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Ricci Solitons and Certain Related Metrics

on Almost Co-Kaehler Manifolds
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In the paper, we study a Ricci soliton and a generalized m-quasi-Einstein
metric on almost co-Kaehler manifold M satisfying a nullity condition. First,
we consider a non-co-Kaehler (κ, µ)-almost co-Kaehler metric as a Ricci
soliton and prove that the soliton is expanding with λ = −2nκ and the
soliton vector field X leaves the structure tensors η, ξ and ϕ invariant. This
result extends Theorem 5.1 of [32]. We construct an example to show the
existence of a Ricci soliton on M . Finally, we prove that if M is a generalized
(κ, µ)-almost co-Kaehler manifold of dimension higher than 3 such that h 6=
0, then the metric of M can not be a generalized m-quasi-Einstein metric,
and this recovers the recent result of Wang [37, Theorem 4.1] as a special
case.
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1. Introduction

In 1967, Blair [3] introduced co-Kaehler manifolds which are odd dimensional
analogues of Kaehler manifolds. This class of manifolds set up one of the three
classes of almost contact metric manifolds whose automorphism group attains the
maximum dimension (see [33]), and the remaining two classes are Sasakian and
Kenmotsu manifolds. Co-Kaehler manifolds were extensively studied by Blair
[4], Goldberg and Yano [21], Olszak [28] and many others. In all these papers,
they call co-Kaehler manifolds as cosymplectic manifolds. This new terminology
appeared due to Li in [25], in which the author gave a topology construction of
co-Kaehler manifolds via Kaehler mapping tori. According to Li’s work, we see
that co-Kaehler manifolds are really the odd dimensional analogues of Kaehler
manifolds. For more details on topological and geometric properties of co-Kaehler
manifolds, see [6].

Recently, many authors have widely studied the generalization of co-Kaehler
manifolds called almost co-Kaehler manifolds. The products of almost Kaehler
manifolds and the real line R or the circle S1 are the simplest examples of almost

c© Devaraja Mallesha Naik, V. Venkatesha, and H. Aruna Kumara, 2020



Ricci Solitons and Certain Related Metrics on Almost Co-Kaehler Manifolds 403

co-Kaehler manifolds. Almost co-Kaehler manifolds, for which the characteristic
vector field ξ belongs to the κ-nullity distribution, were first studied by Dacko
in [13], and Endo generalized them to (κ, µ)-almost co-Kaehler manifolds in [15].

We arrange this paper as follows: Section 2 consists of basic definitions and
notions regarding almost co-Kaehler manifolds. Section 3 is devoted to the study
of Ricci solitons on non-co-Kaehler (κ, µ)-almost co-Kaehler manifolds M , and
we prove that the soliton is expanding with λ = −2nκ and the soliton vector
field X leaves the structure tensors η, ξ and ϕ invariant. The existence of the
Ricci soliton on M is given at the end of this section with an example. The last
section deals with the generalized m-quasi-Einstein metric on generalized (κ, µ)-
almost co-Kaehler manifolds M with h 6= 0 and we show the non-existence of such
metric on M whose dimension is higher than 3. This generalizes Theorem 4.1 of
Wang [37].

2. Preliminaries

In this section, we recall the basic definitions and formulas of almost co-
Kaehler manifolds and we recommend [6] for more details about it.

A Riemannian manifold M of dimension 2n + 1 is said to have an almost
contact metric structure if there exists a vector field ξ, a 1-form η, a field of
endomorphism ϕ and a Riemannian metric g satisfying

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1, (2.1)

g(ϕY, ϕZ) = g(Y, Z)− η(Y )η(Z) (2.2)

for all Y,Z ∈ X(M). A Riemannian manifold M with (ϕ, ξ, η, g) structure is
called an almost contact metric manifold.

An almost co-Kaehler manifold is an almost contact metric manifold satis-
fying dη = dΦ = 0, where Φ is the fundamental 2-form defined by Φ(Y,Z) =
g(Y, ϕZ). It is well known that a normal almost co-Kaehler manifold is a co-
Kaehler manifold.

On an almost co-Kaehler manifold, the tensor fields h := (1/2)£ξϕ and h′ :=
h ◦ ϕ are symmetric and satisfy

trh = trh′ = 0, hξ = h′ξ = 0, hϕ+ ϕh = 0, h2 = h′
2
, (2.3)

where tr denotes the trace. For an almost co-Kaehler manifold, we also have the
following relation (see [15,28]):

∇Y ξ = h′Y, (2.4)

∇ξϕ = 0, div ξ = 0, (2.5)

S(ξ, ξ) = −‖h‖2, (2.6)

where S is the Ricci tensor.
Given two real numbers κ and µ, the (κ, µ)-nullity distribution (denoted by

N(κ, µ)) is defined by

Np(κ, µ) = {W ∈ TpM : R(Y,Z)W = κ[g(Z,W )Y − g(Y,W )Z]
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+ µ[g(Z,W )hY − g(Y,W )hZ]},

for any Y,Z,W ∈ X(M). An almost co-Kaehler manifold with ξ ∈ N(κ, µ), that
is,

R(Y,Z)ξ = κ{η(Z)Y − η(Y )Z}+ µ{η(Z)hY − η(Y )hZ}, (2.7)

is called a (κ, µ)-almost co-Kaehler manifold (see [15]), and in this case we have

h2 = κϕ2. (2.8)

It follows from (2.8) that κ ≤ 0. Also, we have κ = 0 if and only if M is co-
Kaehler (see [6]). Also if h 6= 0, then κ < 0. Denoting the Ricci operator by Q,
we have

QY = µhY + 2nκη(Y )ξ (2.9)

for all Y ∈ X(M). From (2.9), it is easy to obtain

S(Y, ξ) = 2nκη(Y ) (⇒ Qξ = 2nκξ), (2.10)

S(ξ, ξ) = 2nκ. (2.11)

If µ = 0, then we call the (κ, µ)-almost co-Kaehler manifold as an N(κ)-almost
co-Kaehler manifold (see [13]). If κ and µ are smooth functions satisfying the
relation (2.7), then we call it as a generalized (κ, µ)-almost co-Kaehler manifold,
and in this case we have the following identities (see [29]):

(∇ξh)(Y ) = µh′Y, (2.12)

(∇Y ϕ)Z = g(hY, Z)ξ − η(Z)hY, (2.13)

(∇Y h′)Z − (∇Zh′)Y = κ{η(Z)Y − η(Y )Z}+ µ{η(Z)hY − η(Y )hZ}, (2.14)

(∇Y h)Z − (∇Zh)Y = κ{2g(ϕY,Z)ξ − η(Y )ϕZ + η(Z)ϕY }
+ µ{η(Y )h′Z − η(Z)h′Y } (2.15)

for all Y,Z ∈ X(M). Note that the relations (2.12)–(2.15) hold true even for
(κ, µ)-almost co-Kaehler manifolds.

3. Ricci solitons on (κ, µ)-almost co-Kaehler manifolds

Let (M, g) be a Riemannian manifold. The Riemannian metric g is said to be
a Ricci soliton if there exists a vector field X ∈ X(M) and a scalar λ such that

£Xg + 2S + 2λg = 0, (3.1)

where £ denotes the usual Lie derivative. Thus, the Ricci soliton is a general-
ization of an Einstein metric (that is, S = ag for some constant a). Given a
Riemannian manifold (M, g0), Hamilton’s Ricci flow (see [22]) is the one which
satisfies ∂

∂tg(t) = −2S(t) with the initial condition g = g0 at t = 0. The Ricci
soliton is a special solution to the Ricci flow equation, which is equivalent to the
existence of scalars σ(t) and diffeomorphisms ψt of M such that g(t) = σ(t)ψ∗t g0.
We say that the Ricci soliton is steady when λ = 0, expanding when λ > 0
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and shrinking when λ < 0. In the framework of contact geometry Ricci solitons
were first considered by Sharma in [31]. They were also studied by Ghosh and
Sharma [20], Calin and Crasmareanu [5], Ghosh [16], Turan et al. [34], Crasmare-
anu [12], Cho [11], Ghosh [17], Bejan and Crasmareanu [2], Wang and Liu [40],
Naik and Venkatesha [26, 27], Venkatesha et al. [35, 36] and others. In the con-
text of almost co-Kaehler manifolds, Ricci solitons were studied by Wang [38,39],
Chen [10], Suh and De [32] and many others.

We need the following lemma.

Lemma 3.1. Let M be an N(κ)-almost co-Kaehler manifold such that h 6=
0. If X is a vector field on M satisfying

£Xg = c{g − η ⊗ η}, (3.2)

where c is a constant, then X is a Jacobi field along the geodesics of ξ and X
leaves η, ξ and ϕ invariant.

Proof. First, we differentiate (3.2) along Y and make use of (2.4) to obtain

(∇Y £Xg)(Z,W ) = −c{g(h′Y,Z)η(W ) + η(Z)g(h′Y,W )}. (3.3)

From Yano [41], we use the formula

(£X∇Y g −∇Y £Xg −∇[X,Y ]g)(Z,W ) =

− g((£X∇)(Y, Z),W )− g((£X∇)(Y,W ), Z)

to obtain

(∇Y £Xg)(Z,W ) = g((£X∇)(Y,Z),W ) + g((£X∇)(Y,W ), Z). (3.4)

Using the symmetric property of £X∇, from (3.4) we derive

g((£X∇)(Y,Z),W )

=
1

2
(∇Y £Xg)(Z,W ) +

1

2
(∇Z£Xg)(W,Y )− 1

2
(∇W£Xg)(Y,Z). (3.5)

Next, we feed the expression (3.3) into (3.5) to find

(£X∇)(Y, Z) = −2cg(h′Y,Z)ξ. (3.6)

Now, we plug Y = Z = ξ in the above relation and recall h′ξ = 0 to deduce

(£X∇)(ξ, ξ) = 0. (3.7)

Then we take Y = Z = ξ in the following identity (see [14]):

(£X∇)(Y, Z) = ∇Y∇ZX −∇∇Y ZX +R(X,Y )Z

and use (3.7) and ∇ξξ = 0 to obtain

0 = ∇ξ∇ξX +R(X, ξ)ξ,
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which means that X is a Jacobi field along the geodesics of ξ. Next, we differen-
tiate (3.6) and then make use of (2.4) to infer

(∇Y £X∇)(Z,W ) = −2c{g((∇Y h′)Z,W )ξ + g(h′Z,W )h′Y }.

Next, we use this in the following equation

(£XR)(Y, Z)W = (∇Y £X∇)(Z,W )− (∇Z£X∇)(Y,W ), (3.8)

and take the help of (2.14) to deduce

(£XR)(Y,Z)W = − 2cκ{η(Z)g(Y,W )ξ − η(Y )g(Z,W )ξ}
+ 2c{g(h′Z,W )h′Y − g(h′Y,W )h′Z}.

We further contract it with respect to Y and employ (2.8) to claim

£XS = 0. (3.9)

We Lie-differentiate S(ξ, ξ) = 2nκ along X and make use of (3.9), (2.10) and κ <
0 to find

η(£Xξ) = 0. (3.10)

On the other hand, the Lie-differentiation of (2.10) gives S(Y,£Xξ) =
2nκg(Y,£Xξ) which is equivalent to

Q£Xξ = 2nκ£Xξ.

Since QY = 2nκη(Y )ξ, from (3.10) we have Q£Xξ = 0. As κ < 0, the above
equation yields

£Xξ = 0. (3.11)

Now, £Xη = 0 follows directly by Lie-differentiating η(Y ) = g(Y, ξ) and further
using (3.11) and (3.2). Making use of £Xη = 0 and (3.11) in the Lie-derivative
of ϕ2Y = −Y + η(Y )ξ gives

(£Xϕ)ϕY + ϕ(£Xϕ)Y = 0 (3.12)

for any Y ∈ X(M). Replacing Y by ϕY in (3.12) gives one equation and operating
(3.12) by ϕ gives another equation. Subtracting the resulting two equations and
keeping in mind ϕ3 = −ϕ shows that

£Xϕ = 0.

This completes the proof.

Now we are prepared to prove the following fruitful result:

Theorem 3.2. If a non-co-Kaehler (κ, µ)-almost co-Kaehler metric is a Ricci
soliton, then the soliton is expanding with the soliton constant λ = −2nκ, the
soliton vector field X is a Jacobi field along the geodesics of ξ and X leaves the
structure tensors η, ξ and ϕ invariant.
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Proof. First, we differentiate the Ricci soliton equation (3.1) along Y to get

(∇Y £Xg)(Z,W ) = −2(∇Y S)(Z,W ), (3.13)

which is combined with (3.5) giving

g((£X∇)(Y,Z),W ) = (∇WS)(Y, Z)− (∇Y S)(Z,W )− (∇ZS)(Y,W ). (3.14)

Note that (2.9) is equivalent to

S(Y,Z) = µg(hY, Z) + 2nκη(Y )η(Z) (3.15)

for all Y, Z ∈ X(M). Now, we differentiate this along W and then make use of
(3.14) to produce

g((£X∇)(Y,Z),W ) = µg((∇Wh)Y − (∇Y h)W,Z)− µg((∇Zh)Y,W )

− 2nκ{g(h′Y, Z)η(W ) + h(h′Z, Y )η(W )}. (3.16)

Now, we feed (2.15) into (3.16) to show

(£X∇)(Y,Z) = −µκ{g(ϕY,Z)ξ + η(Y )ϕZ + 2η(Z)ϕY }
− µ2{η(Y )h′Z − g(h′Y, Z)ξ} − µ(∇Zh)Y

− 2nκ{g(h′Y,Z)ξ + g(h′Z, Y )ξ}.

We set Z = ξ in the aforementioned equation and make use of (2.12) to obtain

(£X∇)(Y, ξ) = −2µκϕY − µ2h′Y, (3.17)

and we further differentiate it along Z to deduce

(∇Z£X∇)(Y, ξ) + (£X∇)(Y, h′Z)

= −2µκ{g(hZ, Y )ξ − η(Y )hZ} − µ2(∇Zh′)Y,

where we used (2.13). Next, we use the aforesaid equation in (3.8) to obtain

(£XR)(Y,Z)ξ = −2µκ{η(Y )hZ − η(Z)hY } − µ2{(∇Y h′)Z − (∇Zh′)Y }
− (£X∇)(Z, h′Y ) + (£X∇)(Y, h′Z).

Plugging Z = ξ in the preceding equation and with the aid of (2.14), (2.3) and
(3.17), we arrive at

(£XR)(Y, ξ)ξ = 4µκhY − 2κµ2Y + 2µ2κη(Y )ξ − µ3hY. (3.18)

Contracting (3.18) over Y , and since trh = 0, leads to

(£XS)(ξ, ξ) = −4nκµ2. (3.19)

Now, applying the Lie-derivative to S(ξ, ξ) = 2nκ and recalling that S(·, ξ) =
2nκη(·), we have

(£XS)(ξ, ξ) = −4nκη(£Xξ). (3.20)
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On the other hand, (3.1) gives

η(£Xξ) = λ+ 2nκ. (3.21)

Due to (3.21), equation (3.20) takes the form

(£XS)(ξ, ξ) = −4nκ(λ+ 2nκ). (3.22)

Now, we compare (3.22) with (3.19) to deduce

µ2 = λ+ 2nκ. (3.23)

Now, we plug Z = ξ in (2.7) to find R(Y, ξ)ξ = κ(Y − η(Y )ξ) +µhY . Taking the
Lie-derivative of this along X gives

(£XR)(Y, ξ)ξ +R(Y,£Xξ)ξ +R(Y, ξ)£Xξ

= −κ{(£Xη)(Y )ξ − η(Y )£Xξ}+ µ(£Xh)Y. (3.24)

Then we take the Lie-derivative of η(Y ) = g(ξ, Y ) along X and make use of (3.1)
and (2.10) to find

(£Xη)(Y ) = g(£Xξ, Y )− 2(λ+ 2nκ)η(Y ).

Using this in (3.24), we have

(£XR)(Y, ξ)ξ = 2κ(λ+ 2nκ){−Y + η(Y )ξ} − 2µ(λ+ 2nκ)hY

+ µ{η(Y )h£Xξ + g(hY,£Xξ)ξ + (£Xh)Y }. (3.25)

Comparing (3.25) with (3.18) and using (3.23), we obtain

4µκhY = µ{η(Y )h£Xξ + g(hY,£Xξ)ξ + µ(£Xh)Y }. (3.26)

Now, we change Y to hY in the above equation to find

4µκh2Y = µ{g(h2Y,£Xξ)ξ + (£Xh)hY }.

We operate (3.26) by h on both sides to deduce

4µκh2Y = µ{η(Y )h2£Xξ + h(£Xh)Y }.

Adding the above two equations and using (2.8) and (3.21), we get

8µκh2Y = κµ{−η(Y )£Xξ + 2(λ+ 2nκ)η(Y )ξ − g(Y,£Xξ)ξ}
+ µ{(£Xh)hY + h(£Xh)Y }. (3.27)

Note that (2.8) gives h2Y = κ(−Y +η(Y )ξ), and taking the Lie-derivative of this
along X provides

(£Xh)hY + h(£Xh)Y = κ{g(£Xξ, Y )ξ − 2(λ+ 2nκ)η(Y )ξ + η(Y )£Xξ}.
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The substitution of this in (3.27) gives 8µκh2Y = 0, which with the help of (2.8)
yields 8µκ2ϕ2Y = 0. Tracing this and taking into consideration that M is non-
co-Kaehler, i.e., κ < 0, we have that µ = 0. Thus, from (3.23), we have λ =
−2nκ, and since κ < 0, the soliton is expanding. Now using (3.15) with µ = 0 in
the soliton equation (3.1), we have

(£Xg)(Y,Z) = −4nκ{g(Y, Z)− η(Y )η(Z)}.

The rest of the proof follows from Lemma 3.1.

Remark 3.3. Very recently, Suh and De [32] studied the (κ, µ)-almost co-
Kaehler manifold M admitting the Ricci soliton g with soliton vector field X =
ξ and proved that the soliton is expanding (see Theorem 5.1 in [32]). Thus, our
Theorem 3.2 is stronger than Theorem 5.1 of [32].

Here we give an example for a 3-dimensional non-co-Kaehler (−1, 0)-almost
co-Kaehler manifold which admits a Ricci soliton. However, as we shall prove at
the end of Section 4, it can not be compact.

Example 3.4. Following Dacko [13], we define an almost co-Kaehler structure
(ϕ, ξ, η, g) on M = R3 as:

ϕ (∂x) = e2z∂y, ϕ (∂y) = −e−2z∂x, ϕ (∂z) = 0, ξ = ∂z, η = dz,

(gij) =

e2z 0 0
0 e−2z 0
0 0 1

 ,

where ∂x = ∂
∂x , ∂y = ∂

∂y and ∂z = ∂
∂z . From Koszul’s formula, we find the

Levi-Civita connection ∇ as given below:

∇∂x∂x = −e2z∂z, ∇∂x∂y = 0, ∇∂x∂z = ∂x,

∇∂y∂x = 0, ∇∂y∂y = e−2z∂z, ∇∂y∂z = −∂y,
∇∂z∂x = ∂x, ∇∂z∂y = −∂y, ∇∂z∂z = 0.

(3.28)

We employ (3.28) to find the following:

R(∂x, ∂y)∂z = R(∂y, ∂z)∂x = 0, R(∂x, ∂z)∂y = 0,

R(∂x, ∂z)∂x = e2z∂z, R(∂y, ∂z)∂y = e−2z∂z,

R(∂x, ∂y)∂x = −e2z∂y, R(∂y, ∂z)∂z = −∂y,
R(∂x, ∂z)∂z = −∂x, R(∂x, ∂y)∂y = e−2z∂x.

(3.29)

Using (3.29), one can easily show that

R(Y,Z)ξ = −{η(Z)Y − η(Y )Z}

for all Y,Z ∈ X(M), and thus M is a non-co-Kaehler (−1, 0)-almost co-Kaehler
manifold. We employ (3.29) to find the Ricci tensor

(Sij) =

0 0 0
0 0 0
0 0 −2

 . (3.30)
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If we choose the vector field

X = (2x− ax)
∂

∂x
+ (2y + ay)

∂

∂y
+ a

∂

∂z
, (3.31)

where a is a real constant, then from (3.28) and (3.30) it is not hard to show that

£Xg + 2S + 4g = 0. (3.32)

Hence g is a Ricci soliton with soliton constant λ = 2.

4. Generalized (κ, µ)-almost co-Kaehler metric as generalized
m-quasi-Einstein metric

The m-Bakry-Emery Ricci tensor is a natural extension of the Ricci tensor
to smooth metric measure spaces and is given by

Smf = S + Hess f − 1

m
df ⊗ df,

where f is a smooth function and m is an integer such that 0 < m ≤ ∞. A
complete Riemannian manifold (M, g, f) with a potential function f is called m-
quasi-Einstein if its associated m-Bakry-Emery Ricci tensor is a constant multiple
of the metric g (see [7, 23] and the references therein). Recently, in [8], Catino
introduced generalized quasi-Einstein manifolds which extend the notion of m-
quasi-Einstein manifolds. More precisely, a complete Riemannian n-manifold
(M, g) (n ≥ 3) is a generalized quasi-Einstein metric if there exist smooth func-
tions f, γ and µ satisfying

S + Hess f − µdf ⊗ df = γg. (4.1)

As a particular case of (4.1), we give the following definition which is due to
Barros and Ribeiro [1].

Definition 4.1. A Riemannian manifold (M, g) is said to be a generalized m-
quasi-Einstein metric if there exist two smooth functions f and γ on M satisfying

S + Hess f − 1

m
df ⊗ df = γg, (4.2)

where 0 < m ≤ ∞ is an integer.

It is important to point out that (4.2) corresponds to the well-known metrics
such as:

• gradient Ricci soliton if m =∞ and γ = const.;

• gradient almost Ricci soliton if m =∞ and γ ∈ C∞(M);

• m-quasi-Einstein metric if γ = const.;

• (m, ρ)-quasi-Einstein metric [24] if γ = ρr + λ, where ρ, λ ∈ R;
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• gradient ρ-Einstein soliton [9] if m =∞ andγ = ρr + λ, where ρ, λ ∈ R.

Ghosh considered (m, ρ)-quasi-Einstein metrics and generalized m-quasi-
Einstein metrics on contact geometry in [18] and [19], respectively. Here, we
consider this within the framework of generalized (κ, µ)-almost co-Kaehler man-
ifolds.

First, we start with the following lemma.

Lemma 4.2. Let (M, g, f,m) be a generalized m-quasi-Einstein manifold. If
g is a generalized (κ, µ)-almost co-Kaehler metric, then

R(Y, Z)Df = (∇ZQ)Y − (∇YQ)Z +
1

m
[Y (f)QZ − Z(f)QY ]

+
γ

m
[Z(f)Y − Y (f)Z] + [Y (γ)Z − Z(γ)Y ]. (4.3)

Proof. In light of (4.2), it follows that

∇YDf +QY =
1

m
g(Y,Df)Df + γY, (4.4)

from which we compute (4.3).

We employ the above lemma to prove the following fruitful result.

Theorem 4.3. If M is a generalized (κ, µ)-almost co-Kaehler manifold of
dimension higher than 3 such that h 6= 0, then the metric of M can not be a
generalized m-quasi-Einstein metric.

Proof. Note that under the hypothesis of present theorem, Q satisfies (see
[37])

QY = 2nκη(Y )ξ + µhY, (4.5)

where κ = const 6= 0 and the smooth function µ satisfies dµ ∧ η = 0. We
differentiate (4.5) and use (2.4) to find

(∇YQ)Z = 2nκ{g(h′Y,Z)ξ + η(Z)h′Y }+ Y (µ)hZ + µ(∇Y h)Z. (4.6)

Now, we interchange Y and Z in (4.6) and then subtract it by (4.6) to yield

(∇YQ)Z − (∇ZQ)Y = µ{(∇Y h)Z − (∇Zh)Y }+ Y (µ)hZ − Z(µ)hY

+ 2nκ{η(Z)h′Y − η(Y )h′Z}.

We substitute the aforementioned equation and (2.15) into (4.3) to deduce

R(Y, Z)Df = κµ{η(Y )ϕZ − η(Z)ϕY + 2g(Y, ϕZ)ξ}+ Z(µ)hY − Y (µ)hZ

− µ2{η(Y )h′Z − η(Z)h′Y }+ 2nκ{η(Y )h′Z − η(Z)h′Y }

+
γ

m
{Z(f)Y − Y (f)Z}+

1

m
{Y (f)QZ − Z(f)QY }

+ {Y (γ)Z − Z(γ)Y }. (4.7)
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Next, we take the scalar product of (4.7) with ξ to deduce

g(R(Y,Z)Df, ξ) = 2κµg(Y, ϕZ) +
γ

m
{Z(f)η(Y )− Y (f)η(Z)}

+
2nκ

m
{Y (f)η(Z)− Z(f)η(Y )}

+ {Y (γ)η(Z)− Z(γ)η(Y )}.

Then setting Y = ϕY and Z = ϕZ gives

g(R(ϕY, ϕZ)Df, ξ) = 2κµg(ϕY, ϕ2Z).

From (2.7), we see that the left side of aforesaid equation is zero, and thus it
follows that 2κµg(ϕY,Z) = 0 for any Y,Z ∈ X(M). Replacing Z by ϕZ and
since κ < 0, it follows that µϕ2Y = 0. Tracing this gives µ = 0.

Thus, (4.7) becomes

R(Y,Z)Df = 2nκ{η(Y )h′Z − η(Z)h′Y }+
γ

m
{Z(f)Y − Y (f)Z}

+
1

m
{Y (f)QZ − Z(f)QY }+ {Y (γ)Z − Z(γ)Y }. (4.8)

Replace Y by ξ in (4.8) and then take the scalar product with ξ to obtain

g(R(ξ, Z)Df, ξ) =

(
γ − 2nκ

m

)
{Z(f)− ξ(f)η(Z)}+ {ξ(γ)η(Z)− Z(β)}. (4.9)

On the other hand, from (2.7) we find

g(R(ξ, Z)Df, ξ) = κ{Z(f)− ξ(f)η(Z)}. (4.10)

Comparing the previous two equations, we can see that(
γ − 2nκ

m
− κ
)

(Df − ξ(f)ξ) + (ξ(γ)ξ −Dγ) = 0. (4.11)

Now, we contract (4.8) over Y to find(
1− 1

m

)
S(Z,Df) =

(
2nγ − 2nκ

m

)
g(Z,Df)− 2ng(Z,Dγ),

which gives

2nDγ =

(
2nγ − 2nκ

m

)
Df −

(
1− 1

m

)
QDf.

Using this in (4.11), we obtain

κ

(
1− 2n

m
− 1

)
Df +

(
2nκ

m

)
ξ(f)ξ +

1

2n

(
1− 1

m

)
QDf = 0. (4.12)
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Since µ = 0, (4.5) shows that QY = 2nκη(Y )ξ, which gives QDf = 2nκξ(f)ξ.
Hence, (4.12) takes the form

κ

(
1− 2n

m
− 1

)
(Df − ξ(f)ξ) = 0. (4.13)

Since h 6= 0, it follows that κ < 0. Thus, (4.13) gives(
1− 2n

m
− 1

)
(Df − ξ(f)ξ) = 0.

If m =∞, then clearly Df − ξ(f)ξ = 0. Let m be an integer such that 0 < m <
∞. Then 1−2n

m − 1 = 0 if and only if m = 1 − 2n, and in such a case m < 0,
which will be a contradiction. Hence, 1−2n

m − 1 6= 0, and consequently we have

Df − ξ(f)ξ = 0.

Next, we differentiate this along Y and then make use of (4.4) and (2.4) to arrive
at

QY = γY + (2nκ− γ)η(Y )ξ − ξ(f)h′Y − g(Df, h′Y )ξ. (4.14)

Tracing the above equation, using r = 2nκ and (2.3), we have 2nγ = 0 and so
γ = 0. Thus, (4.14) becomes

QY = 2nκη(Y )ξ − ξ(f)h′Y − g(Df, h′Y )ξ = 0,

which, by virtue of QY = 2nκη(Y )ξ, leads to

ξ(f)h′Y + g(Df, h′Y )ξ = 0. (4.15)

By considering the ξ-component of (4.15), we see that g(Df, h′Y ) = 0. Using
this in (4.15), we get ξ(f)h′Y = 0 for all Y ∈ X(M). Then replacing Y by h′Y
and recalling the fourth relation of (2.3), we obtain

ξ(f)‖h‖2 = 0.

We employ (2.6) and (2.11) in the above equation to get 2nκξ(f) = 0. Since κ <
0, it follows that ξ(f) = 0 and thus Df = 0. Hence, (4.4) leads to QY = 0, which
is a contradiction to (4.5) as κ < 0. This is what we wanted to prove.

As a direct consequence, we have:

Corollary 4.4. If M is a generalized (κ, µ)-almost co-Kaehler manifold of
dimension higher than 3 such that h 6= 0, then the metric of M can not be a
gradient almost Ricci soliton.

Clearly, both Theorem 4.3 and Corollary 4.4 generalize the result of Wang
(Theorem 4.1 in [37]).

We have already noticed that (4.5) is true even for a (2n + 1)-dimensional
(κ, µ)-almost co-Kaehler manifold. Then, following the same approach as in the
proof of Theorem 4.3, we have
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Theorem 4.5. If M is a (κ, µ)-almost co-Kaehler manifold such that h 6= 0,
then the metric of M can not be a generalized m-quasi-Einstein metric.

As a consequence, a (κ, µ)-almost co-Kaehler manifold such that h 6= 0 does
not admit a gradient Ricci soliton. According to Perelman [30]: A Ricci soliton
on a compact manifold is a gradient Ricci soliton. Thus we have the following:

Corollary 4.6. If M is a compact (κ, µ)-almost co-Kaehler manifold such
that h 6= 0, then the metric of M can not be a Ricci soliton.
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Солiтони Рiччi та деякi пов’язанi з ними метрики на
майже ко-келерових многовидах

Devaraja Mallesha Naik, V. Venkatesha, and H. Aruna Kumara

У статтi вивчаються солiтони Рiччi та узагальнена m-квазi-
ейнштейнова метрика на майже ко-келеровому многовиду M , що за-
довольняє нуль-умову. Спочатку ми розглядаємо не ко-келерову (κ, µ)-
майже ко-келерову метрику як солiтон Рiччi i доводимо, що солiтон
розширюється з λ = −2nκ, а векторне поле солiтона X залишає стру-
ктурнi тензори η, ξ and ϕ iнварiантними. Даний результат узагальнює
Теорему 5.1 з [32]. Побудовано приклад iснування солiтона Рiччi на M .
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Наприкiнцi ми доводимо що, якщо M це узагальнений (κ, µ)-майже ко-
келеровий многовид розмiрностi бiльшої за 3, такий що h 6= 0, то тодi ме-
трикаM не може бути узагальненоюm-квазi-ейнштейнновою метрикою,
i це включає результат нещодавно отриманий Вангом [37, Theorem 4.1]
як окремий випадок.

Ключовi слова: майже ко-келеровий многовид, солiтон Рiччi, уза-
гальнена m-квазi-ейнштейнова метрика, розподiл (κ, µ)-обнулення
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