
can be extended to the odd distribution F , and F ∈ H̃−2. This distribution is
given by the formula

F =
(
f(·)− f(−(·))

)′′ − 2f(0+)δ′, (2.1)

where δ is the Dirac distribution.

3. Preliminary

Consider control problem (1.1)–(1.3). Let W 0 and W (·, t) be the odd exten-
sions of w0 and w(·, t) with respect to x, t ∈ [0, T ]. If w is a solution to problem
(1.1)–(1.3), then W is a solution to the following problem:

Wt = Wxx − 2uδ′, x ∈ R, t ∈ (0, T ), (3.1)

W (·, 0) = W 0, x ∈ R, (3.2)

according to Theorem 2.2. Here W 0 ∈ H̃0,
(
d
dt

)m
W : [0, T ] → H̃−2m, m = 0, 1,

δ is the Dirac distribution with respect to x. The converse assertion is also true:
if W is a solution to (3.1), (3.2), then its restriction w = W |(0,+∞) is a solution
to (1.1)–(1.3), and

W (0+, t) = u(t) a.e. on [0, T ] (3.3)

(see below (3.10)). Evidently, (1.4) holds iff

W (·, T ) = W T (3.4)

holds, where W T is an odd extension of wT .
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Consider control problem (3.1), (3.2). Denote V 0 = FW 0 and V (·, t) =
Fx→σW (·, t), t ∈ [0, T ]. We have

Vt = −σ2V −
√

2

π
iσ u, σ ∈ R, t ∈ (0, T ), (3.5)

V (·, 0) = V 0, σ ∈ R. (3.6)

Therefore,

V (σ, t) = e−tσ
2
V 0(σ)−

√
2

π
iσ

∫ t

0
e−(t−ξ)σ2

u(ξ) dξ, σ ∈ R, t ∈ [0, T ], (3.7)

is the unique solution to (3.5), (3.6). Since u ∈ L∞(0, T ), we have

|V (σ, t)| ≤ |V 0(σ)|+
√

2

π
‖u‖L∞(0,T )

1− e−tσ2

|σ|
, σ ∈ R, t ∈ [0, T ]. (3.8)

Hence V (·, t) ∈ H̃0, t ∈ [0, T ]. From (3.7), we obtain

W (x, t) =
e−

x2

4t

√
4πt
∗W 0(x) +

√
2

π
x

∫ t

0
e
−x

2

4ξ
u(t− ξ)
(2ξ)3/2

dξ. (3.9)

Since for any t ∈ (0, T ] the function e−
x2

4t√
2t
∗ W 0(x) is odd and continuous, we

obtain

e−
x2

4t

√
2t
∗W 0(x)→ 0 as x→ 0+.

Setting µ = |x|
2
√
ξ
, we get

x

∫ t

0
e
−x

2

4ξ
u(t− ξ)
(2ξ)3/2

dξ =
√

2 sgnx

∫ ∞
|x|/(2

√
t)
e−µ

2
u

(
t− x2

4µ2

)
dµ.

According to Lebesgue’s dominated convergence theorem, we get

W (0+, t) =
2√
π
u(t)

∫ ∞
0

e−µ
2

= u(t) a.e. on [0, T ], (3.10)

i.e., (3.3) holds.
Thus control systems (1.1)–(1.3) and (3.1), (3.2) are equivalent. Therefore,

basing on this reason, we will further consider control system (3.1), (3.2) instead
of original system (1.1)–(1.3).

4. Reachability

Definition 4.1. For control system (3.1), (3.2), a state W T ∈ H̃0 is said to
be reachable from a state W 0 ∈ H̃0 in a given time T > 0 if there exists a control
u ∈ L∞(0, T ) such that there exists a unique solution to (3.1), (3.2), (3.4).
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By RT (W 0), denote the set of all states W T ∈ H̃0 reachable from W 0 in the
time T .

According to (3.9), we have

RT (W 0) =
{
W T ∈ H̃0 | ∃v ∈ L∞(0, T )

W T =
1√
2π

e−
x2

4T

√
2T
∗W 0(x) +

√
2

π
x

∫ T

0
e
−x

2

4ξ
v(ξ)

(2ξ)3/2
dξ

 , (4.1)

in particular,

RT (0) =

{
W T ∈ H̃0 | ∃v ∈ L∞(0, T ) W T =

√
2

π
x

∫ T

0
e
−x

2

4ξ
v(ξ)

(2ξ)3/2
dξ

}
. (4.2)

First, we study RT (0). Denote also

RLT (0) =
{
W T ∈ H̃0 | ∃v ∈ L∞(0, T )

(
‖v‖L∞(0,T ) ≤ L

∧W T =

√
2

π
x

∫ T

0
e
−x

2

4ξ
v(ξ)

(2ξ)3/2
dξ

)}
. (4.3)

Evidently, the following theorem holds

Theorem 4.2. We have

(i) RT (0) = ∪L>0R
L
T (0);

(ii) RLT (0) ⊂ RL
′

T (0), L ≤ L′;

(iii)f ∈ R1
T (0)⇔ Lf ∈ RLT (0).

We can obtain the following necessary condition for f to belong to RLT (0).

Theorem 4.3. If W T ∈ RLT (0), then for any T ∗ > T ,∫ ∞
0

e
x2

4T∗
∣∣W T (x)

∣∣ dx ≤ L√T ∗

π
ln

√
T ∗ +

√
T√

T ∗ −
√
T
. (4.4)

Proof. Using (4.3), we have∫ ∞
0

e
x2

4T∗
∣∣W T (x)

∣∣ dx ≤√ 2

π
L

∫ ∞
0

e
x2

4T∗ x

∫ T

0
e
−x

2

4ξ
dξ

(2ξ)3/2

=

√
2

π
L

∫ T

0

1

(2ξ)3/2

∫ ∞
0

e
−x2

(
1
4ξ
− 1

4T∗

)
xdxdξ

=
L√
2π

∫ T

0

1

(2ξ)3/2

1
1
4ξ −

1
4T ∗

dξ = L

√
T ∗

π
ln

√
T ∗ +

√
T√

T ∗ −
√
T
.
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Theorem 4.4. Let W T ∈ H̃0 and (4.4) hold. Let

ωn =
n!

(2n+ 1)!

∫ ∞
0

x2n+1W T (x)dx, n = 0,∞. (4.5)

Then W T ∈ RLT (0) iff there exists v ∈ L∞(0, T ) such that ‖v‖L∞(0,T ) ≤ L and∫ T

0
ξnv(ξ)dξ = ωn, n = 0,∞. (4.6)

Proof. According to (4.3), W T ∈ RLT (0) iff there exists v ∈ L∞(0, T ) such
that ‖v‖L∞(0,T ) ≤ L and

W T =

√
2

π
x

∫ T

0
e
−x

2

4ξ
v(ξ)

(2ξ)3/2
dξ.

Denoting V T = FW T , we have

V T (σ) = −
√

2

π
iσ

∫ T

0
e−ξσ

2
v(ξ)dξ.

We see that V T (σ) is an odd entire function. Therefore,

∞∑
n=0

(
V T
)(2n+1)

(0)

(2n+ 1)!
σ2n+1 = V T (σ) = −

√
2

π
iσ
∞∑
n=0

(−1)n

n!
σ2n

∫ T

0
ξnv(ξ)dξ.

Since(
V T
)(2n+1)

(0) =

√
2

π

∫ ∞
0

(−ix)2n+1W T (x)dx = −i
√

2

π
(−1)n

(2n+ 1)!

n!
ωn, (4.7)

we conclude the assertion of the theorem.

Theorem 4.5. Let W T ∈ H̃0 and (4.4) hold. Let {ωn}∞n=0 be defined by
(4.5). If for each N ∈ N there exists vN ∈ L∞(0, T ) such that ‖vN‖L∞(0,T ) ≤ L
and ∫ T

0
ξnvN (ξ)dξ = ωn, n = 0, N, (4.8)

then W T ∈ RLT (0) (the closure is considered in H̃0).

Proof. By WN , denote the solution to problem (3.1), (3.2) with W 0 = 0 and
u(t) = vN (T − t). Denote also V T = FW T , VN (·, t) = Fx→σWN (·, t), t ∈ [0, T ].
Then VN is the unique solution to (3.5), (3.6) with V 0 = 0 and the same u.
Evidently, ∫ ∞

a

∣∣V T (σ)
∣∣2 dσ → 0 as a→∞. (4.9)

Let T > T ∗. Put

WT ∗ =

∫ ∞
0

e
x2

4T∗
∣∣W T (x)

∣∣ dx.
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For n = 0,∞, we have

(
V T
)(2n)

(0) = 0,
(
V T
)(2n+1)

(0) = (−1)ni

√
2

π

∫ ∞
0

x2n+1W T (x)dx. (4.10)

Therefore, using the Stirling formula:

√
2πnn+ 1

2 e−n ≤ n! ≤ enn+ 1
2 e−n, n ∈ N, (4.11)

we get ∣∣∣(V T
)(2n+1)

(0)
∣∣∣ ≤√ 2

π

∫ ∞
0

(
x2n+1e−

x2

4T∗

)(
e
x2

4T∗
∣∣W T (x)

∣∣) dx
≤
√

2

π
WT ∗

(
2n+ 1

2e

) 2n+1
2

(4T ∗)
2n+1

2

≤WT ∗
(2n+ 1)!

π
√

2n+ 1

(
2T ∗e

2n+ 1

) 2n+1
2

. (4.12)

Since

lim
n→∞


∣∣∣(V T

)(2n+1)
(0)
∣∣∣

(2n+ 1)!


1

2n+1

≤ lim
n→∞

(
WT ∗

π
√

2n+ 1

) 1
2n+1

√
2T ∗e

2n+ 1
= 0,

we can continue V T to an odd entire function. Hence,

V T (σ) =

∞∑
n=0

(
V T
)(2n+1)

(0)

(2n+ 1)!
σ2n+1, σ ∈ R. (4.13)

Due to (3.8), we get

|VN (σ, T )| ≤
√

2

π
L

1− e−Tσ2

|σ|
. (4.14)

Hence, ∫ ∞
a
|VN (σ, T )|2 dσ ≤ 2

π
L2

∫ ∞
a

∣∣∣∣∣1− e−Tσ
2

σ

∣∣∣∣∣ dσ ≤ 8L2

π

∫ ∞
a

dσ

σ2

=
8L2

πa
→ 0 as a→∞. (4.15)

According to (3.7), we get

VN (σ, T ) = −
√

2

π
iσ

∫ T

0
e−ξσ

2
vN (ξ)dξ

= −i
√

2

π

∞∑
n=0

(−1)n

n!
σ2n+1

∫ T

0
ξnvN (ξ)dξ. (4.16)
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Due to (4.8), we obtain

V T (σ)− VN (σ, T )

=

∞∑
n=N+1

σ2n+1

[(
V T
)(2n+1)

(0)

(2n+ 1)!
− i
√

2

π

(−1)n+1

n!

∫ T

0
ξnvN (ξ)dξ

]
. (4.17)

With regard to (4.12) and using (4.11), we get∣∣∣∣∣
(
V T
)(2n+1)

(0)

(2n+ 1)!

∣∣∣∣∣ ≤ WT ∗

π
√

2n+ 1

(
2T ∗e

2n+ 1

) 2n+1
2

≤ WT ∗e
3/2

πn!
√

2n+ 1

(
2T ∗n

2n+ 1

) 2n+1
2

≤ WT ∗e
3/2

πn!
√

2n+ 1

(√
T ∗
)2n+1

.

Therefore, for |σ| ≤ a,

∣∣∣∣∣
∞∑

n=N+1

(
V T
)(2n+1)

(0)

(2n+ 1)!
σ2n+1

∣∣∣∣∣ ≤ e3/2WT ∗

π

∞∑
n=N+1

(√
T ∗a

)2n+1

n!
√

2n+ 1
→ 0 as N →∞

and √
2

π

∣∣∣∣∣
∞∑

n=N+1

(−1)n+1

n!
σ2n+1

∫ T

0
ξnvN (ξ)dξ

∣∣∣∣∣ ≤
√

2

π
L
∞∑

n=N+1

a2n+1Tn+1

(n+ 1)!
→ 0

as N →∞. Taking into account (4.17), we get

SN (a) = sup
σ∈[−a,a]

∣∣V T (σ)− VN (σ, T )
∣∣→ 0 as N →∞.

Therefore,∫ a

−a

∣∣V T (σ)− VN (σ, T )
∣∣2 dσ ≤ 2a (SN (a))2 → 0 as N →∞. (4.18)

With regard to (4.9), (4.15) and (4.18), we obtain

∥∥W T (σ)−WN (σ, T )
∥∥0

=
∥∥V T (σ)− VN (σ, T )

∥∥
0
→ 0 as N →∞,

i.e., W T ∈ RLT (0).

The last theorem is illustrated by the examples in Section 8 (see Examples
8.1 and 8.2).
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5. Approximate reachability

Definition 5.1. For control system (3.1), (3.2), a state W T ∈ H̃0 is said to
be approximately reachable from a state W 0 ∈ H̃0 in a given time T > 0 if W T ∈
RT (W 0), where the closure is considered in the space H̃0.

In other words, a state W T ∈ H̃0 is approximately reachable from a state
W 0 ∈ H̃0 in a given time T > 0 iff for each ε > 0 there exists uε ∈ L∞(0, T )
such that there exists a unique solution W to (3.1), (3.2) with u = uε and∥∥W (·, T )−W T

∥∥0
< ε.

Theorem 5.2. Each state W T ∈ H̃0 is approximately reachable from the
origin in a given time T > 0.

First we consider an orthogonal basis in L2(R). Let ψn(x) = Hn(x)e−
x2

2 , x ∈
R, n = 0,∞, where

Hn(x) = (−1)nex
2

(
d

dx

)n
e−x

2
= n!

[n2 ]∑
m=0

(−1)m

m!(n− 2m)!
(2x)n−2m

is the Hermite polynomial, [·] is the integer part of a real number. It is well
known [7] that∫ ∞

−∞
ψn(x)ψm(x)dx =

√
π2nn!δmn, 0 ≤ m < n < +∞, (5.1)

where δmn is the Kronecker delta, and {ψn}∞n=0 is an orthogonal basis in L2(R).
It is easy to see that

Fψn = (−i)nψn, n = 0,∞. (5.2)

Define

ψTn (x) = ψ2n+1

(
x√
2T

)
, x ∈ R, n = 0,∞,

ψ̂Tn (σ) =
(
FψTn

)
(σ) = (−1)n+1i

√
2Tψ2n+1(

√
2Tσ), σ ∈ R, n = 0,∞.

According to (5.1),we get

〈ψTn , ψTm〉 = 〈ψ̂Tn , ψ̂Tm〉 =
√

2πT22n+1(2n+ 1)!δmn, 0 ≤ m < n < +∞. (5.3)

Obviously, {ψTn }∞n=0 and {ψ̂Tn }∞n=0 are orthogonal bases in H̃0. Therefore, for f ∈
H̃0,

f =

∞∑
n=0

fnψ
T
n , Ff =

∞∑
n=0

fnψ̂
T
n , where fn =

〈f, ψTn 〉
〈ψTn , ψTn 〉

=
〈Ff, ψ̂Tn 〉
〈ψTn , ψTn 〉

,

and
∞∑
n=0

|fn|2〈ψ̂Tn , ψ̂Tn 〉 =
√

2πT
∞∑
n=0

|fn|222n+1(2n+ 1)!. (5.4)
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Consider also the operator ΦT : L2(R)→ H̃0 with the domain D(ΦT ) = {g ∈
L∞(R) : supp g ⊂ [0, T ]}, acting by the rule

ΦT g =

√
2

π
F−1

(
iσ

∫ ∞
−∞

e−σ
2(T−ξ)g(ξ)dξ

)
, g ∈ D(ΦT ).

Evidently,

‖FΦT g‖0 ≤ ‖g‖L∞(R)

(
25T

π

) 1
4

.

Taking into account (3.7), we obtain that W T ∈ RT (0) iff

∃{un}∞n=1 ⊂ L∞(0, T )
∥∥W T + ΦTun

∥∥0 → 0 as n→∞. (5.5)

Denote

ϕn(σ) = σ2n+1e−Tσ
2
, σ ∈ R,

ϕln(σ) = σ2n+1e−Tσ
2

(
eσ

2/l − 1

σ2/l

)n+1

, σ ∈ R,

unl (ξ) =

{
(−1)n−j

(
n
j

)
ln+1, ξ ∈

(
j
l ,
j+1
l

)
, j = 0, n

0, ξ /∈
[
0, n+1

l

] , l ∈ N, n ∈ N ∪ {0}. (5.6)

Then, FΦTu
n
l =

√
2
π iϕ

l
n. Figure 5.1 illustrates the functions unl . If l > 2n+2

T , we

1
l

ξ

y

l

(a) y = u0l (ξ)

2
l

ξ

y

−l2

1
l

l2

(b) y = u1l (ξ)

3
l

ξ

y

l3

1
l

−2l3

2
l

(c) y = u2l (ξ)

Fig. 5.1: The functions unl .

have ∣∣∣ϕln(σ)
∣∣∣ ≤ σ2n+1e−Tσ

2
e

(n+1)σ2

l = σ2n+1e−σ
2(T−n+1

l ) ≤ σ2n+1e
−σ2T

2
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and ϕln → ϕn as l → ∞ a.e. on R. According to Lebesgue’s dominated conver-
gence theorem, we get∥∥∥ϕn − ϕln∥∥∥

0
→ 0 as l→∞, n = 0,∞ .

Proof of Theorem 5.2. Let W T ∈ H̃0. Denote V T = FW T . Then,

W T =

∞∑
n=0

ωnψ
T
n , V T =

∞∑
n=0

ωnψ̂
T
n .

Due to (5.4), for each ε > 0, there exists N ∈ N such that

√
2πT

∞∑
n=N+1

|ωn|222n+1(2n+ 1)! < ε2. (5.7)

We have
N∑
n=0

ωnψ̂
T
n = i

N∑
n=0

ωn

n∑
p=0

hnpϕp = i
N∑
p=0

ϕp

N∑
n=p

ωnh
n
p ,

where

hnp =
(−1)p+122p+1(2T )p+1

(n− p)!(2p+ 1)!
(2n+ 1)!. (5.8)

For each p = 0, N , determine lNp ∈ N such that∥∥∥∥ϕp − ϕlNpp ∥∥∥∥
0

<

(
π3

Te2

) 1
4 ε

‖V T ‖0
√
N + 2 cosh

(
2
√

2T (N + 2)
)

and denote

V T
N = i

N∑
p=0

ϕ
lNp
p

N∑
n=p

ωnh
n
p .

Then,

∥∥V T − V T
N

∥∥
0
≤ ε

1 +
EN

(
π3

Te2

)1/4

‖V T ‖0
√
N + 2 cosh

(
2
√

2T (N + 2)
)
 , (5.9)

where EN =
∑N

p=0

∑N
n=p

∣∣ωnhnp ∣∣. Let us estimate EN . For p = 0, N , we have

N∑
n=p

∣∣ωnhnp ∣∣ ≤
(

N∑
n=p

|ωn|2
√

2πT22n+1(2n+ 1)!

) 1
2
(

N∑
n=p

∣∣hnp ∣∣2√
2πT22n+1(2n+ 1)!

) 1
2

≤
∥∥V T

∥∥
0

(
N∑
n=p

∣∣hnp ∣∣2√
2πT22n+1(2n+ 1)!

) 1
2

. (5.10)
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Taking into account (5.8), we get∣∣hnp ∣∣2√
2πT22n+1(2n+ 1)!

=
1√
2πT

(
22p+1(2T )p+1

(2p+ 1)!

)2
(2n+ 1)!

22n+1 ((n− p)!)2 . (5.11)

By using (4.11), we obtain

(2n+ 1)!

22n+1 ((n− p)!)2 ≤
e
√

2n+ 1

22n+2π

(
2n+ 1

e

)2n+1 1

n− p

(
e

n− p

)2(n−p)

≤
√

2n+ 1

2π

(
2n+ 1

2(n− p)

)2(n−p)+1(n+ 1

e

)2p

.

Since
(

2n+1
2(n−p)

)2(n−p)+1
is increasing with respect to n, we conclude that

sup
n≥p

{(
2n+ 1

2(n− p)

)2(n−p)+1
}

= lim
n→∞

(
2n+ 1

2(n− p)

)2(n−p)+1

= e2p+1.

Therefore,

(2n+ 1)!

22n+1 ((n− p)!)2 ≤
√

2n+ 1

2π
e2p+1

(
n+ 1

e

)2p

≤ e√
2π

(n+ 1)2p+ 1
2 .

According to (5.11), we get∣∣hnp ∣∣2√
2πT22n+1(2n+ 1)!

≤ 1√
2πT

(
22p+1(2T )p+1

(2p+ 1)!

)2
e√
2π

(n+ 1)2p+ 1
2 .

Taking into account (5.10), we have

N∑
n=p

∣∣ωnhnp ∣∣ ≤ ∥∥V T
∥∥

0

(
1

4πT

)1/4√ e

π

22p+1(2T )p+1

(2p+ 1)!

(
N∑
n=p

(n+ 1)2p+ 1
2

) 1
2

. (5.12)

Since
N∑
n=p

(n+ 1)2p+ 1
2 ≤

∫ N+1

p
(x+ 1)2p+ 1

2dx,

we obtain

N∑
n=p

∣∣ωnhnp ∣∣ ≤ ∥∥V T
∥∥

0

(
1

4πT

) 1
4
√
e

π

22p+1(2T )p+1

(2p+ 1)!
(N + 2)p+1

=
∥∥V T

∥∥
0

(
Te2

π3

) 1
4

(
2
√

2T (N + 2)
)2p+1

(2p+ 1)!

√
N + 2.
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Hence,

EN ≤
∥∥V T

∥∥
0

(
Te2

π3

) 1
4 √

N + 2

N∑
p=0

(
2
√

2T (N + 2)
)2p+1

(2p+ 1)!

=
∥∥V T

∥∥
0

(
Te2

π3

) 1
4 √

N + 2 cosh
(

2
√

2T (N + 2)
)
.

Taking into account (5.9), we conclude that∥∥V T − V T
N

∥∥
0
≤ 2ε. (5.13)

Put uN = −
√

π
2

∑N
p=0 u

p
lNp

∑N
n=p ωnh

n
p . With regard to (5.13) and (5.5), we get

∥∥W T + ΦTuN
∥∥0 ≤ 2ε.

Remark 5.3. The controls

uN = −
√
π

2

N∑
p=0

up
lNp

N∑
n=p

ωnh
n
p , N ∈ N, (5.14)

found in the proof of Theorem 5.2 solve the approximate reachability problem for
system (3.1), (3.2). Here up

lNp
is defined by (5.6), hnp is defined by (5.8) and ωn,

n = 0,∞, are the coefficients of decomposition of W T with respect to the basis
{ψTn }∞n=0.

Corollary 5.4. Each state W T ∈ H̃0 is approximately reachable from any
state W 0 ∈ H̃0 in a given time T > 0.

6. Controllability

Definition 6.1. For control system (3.1), (3.2), a state W 0 ∈ H̃0 is said to
be null-controllable in a given time T > 0 if 0 ∈ RT (W 0).

In other words, the state W 0 ∈ H̃0 is null-controllable in a given time T > 0
iff there exists u ∈ L∞(0, T ) such that there exists a unique solution W to (3.1),
(3.2) and W (·, T ) = 0.

Theorem 6.2. If a state W 0 ∈ H̃0 is null-controllable in a time T > 0, then
W 0 = 0.

Proof. Find u ∈ L∞(0, T ) such that there exists a unique solution W to
(3.1), (3.2) and W (·, T ) = 0. Denote V 0 = FW 0, V (·, t) = Fx→σW (·, t), t ∈
[0, T ]. Taking into account (3.7), we obtain

V 0(σ) =

√
2

π
iσ

∫ T

0
eξσ

2
u(ξ) dξ, σ ∈ R. (6.1)
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Let T ∗ > T be fixed. Then,

∞∑
m=0

νm
ψ̂T
∗

m(∥∥ψ̂T ∗m ∥∥)2 =
∞∑
m=0

∫ T

0
µm(ξ)u(ξ) dξ

ψ̂T
∗

m(∥∥ψ̂T ∗m ∥∥)2 ,
where

νm = 2

∫ ∞
0

V 0(σ)ψ̂T
∗

m (σ) dσ, (6.2)

µm(ξ) = 2i

√
2

π

∫ ∞
0

σeξσ
2
ψ̂T
∗

m (σ) dσ. (6.3)

Therefore, ∫ T

0
µm(ξ)u(ξ) dξ = νm, m = 0,∞. (6.4)

Let m = 0,∞ be fixed. We have (see (5.8))

µm(ξ) = −2

√
2

π

m∑
p=0

hmp

∫ ∞
0

σ2p+2e−(T ∗−ξ)σ2
dσ

= (2m+ 1)!
2
√

2T ∗

(T ∗ − ξ)3/2

m∑
p=0

(−1)p

(m− p)!p!

(
2T ∗

T ∗ − ξ

)p
= (−1)m

(2m+ 1)!

m!

2
√

2T ∗

(T ∗ − ξ)3/2

(
T ∗ + ξ

T ∗ − ξ

)m
. (6.5)

Replacing T ∗+ξ
T ∗−ξ by es, we get∫ T

0

T ∗

(T ∗ − ξ)3/2

(
T ∗ + ξ

T ∗ − ξ

)m
u(ξ) dξ =

√
T ∗

2

∫ T

0
emsu

(
T ∗(es − 1)

es + 1

)
es√
es + 1

ds,

where T = ln
(
T ∗+T
T ∗−T

)
. Denoting U∗(s) = u

(
T ∗(es−1)
es+1

)
es√
es+1

, s ∈ (0, T ), ν∗m =

(−1)mm!

2
√
T ∗(2m+1)!

νm, m = 0,∞ and taking into account (6.4), (6.5), we obtain

∫ T

0
U∗(s)ems = ν∗m, m = 0,∞. (6.6)

Since
|νm| ≤

∥∥V 0
∥∥

0

∥∥ψ̂T ∗m ∥∥0
, m = 0,∞,

then, taking into account (5.3) and the Stirling formula (4.11), we obtain

|ν∗m| ≤
∥∥V 0

∥∥
0

( π
T ∗

)1/4 2m−1/4m!√
(2m+ 1)!

∼
(

π2

23T ∗

)1/4
∥∥V 0

∥∥
0

(2m+ 1)1/4
as m→∞.

Therefore, for all δ > 0 there exists Cδ > 0 such that

|ν∗m| ≤ Cδemδ, m = 0,∞. (6.7)
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We have∫ T

0
|U∗(s)|2 ds =

∫ T

0
|u(ξ)|2 T ∗ + ξ

(T ∗ − ξ)2
dξ ≤

(
‖u‖L∞(0,T )

)2
∫ T

0

T ∗ + ξ

(T ∗ − ξ)2
dξ

=
(
‖u‖L∞(0,T )

)2
(

2T

T ∗ − T
− ln

(
1 +

T

T ∗ − T

))
. (6.8)

Thus, U∗ ∈ L2(0, T∗) and (6.6), (6.7) hold. Due to [9, Theorem 3.1, b)], we obtain
ν∗m = 0, m = 0,∞, i.e., V 0 = W 0 = 0.

7. Approximate controllability

Definition 7.1. For control system (3.1), (3.2), a state W 0 ∈ H̃0 is said to
be approximately controllable to a target state W T ∈ H̃0 in a given time T > 0
if W T ∈ RT (W 0), where the closure is considered in the space H̃0.

In other words, the state W 0 ∈ H̃0 is approximately controllable to a target
state W T ∈ H̃0 in a given time T > 0 iff for each ε > 0 there exists uε ∈
L∞(0, T ) such that there exists a unique solution W to (3.1), (3.2) with u = uε
and

∥∥W (·, T )−W T
∥∥0
< ε.

Taking into account Theorem 5.2, we get the following theorem.

Theorem 7.2. Each state W 0 ∈ H̃0 is approximately controllable to any
target state W T ∈ H̃0 in a given time T > 0.

8. Examples

The following two examples illustrate the results of Theorem 4.5.

Example 8.1. Let T = 1, W T (x) =
√

2
πx
∫ T

0 e
−x

2

4ξ dξ
2(2ξ)1/2

. Let us find the

controls uN (ξ) = vN (T − ξ), ξ ∈ [0, T ], where vN is the solution to (4.8) for N =
2P − 1, P ∈ N. We use the algorithm given in [6] to find vN in the form

vN (ξ) =

{
1 if ξ ∈ [ν2p−1, ν2p], p = 1, P ,

0 if ξ ∈ [ν2p, ν2p+1], p = 0, P ,
(8.1)

where 0 = ν0 ≤ ν1 ≤ ν2 ≤ ν3 ≤ · · · ≤ ν2P−1 ≤ ν2P ≤ ν2P+1 = T . By WN , we
denote the value at t = T of the solution to (3.1), (3.2) with the control u = uN .
The influence of the controls uN , N = 3, 5, 7, 15, on the end states of solutions
WN is given in Figure 8.1.

Example 8.2. Let T = 1, W T (x) =
√

2
πx
∫ T

0 e
−x

2

4ξ 1−ξ
(2ξ)3/2

dξ. Let us find the

controls uN (ξ) = vN (T − ξ), ξ ∈ [0, T ], where vN is the solution to (4.8) for N =
2P −1, P ∈ N. We use the algorithm given in [6] to find vN in the form (8.1). By
WN , we denote the value at t = T of the solution to (3.1), (3.2) with the control
u = uN . The influence of the controls uN , N = 3, 5, 7, 15, on the end states of
solutions WN is given in Figure 8.2.
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Fig. 8.1: The influence of the control uN on the end state of the solution to (3.1),

(3.2) with u = uN and W T (x) =
√

2
πx
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2

4ξ dξ
2(2ξ)1/2
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Fig. 8.2: The influence of the control uN on the end state of the solution to (3.1),

(3.2) with u = uN and W T (x) =
√

2
πx
∫ T

0 e
−x

2

4ξ 1−ξ
(2ξ)3/2

dξ.

The following example illustrates the result of Theorem 5.2.

Example 8.3. Let W T (x) = 2
√

2
πe

1
4 e−

x2

4T sin x√
2T

. Consider the reachability

problem for system (3.1), (3.2) with W 0 = 0. Denote V T = FW T . Then V T (σ) =

−4i
√

T
π e
− 1

4 e−Tσ
2

sinh
√

2Tσ. Since V T =
∑∞

n=0 ωnψ̂
T
n , then it is easy to see that

V T (σ) = ie−Tσ
2∑∞

p=0 σ
2p+1

∑∞
n=p ωnh

n
p , where hnp is defined by (5.8) and ωn =√

2
π

(−1)n

22n(2n+1)!
.
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For each N ∈ N, denote gNp =
∑N

n=p ωnh
n
p . Denote also

VN (σ) = i
N∑
p=0

gNp ϕp(σ) = ie−Tσ
2
N∑
p=0

gNp σ
2p+1,

V l
N (σ) = i

N∑
p=0

gNp ϕ
l
p(σ) = ie−Tσ

2
N∑
p=0

gNp σ
2p+1

(
eσ

2/l − 1

σ2/l

)p+1

.

Then, ∥∥∥V T − V l
N

∥∥∥
0
≤
∥∥V T − VN

∥∥
0

+
∥∥∥V l

N − VN
∥∥∥

0
. (8.2)

Using (5.3), we get

∥∥V T − VN
∥∥

0
=

√
2

π

( ∞∑
n=N+1

(
(−1)n

22n(2n+ 1)!

)2√
2πT22n+1(2n+ 1)!

) 1
2

≤
√

8

(
2T

π

) 1
4

√
cosh 1

2

22N+3(2N + 3)!
. (8.3)

We have ∥∥∥V l
N − VN

∥∥∥
0
≤

N∑
p=0

∣∣gNp ∣∣ ∥∥∥ϕlp − ϕp∥∥∥
0
. (8.4)

Substituting hnp and ωn in gNp , we obtain

∣∣gNp ∣∣ =

√
2

π

∣∣∣∣∣
N∑
n=p

(−1)n+p+122p+1(2T )p+1(2n+ 1)!

22n(2n+ 1)!(n− p)!(2p+ 1)!

∣∣∣∣∣
= 2

√
2

π

(2T )p+1

(2p+ 1)!

∣∣∣∣∣
N∑
n=p

(−1)n−p

22(n−p)(n− p)!

∣∣∣∣∣ ≤ 2

√
2

π

(2T )p+1

(2p+ 1)!
e−

1
4 . (8.5)

Evidently, the following three estimates hold:∣∣(y + 1)p+1 − 1
∣∣ ≤ (p+ 1)(y + 1)py, y > 0,

ez − 1

z
≤ ez, ez − 1

z
− 1 ≤ 1

2
zez, z > 0.

Therefore,∣∣∣∣∣∣
(
eσ

2/l − 1

σ2/l

)p+1

− 1

∣∣∣∣∣∣ ≤ (p+1)

(
eσ

2/l − 1

σ2/l

)p(
eσ

2/l − 1

σ2/l
− 1

)
≤ p+ 1

2l
σ2e

(p+1)
l

σ2
.

From here, it follows that

∥∥∥ϕlp − ϕp∥∥∥
0

=

2

∫ ∞
0

σ2p+1e−Tσ
2

∣∣∣∣∣∣
(
eσ

2/l − 1

σ2/l

)p+1

− 1

∣∣∣∣∣∣
2

dσ


1
2
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≤
(

(p+ 1)2

2l2

∫ ∞
0

(
σ2p+3e−σ

2(T−(p+1)/l)
)2
dσ

) 1
2

≤
(

(p+ 1)2

2l2

∫ ∞
0

(
σ2p+3e−

3
4
Tσ2
)2
dσ

) 1
2

, (8.6)

if p+1
l < T

4 . Since maxσ>0 σ
2p+3e−Tσ

2/2 =
(

2p+3
T

)p+3/2
e−(2p+3)/2, then we get

∥∥∥ϕlp − ϕp∥∥∥
0
≤

(
(p+ 1)2

2l2

(
2p+ 3

T

)2p+3

e−(2p+3)

∫ ∞
0

e−
Tσ2

2 dσ

) 1
2

≤
(

2π

T

) 1
4 p+ 1

l

2p+1/2

T p+3/2

(
p+ 2

e

)p+2

.

From here, using the Stirling formula (4.11), we obtain

∥∥∥ϕlp − ϕp∥∥∥
0
≤
(

1

2πT

) 1
4
√
p+ 2

l

2p+1/2

T p+3/2
(p+ 2)!. (8.7)

According to (8.5), (8.7) and continuing (8.4), we have

∥∥∥V l
N − VN

∥∥∥
0
≤

N∑
p=0

2

√
2

π

(2T )p+1

(2p+ 1)!
e−

1
4

(
1

2πT

) 1
4
√
p+ 2

l

2p+1/2

T p+3/2
(p+ 2)!

=
2

11
4

l

(
1

T 3π3e

) 1
4

N∑
p=0

22p
√
p+ 2(p+ 2)!

(2p+ 1)!
. (8.8)

From (8.2), taking into account (8.3) and (8.8), we get

∥∥∥V T − V l
N

∥∥∥
0
≤
√

8

(
2T

π

) 1
4

√
cosh 1

2

22N+3(2N + 3)!

+
2

11
4

l

(
1

T 3π3e

) 1
4

N∑
p=0

22p
√
p+ 2(p+ 2)!

(2p+ 1)!
. (8.9)

For the last sum, we have

N∑
p=0

22p
√
p+ 2(p+ 2)!

(2p+ 1)!
≤

N∑
p=0

(p+ 1)(p+ 2)3/2

p!
≤ 26 + 8e.

Therefore, (8.9) takes the form

∥∥∥V T − V l
N

∥∥∥
0
≤
√

8

(
2T

π

) 1
4

√
cosh 1

2

22N+3(2N + 3)!
+ 2

11
4

(
1

T 3π3e

) 1
4 1

l
(26 + 8e).
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Due to Theorem (5.2), we obtain W l
N = −ΦTuN . With regard to (5.14), we

get

W l
N (x) = −x

∫ T

0

ulN (ξ)

(2(T − ξ))3/2
e
− x2

4(T−ξ)dξ,

where ulN =
∑N

p=0 g
N
p u

p
l . Some estimates for

∥∥W T −W l
N

∥∥0
are given in Table

8.1 and the influence of the control ulN on the end state W l
N of solution to (3.1),

(3.2) with the control u = ulN and the target state W T is shown in Figure 8.3.

ε1 ε2 ε

N = 1, l = 10 0.0433 2.1662 2.2095
N = 1, l = 100 0.0433 0.2167 0.2600
N = 2, l = 100 0.0034 0.3588 0.3622
N = 2, l = 1000 0.0034 0.0359 0.0393

Table 8.1: The estimates for
∥∥W T −W l

N

∥∥0
, ε1 =

√
8
(

2T
π

) 1
4

√
cosh 1

2

22N+3(2N+3)!
, ε2 =

2
11
4

(
1

T 3π3e

) 1
4 1
l

∑N
p=0

22p
√
p+2(p+2)!

(2p+1)! , ε = ε1 + ε2 (see (8.9)).
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(a) The given WT (x).
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(b) The difference WT −W l
N in the cases:

1© N = 1, l = 10; 2© N = 1, l = 100;
3© N = 2, l = 100; 4© N = 2, l = 1000.

Fig. 8.3: The influence of the control ulN on the end state W l
N of the solution to

(3.1), (3.2) with u = ulN and W T (x) = 4√
2π
e

1
4 e−

x2

4T sin x√
2T

.
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Проблеми досяжностi та керованостi для рiвняння
теплопровiдностi на пiвосi

Larissa Fardigola and Kateryna Khalina

У роботi дослiджено проблеми керованостi, наближеної керованостi,
досяжностi та наближеної досяжностi для керованої системи wt = wxx,
w(0, ·) = u, x > 0, t ∈ (0, T ), де u ∈ L∞(0, T ) є керуванням. Доведено, що
кожний кiнцевий стан цiєї системи є наближено досяжним за заданий
час T , та кожний її початковий стан є наближено керованим за заданий
час T . Одержано необхiдну i достатню умову досяжностi за заданий
час T в термiнах розв’язностi степеневої проблеми моментiв Маркова.
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Показано також, що не iснує початкових даних, якi є 0-керованими за
заданий час T . Результати проiлюстровано прикладами.

Ключовi слова: рiвняння теплопровiдностi, керованiсть, наближена
керованiсть, досяжнiсть, наближена досяжнiсть, степенева проблема мо-
ментiв Маркова.


