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In the present paper, we show that the geometry of a screen integrable
null hypersurface can be generated from an isometric immersion of a leaf
of its screen distribution into the ambient space. We prove, under certain
geometric conditions, that such immersions are contained in semi-Euclidean
spheres or hyperbolic spaces, and the underlying null hypersurfaces are nec-
essarily umbilic and screen totally umbilic. Where necessary, the examples
are given to illustrate the main ideas.
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1. Introduction

The study of null submanifolds in semi-Riemannian manifolds was introduced
by Duggal–Benjancu [5] and later updated by Duggal–Sahin [9]. In the above
books, the authors laid a foundation for research on null geometry by construct-
ing their structural equations, among other results. In fact, they introduced a
non-degenerate screen distribution to construct a null transversal vector bundle,
which is non-intersecting with its null tangent bundle, and developed local geom-
etry of null curves, hypersurfaces and submanifolds. The list of other pioneers
of the theory includes D.N. Kupeli [15] whose approach is purely intrinsic com-
pared to that of [5, 9]. Since then, many researchers including but not limited
to [1, 4, 6, 8, 10, 11], have studied null submanifolds and many interesting results
have been obtained. Null hypersurfaces appear in general relativity as models of
different types of black hole horizons (see [5, 9] for details) and their theory is
quite fundamental for modern mathematical physics.

Among the most studied null hypersurfaces are those with an integrable screen
distribution, and they are commonly known as screen integrable null hypersur-
faces. They include the well-known screen conformal ones among others. It was
shown in [7] that all screen integrable null hypersurfaces are locally isometric to
Cξ ×M∗, where Cξ is a null curve tangent to the normal bundle of the hypersur-
face and M∗ is a leaf of its screen distribution. In particular, [5] proves that a
null cone of an (n + 2)-dimensional Lorentzian space Rn+2

1 is screen conformal,
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satisfying the above structure, with M∗ ∼= Sn. Under some geometric conditions
on the ambient space, Duggal and Sahin [9] also proved that a screen conformal
Einstein null hypersurface is locally a triple product Cξ ×M∗α ×M∗β , where M∗α
and M∗β are some leaves of its screen distribution (see Theorem 2.5.17 of [9] for
more details). In [5], Duggal and Bejancu tried to understand the geometry of
a null hypersurface M from a leaf M∗ of its screen distribution as an immersion
in the ambient space. They, in fact, showed that an umbilic leaf in the ambient
space implies that the underlying null hypersurface is umbilic too (see Proposi-
tion 5.1 of [5, p. 107]). A natural question then arises, which other geometric
information about the null hypersurface can be derived from the geometry of an
isometric immersion of a leaf of its screen distribution into the ambient space?

The main aim of this paper is to give some solutions to the above problem
by studying null hypersurfaces of Lorentzian spaces. Consequently, we prove two
main theorems in that line, Theorems 3.6 and 3.10. The paper is arranged as
follows. In Section 2, we quote some basic notions needed in the rest of the paper.
In Section 3, we prove several characterization results.

2. Preliminaries

Suppose M is an (n + 1)-dimensional smooth manifold and F : M → M is
a smooth mapping such that each point x ∈ M has an open neighborhood U
for which F restricted to U is one-to-one and F−1 : F (U) → M are smooth.
Then we say that F (M) is an immersed hypersurface of M . If this condition
globally holds, then F (M) is called an embedded hypersurface of M , which we
assume in this paper. The embedded hypersurface has a natural manifold struc-
ture inherited from the manifold structure on M via the embedding mapping.
At each point F (x) of F (M), the tangent space is naturally identified with an
(n+ 1)-dimensional subspace TF (x)M of the tangent space TF (x)M . The embed-
ding F induces, in general, a symmetric tensor field, say g, on F (M) such that
g(X,Y )|x = g(F∗X,F∗Y )|F (x) for all X,Y ∈ TxM . Here, F∗ is the differential

map of F defined by F∗ : TxM → TF (x)M and (FxX)ω = X(ω ◦ F ) for an ar-
bitrary smooth function ω in a neighborhood of F (x) of F (M). Henceforth we
write M and x instead of F (M) and F (x). Due to the causal character of three
categories (space-like, time-like and light-like) of the vector fields of M , there are
three types of hypersurfaces M , namely, Riemannian, semi-Riemannian and null
(or light-like), and g is a non-degenerate or a degenerate symmetric tensor field
on M according as M is of the first two types and of the third type, respectively.
The geometry of Riemannian or semi-Riemannian hypersurfaces is well known
and has received a considerable attention, for example, see [13] and references
cited therein. In the present paper, we focus on null hypersurfaces using the
approach of Duggal–Bejancu [5].

Now, let g be degenerate on M . Then there exists a nonzero vector field
ξ on M such that g(ξ,X) = 0 for all X ∈ Γ(TM). The radical or the null
space [13, p. 53] of TxM , at each point x ∈ M , is a subspace RadTxM defined
by RadTxM = {ξ ∈ TxM : ∀X ∈ TxM gx(ξ,X) = 0}, whose dimension is
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called the nullity degree of g and M is called a null hypersurface of M . It
follows that TxM

⊥ is also null and satisfies RadTxM = TxM ∩ TxM
⊥. For a

hypersurface M , if dim(TxM
⊥) = 1, then dim(RadTxM) = 1 and RadTxM =

TxM
⊥. We call RadTM a radical (null) distribution of M . Thus, for a null

hypersurface M , TM and TM⊥ have a nontrivial intersection and their sum
is not the whole of tangent bundle space TM . In other words, a vector of
TxM cannot be decomposed uniquely into a component tangent to TxM and a
component of TxM

⊥. Therefore, the standard text-book definition of the second
fundamental form and the Gauss–Weingarten formulas do not work in the usual
way for the null case.

To overcome the above difficulty, Duggal–Bejancu [5] introduced an approach
to null geometry which we follow in this paper. The approach consists of fixing,
on the null hypersurface, the geometric data formed by a null section and a
screen distribution. By the screen distribution of M , we mean a complementary
bundle of TM⊥ in TM . It is then a rank n non-degenerate distribution over M .
In fact, there are infinitely many possibilities of choices for such a distribution
provided the hypersurface M is paracompact, but each of them is canonically
isomorphic to the factor vector bundle TM/TM⊥ [15]. We denote by S(TM)
the screen distribution over M . Then we have the decompostion TM = S(TM) ⊥
TM⊥, where ⊥ denotes the orthogonal direct sum. From [5] or [9], it is known
that for a null hypersurface equipped with a screen distribution, there exists a
unique rank 1 vector subbundle tr(TM) of TM over M such that for any non-
zero section ξ of TM⊥ on a coordinate neighborhood U ⊂ M there exists a
unique section N of tr(TM) on U satisfying g(N, ξ) = 1, g(N,N) = g(N,W ) =
0 for all W ∈ Γ(S(TM)|U ). It then follows that TM |M = S(TM) ⊥ {TM⊥ ⊕
tr(TM)} = TM⊕tr(TM), where ⊕ denotes the direct (non-orthogonal) sum. We
call tr(TM) a (null) transversal vector bundle along M . Throughout the paper,
all manifolds are supposed to be paracompact and smooth. We denote by F(M)
the algebra of differentiable functions on M and by Γ(E) the F(M)-module of
differentiable sections of a vector bundle E over M . We also assume that all
associated structures are smooth.

Let ∇ and ∇∗ denote the induced connections on M and S(TM), respectively,
and P be the projection of TM onto S(TM). Then the local Gauss-Weingarten
equations of M and S(TM) are the following [5]:

∇XY = ∇XY +B(X,Y )N, (2.1)

∇XN = −ANX + τ(X)N, (2.2)

∇XPY = ∇∗XPY + C(X,PY )ξ, (2.3)

∇Xξ = −A∗ξX − τ(X)ξ, A∗ξξ = 0, (2.4)

for all X,Y ∈ Γ(TM), ξ ∈ Γ(TM⊥) and N ∈ Γ(tr(TM)). In the above setting, B
is the local second fundamental form of M and C is the local second fundamental
form on S(TM). AN and A∗ξ are the shape operators on TM and S(TM), respec-
tively, while τ is a 1-form on TM . The above shape operators are related to their
local fundamental forms by g(A∗ξX,Y ) = B(X,Y ), g(ANX,PY ) = C(X,PY )
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for any X,Y ∈ Γ(TM). Moreover, g(A∗ξX,N) = 0 and g(ANX,N) = 0 for all
X ∈ Γ(TM). From the above relations, we notice that A∗ξ and AN are both
screen-valued operators.

The null hypersurface M is said to be totally umbilic [5] if B = ρ⊗ g, where
ρ is a smooth function on a coordinate neighborhood U ⊂ TM . In case ρ = 0,
we say that M is totally geodesic. In the same line, M is called screen totally
umbilic if C = %⊗ g, where % is a smooth function on a coordinate neighborhood
U ⊂ TM . When % = 0, we say that M is screen totally geodesic. The mean
curvature vector H of a null hypersurface is transversal to M and given by
H = 1

n(traceS(TM)B)N = 1
n(traceS(TM)A

∗
ξ)N . We say that M is a minimal

null hypersurface if H = 0. More precisely, M is minimal if traceS(TM)A
∗
ξ = 0

(see [5, 9] for more details and examples).

Let ϑ = g(N, ·) be 1-form metrically equivalent to N defined on M . Take η =
i∗ϑ to be its restriction on M , where i : M →M is the inclusion map. Then it is
easy to show that (∇Xg)(Y, Z) = B(X,Y )η(Z) + B(X,Z)η(Y ) for all X,Y, Z ∈
Γ(TM). Consequently, ∇ is generally not a metric connection with respect to g.
However, the induced connection ∇∗ on S(TM) is a metric connection. Denote
by R the curvature tensor of the connection ∇. Using the Gauss–Weingarten
formulae (2.1)–(2.4), we obtain the following curvature relations (see details in
[5, 9]):

g(R(X,Y )ξ,N) = C(Y,A∗ξX)− C(X,A∗ξY )− 2dτ(X,Y ), (2.5)

where 2dτ(X,Y ) = Xτ(Y ) − Y τ(X) − τ([X,Y ]) for all X,Y ∈ Γ(TM)|U , ξ ∈
Γ(TM⊥) and N ∈ Γ(tr(TM)).

Suppose π is a non-degenerate plane of TpM for p ∈M . Then the associated
matrix Gp of gp, with respect to an arbitrary basis {u, v}, is of rank 2 given by

(1.2.15) of [9, p. 16]. Define a real number K(π) = Kp(u, v) = R(u, v, v, u),
where R(u, v, v, u) is the 4-linear mapping on TpM by the curvature tensor. The
smooth function K, which assigns to each non-degenerate tangent plane π the
real number K(π) is called the sectional curvature of M , which is independent
of the basis {u, v}. If K is a constant c at every point of p ∈ M , then M is of
constant sectional curvature c, denoted by M(c), whose curvature tensor field R
is given by R(X,Y )Z = c{g(Y,Z)X − g(X,Z)Y }, for any X,Y, Z ∈ Γ(TM). In
particular, if K = 0, then M is called a flat manifold for which R = 0.

3. Geometry of (M, g) from the geometry of a leaf of S(TM)

Assume that (M, g) is a screen integrable null hypersurface of a Lorentzian
manifold (M, g). LetM∗ be a (Riemannian) leaf of its screen distribution S(TM).
Let f : M∗ → M be an isometric immersion of M∗ in M , as a codimension 2
nondegenerate submanifold. Then (2.1) and (2.3) give the Gauss formula of M∗

(in M) as

∇XY = ∇∗XY + C(X,Y )ξ +B(X,Y )N, for all X,Y ∈ Γ(TM∗). (3.1)
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It is obvious from (3.1) that the second fundamental form h∗ of M∗, as a sub-
manifold of M , is given by h∗(X,Y ) = C(X,Y )ξ + B(X,Y )N . Next, denote by
∇∗⊥ the normal connection on the normal bundle TM∗⊥. Then the Weingarten
formula for M∗ is given by

∇XV = −AVX +∇∗⊥X V, for all X ∈ Γ(TM∗), V ∈ Γ(TM∗⊥), (3.2)

where AV denotes the shape operator of M∗. Since TM∗⊥ = TM⊥ ⊕ tr(TM),
we let V = aξ + bN such that a, b 6= 0. Thus, it is easy to see that W = aξ −
bN is another vector field of TM∗⊥ which is orthogonal to V . From now on, we
consider TM∗⊥ to be spanned by V and W . Putting all the above into account,
we can express the shape operator AV of M∗ in terms of the shape operators A∗ξ
and AN as follows.

Lemma 3.1. Let f : M∗ → M be an isometric immersion such that (3.1)
and (3.2) hold. Then the shape operator of M∗ satisfies AV = aA∗ξ + bAN , where
V = aξ + bN and a, b are non-vanishing smooth functions.

Proof. Taking the g-product of (3.2) with Y ∈ Γ(TM∗) and using the fact
that ∇ is a metric connection, we get g(AVX,Y ) = g(V,∇XY ). Then, applying
(3.1) to the last relation and owing to the fact that M∗ is nondegenerate, we get
the desired result.

Let {V,W} be an orthonormal basis of TxM
∗⊥ at x ∈M∗. Then the mean cur-

vature vector of a leafM∗ inM is the vectorH∗ = 1
2 [(traceAV )V +(traceAW )W ].

We say that M∗ is minimal in M if H∗ vanishes. It then follows that M∗ is mini-
mal if and only if traceAV = 0 and traceAW = 0. In view of Lemma 3.1, one can
easily see that minimality of a leaf M∗ implies minimality of the underlying null
hypersurface (M, g). Let us consider the curvature tensor of the normal bundle
TM∗⊥ as R∗⊥ : TxM

∗ × TxM∗ × TxM∗⊥ → TxM
∗⊥, given by

R∗⊥(X,Y )V = ∇∗⊥X ∇∗⊥Y V −∇∗⊥Y ∇∗⊥X V −∇∗⊥[X,Y ]V, (3.3)

for any X,Y ∈ Γ(TM∗) and V ∈ Γ(TM∗⊥). The importance of the 1-form τ in
the study of null geometry has been shown in [5] and [9]. In fact, it has been
shown that the Ricci tensor of a null submanfold is symmetric if and only if τ is
closed, that is, dτ = 0. In what follows, we show that the normal curvature R∗⊥

of a leaf M∗ is directly linked to the 1-form τ of (2.2).

Proposition 3.2. Let (M, g) be a screen integrable null hypersurface of a
Lorentzian manifold (M(c), g). Then the normal curvature R∗⊥ of any leaf M∗

of S(TM) satisfies

R∗⊥(X,Y )V = {C(X,AV Y )− C(Y,AVX)}ξ
+ {B(X,AV Y )−B(Y,AVX)}N = 2dτ(X,Y )W, (3.4)

for any vector fields X,Y ∈ Γ(TM∗) and V,W ∈ Γ(TM∗⊥).



Remarks on Screen Integrable Null Hypersurfaces in Lorentzian Manifolds 465

Proof. A direct calculation with using (3.1) and (3.2) leads to

R(X,Y )V = −∇∗XAV Y − C(X,AV Y )ξ −B(X,AV Y )N −A∇∗⊥Y VX

+∇∗⊥X ∇∗⊥Y V +∇∗YAVX + C(Y,AVX)ξ +B(Y,AVX)N

+A∇∗⊥X V Y −∇
∗⊥
Y ∇∗⊥X V +AV [X,Y ]−∇∗⊥[X,Y ]V

= −∇∗XAV Y +∇∗YAVX −A∇∗⊥Y VX +A∇∗⊥X V Y +AV [X,Y ]

+R∗⊥(X,Y )V + {C(Y,AVX)− C(X,AV Y )}ξ
+ {B(Y,AVX)−B(X,AV Y )}N, for all X,Y ∈ Γ(TM∗). (3.5)

Since M is a space of constant curvature c, we have R(X,Y )V = 0 for any X,Y ∈
Γ(TM∗) and V ∈ Γ(TM∗⊥). Thus, (3.5) gives

R∗⊥(X,Y )V + {C(Y,AVX)− C(X,AV Y )}ξ
+ {B(Y,AVX)−B(X,AV Y )}N = 0, (3.6)

which proves (3.4). Next, applying Lemma 3.1 to (3.6) and using the fact
that B(A∗ξX,Y ) = B(X,A∗ξY ) and C(ANX,Y ) = C(X,ANY ), for all X,Y ∈
Γ(S(TM)), we get

R∗⊥(X,Y )V + {C(Y,A∗ξY )− C(X,A∗ξX)}aξ
+ {B(Y,ANX)−B(X,ANY )}bN = 0. (3.7)

As B(Y,ANX) = g(ANX,A
∗
ξY ) = C(X,A∗ξY ), (3.7) reduces to

R∗⊥(X,Y )V = {C(Y,A∗ξY )− C(X,A∗ξX)}(aξ − bN). (3.8)

Next, as M is a space of constant curvature c, we have R(X,Y )ξ = 0 for all
X,Y ∈ Γ(TM). Thus, in view of (2.5) and (3.8), we conclude that

R∗⊥(X,Y )V = 2dτ(X,Y )W,

where W = aξ − bN , which proves (3.4) and thus the proof is completed.

From Proposition 3.2 we have

Corollary 3.3. In view of Proposition 3.2, the following are equivalent:

1. dτ vanishes on S(TM).

2. A∗ξ ◦AN = AN ◦A∗ξ .

3. R∗⊥(x) = 0.

4. The normal bundle of M∗ is parallel.

Corollary 3.4. If (M, g) is totally umbilic or screen totally umbilic in M ,
then R∗⊥(x) = 0.
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Remark 3.5. Condition (2) of Corollary 3.3 implies that AV ◦ AW = AW ◦
AV . In fact, by a simple calculation, while considering Lemma 3.1, we get AV ◦
AW = a2(A∗ξ ◦ A∗ξ) − ab(A∗ξ ◦ AN − AN ◦ A∗ξ) − b2(AN ◦ AN ). In view of (2) of

Corollary 3.3, we have AV ◦AW = a2(A∗ξ ◦A∗ξ)−b2(AN ◦AN ). On the other hand,

AW ◦ AV = a2(A∗ξ ◦ A∗ξ) − b2(AN ◦ AN ), which, if compared with the previous
relation, proves the assertion. It then follows that the vanishing of dτ on a leaf
M∗ implies simultaneous diagonalisation of AV for all V ∈ Γ(TM∗⊥).

Next, we prove the following result.

Theorem 3.6. Let (M, g) be a screen integrable null hypersurface of Rn+2
1 ,

and let f : M∗ → Rn+2
1 be an isometric immersion of a leaf M∗ of S(TM) as

a codimension 2 submanifold of Rn+2
1 . Suppose there exists a nonzero normal

vector field V to M∗ in Rn+2
1 such that dτ = 0 on S(TM) and A∗V = λI, λ 6= 0.

Then f(M∗) is contained inside

1. Sn+1
1

(√
ε
λ

)
if ε > 0,

2. Hn+1
0

(
−
√
−ε
λ

)
if ε < 0,

where ε = g(V, V ). Furthermore, the null hypersurface (M, g) is proper quasi-
screen conformal in Rn+2

1 . Moreover, if AW = 0, where V,W span the normal
bundle TM∗⊥, then (M, g) is proper totally umbilic and screen totally umbilic in
Rn+2
1 .

Proof. Observe that the vector f(x) + 1
λV is constant for all x ∈M∗. Let us

denote it by c̃, then we have g(f(x)− c̃, f(x)− c̃) = 1
λ2
g(V, V ) = ε

λ2
. As dτ = 0

on S(TM), then TM∗⊥ is parallel by Theorem 3.3. Consequently, V is parallel,
and therefore f(M∗) is contained in a sphere or a hyperbolic space with center
c̃ by [12]. This proves parts (1) and (2). Furthermore, the condition AV = λI
together with Lemma 3.1 implies that AV = aA∗ξ + bAN = λI, where V = aξ +
bN . Then, in view of [14], the null hypersurface (M, g) is quasi-screen conformal
in Rn+2

1 . On the other hand, if AW = 0, we have aA∗ξ−bAN = 0. Combining this

relation with the previous one gives A∗ξ = λ
2aI and AN = λ

2bI, which shows that

(M, g) is totally umbilic and screen totally umbilic in Rn+2
1 , and the theorem is

proved.

Corollary 3.7. In case the vector field V , in Theorem 3.6, is the mean
curvature vector of M∗ in Rn+2

1 , then M∗ is immersed minimally in Sn+1
1 or

Hn+1
0 . (Such an immersion is called pseudo umbilic by Chen and Yano [16]).

Moreover, the underlying null hypersurface (M, g) is proper totally umbilic, screen
totally umbilic and screen conformal in Rn+1

1 .

Proof. If V is the mean curvature vector of M∗ in Rn+2
1 , then V is parallel

to the position vector f(x) − c̃ and therefore, by [12], M∗ is minimal in either
Sn+1
1 or Hn+1

0 . In view of (3.1) and the fact that f(M∗) is pseudo umbilic, we
have C(X,Y )ξ+B(X,Y )N = g(X,Y )V = ag(X,Y )ξ+bg(X,Y )N for all X,Y ∈
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Γ(TM∗). Taking the g-product of the previous relation with ξ and N in turns,
we get B(X,Y ) = bg(X,Y ) and C(X,Y ) = ag(X,Y ), respectively. Thus, (M, g)
is totally umbilic and screen totally umbilic in Rn+1

1 . As a, b 6= 0, we deduce that
C(X,Y ) = ψB(X,Y ), with ψ = a

b , showing that M is screen conformal, which
completes the proof.

As an example, we have the following.

Example 3.8 (The null cone Λn+1
0 of Rn+2

1 ). Let Rn+2
1 be the space Rn+2

endowed with the semi-Euclidean metric

g(x, y) = −x0y0 +
n+1∑
a=1

xaya, where x =
n+1∑
A=0

xA
∂

∂xA
.

The null cone Λn+1
0 is given by the equation −(x0)2 +

∑n+1
a=1(xa)2 = 0, x0 6= 0. It

is known that Λn+1
0 is a null hypersurface of Rn+2

1 and the radical distribution is
spanned by a global vector field

ξ =

n+1∑
A=0

xA
∂

∂xA
(3.9)

on Λn+1
0 . The unique section N , spanning the transversal bundle tr(TΛn+1

0 ), is
given by

N =
1

2(x0)2

{
−x0 ∂

∂x0
+

n+1∑
a=1

xa
∂

∂xa

}
, (3.10)

and it is also globally defined. As ξ is the position vector field, we get

∇Xξ = ∇Xξ = X, ∀X ∈ Γ(TΛn+1
0 ). (3.11)

Then, A∗ξX + τ(X)ξ +X = 0. Since A∗ξ is Γ(S(TΛn+1
0 ))-valued, we have

A∗ξX = −PX and τ(X) = −η(X), ∀X ∈ Γ(TΛn+1
0 ). (3.12)

Note that any X ∈ Γ(S(TΛn+1
0 )) is expressed as X =

∑n+1
a=1 X

a ∂
∂xa , where

(X1, . . . , Xn+1) satisfy
∑n+1

a=1 x
aXa = 0. Then,

∇ξX = ∇ξX =

n+1∑
A=0,a=1

xA
∂Xa

∂xA
∂

∂xa
, (3.13)

from which we obtain

g(∇ξX, ξ) =
n+1∑

A=0,a=1

xaXA∂X
a

∂xA
= −

n+1∑
a=1

xaXa = 0. (3.14)
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From (3.13) and (3.14), we have ∇ξX ∈ Γ(S(TΛn+1
0 )), that is, ANξ = 0. More-

over, by simple calculations, we have

C(X,Y ) = g(∇XY,N) = g(∇XY,N) = − 1

2(x0)2
g(X,Y ). (3.15)

Clearly, S(TΛn+1
0 ) is integrable. Denote by M∗ its leaf. Then

∇XY = ∇∗XY +
g(X,Y )

x0
(− 1

2x0
ξ − x0N), ∀X,Y ∈ Γ(TM∗). (3.16)

It is obvious that M∗ is a totally umbilic Riemannian submanifold of codimension
2 of Rn+2

1 . Moreover, using (3.12) and (3.15), we have

dτ(X,Y ) =
1

2
{C(X,PY )− C(Y, PX)} = 0, ∀X,Y ∈ Γ(TΛn+1

0 ). (3.17)

As x0 6= 0, we may suppose x0 > 0 (for x0 < 0 we proceed analogously), and
in the normal bundle TM∗⊥, consider the vector fields

V1 = − 1

2x0
ξ − x0N and V2 = − 1

2x0
ξ + x0N. (3.18)

Note that {V1, V2} is an orthonormal basis, where V1 and V2 are space-like and
time-like, respectively. Using the expressions of A∗ξ and AN , we get AV1 = 1

x0
I,

from which λ = 1
x0

. From the expressions of ξ and N , we have ∇XV1 = − 1
x0
X

and ∇XV2 = 0 for all X ∈ Γ(TM∗). Therefore, from the Weingarten formula
(3.2) for M∗, we get ∇∗⊥X V1 = 0 and ∇∗⊥X V2 = 0. Clearly, {V1, V2} is a parallel
basis with respect to the normal connection ∇∗⊥ of M∗. As the vector field V1 is
space-like, that is, g(V1, V1) = 1 and also parallel to the mean curvature of M∗ in
Rn+2
1 (see (3.16)), by Corollary 3.7, we conclude that M∗ is minimally immersed

in the sphere Sn+1
1 (x0). Note also that (M, g) is totally umbilic, screen totally

umbilic and screen conformal in Rn+2
1 .

A subbundle D of the normal bundle TM∗⊥ is said to be parallel in the
normal bundle if it is invariant by parallel translation with respect to the normal
connection ∇∗⊥; that is, if V ∈ Γ(D), then ∇∗⊥X V ∈ Γ(D) for any X ∈ Γ(TM∗).
We also say that the curvature tensor R∗⊥ of the normal connection ∇∗⊥ is
parallel in the normal bundle if ∇∗⊥R∗⊥ = 0; that is, for any X,Y, Z ∈ Γ(TM∗)
and V ∈ Γ(TM∗⊥) , we have

(∇∗⊥Z R∗⊥(X,Y ))V = ∇∗⊥Z R∗⊥(X,Y )V −R∗⊥(X,Y )∇∗⊥Z V = 0. (3.19)

As an example, the curvature tensor R∗⊥ of the normal bundle TM∗⊥ of Example
3.8 is parallel in the normal bundle. This is due to the fact that the normal bundle
is parallel; that is, ∇∗⊥V = 0 for any V ∈ Γ(TM∗⊥).

Next, we define the first normal space Q(x) at x ∈ M∗ as the orthogonal
complement in TxM

∗⊥ of {V (x) ∈ TxM∗⊥ : AV (x) = 0}.
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Lemma 3.9. Let (M, g) be a screen integrable null hypersurface of M(c).
Assume that f : M∗ →M is an immersion of a leaf M∗ of S(TM) as a codimen-
sion 2 submanifold of M . Suppose that the curvature tensor R∗⊥ of the normal
bundle to M∗ is parallel in the normal bundle. For each x ∈ M∗, let D(x) =
{V (x) ∈ TxM∗⊥ : ∀X,Y R∗⊥(X,Y )V = 0}. Then D is parallel in the normal
bundle TM∗⊥. Moreover, dτ vanishes on TM∗.

Proof. The proof of the first assertion follows the similar steps as in [2].
The vanishing of dτ on TM∗ follows from Proposition 3.2 and the definition of
D(x).

Next, we prove the following result.

Theorem 3.10. Let (M, g) be an (n+ 1)-dimensional screen integrable null
hypersurface of a Lorentzian manifold M(c). Assume that f : M∗ → M is a
minimal, non totally geodesic immersion of a leaf M∗ of S(TM) as a codimension
2 submanifold of M . Suppose that the curvature tensor R∗⊥ of the normal bundle
to M∗ is parallel in the normal bundle. Then there exists an (n+ 1)-dimensional
totally geodesic submanifold M ′ of M such that f is a minimal immersion of M∗

in M ′. Furthermore, the underlying null hypersurface (M, g) is minimal in M
and its shape operator AN satisfies traceS(TM)AN = 0.

Proof. First note that if f is non totally geodesic, then the first normal space
of f has constant dimension 1. We first prove the case where the normal bundle
TM∗⊥ is parallel. To that end, let Q(x) be the first normal space at x. As dimQ
is constant, P = Q⊥, where ⊥ is the orthogonal complement in the normal bundle
TM∗⊥, is a subbundle of the normal bundle. We want to show that P is parallel
in the normal bundle and then use a result of [12] to draw conclusions. Given x ∈
M∗, choose a unit vector field V1, spanning Q at each point in a neighborhood
U of x ∈ M∗. Let us extend the above field to {V1, V2} so that the latter spans
the normal space at a point of U . Consider the vector field V2 which generates
the subbundle P over U . It then suffices to show that P is parallel in the normal
bundle TM∗⊥. Given y ∈ U , let X1, . . . , Xn be coordinate vector fields in a
neighborhood U ′ ⊂ U of y which diagonalize, at y, all the shape operators of
M∗. This is possible because the normal bundle is flat, and it is a result of
Cartan that the normal bundle is flat if and only if at each point all the second
fundament forms are simultaneously diagonalizable. As M is a space of constant
curvature c, we have R(Xj , Xi)Vα = 0 for 1 ≤ i, j ≤ n and α = 1, 2. Then, by
(3.5), we have

−∇∗XjAVαXi +∇∗XiAVαXj −A∇∗⊥XiVα
Xj +A∇∗⊥XjVα

Xi +AVα [Xj , Xi]

+R∗⊥(Xj , Xi)Vα + {C(Xi, AVαXj)− C(Xj , AVαXi)}ξ
+ {B(Xi, AVαXj)−B(Xj , AVαXi)}N = 0 for all Xi, Xj ∈ TxM∗. (3.20)

For Vα ∈ P, that is α = 2, (3.20) gives

R∗⊥(Xj , Xi)V2 −A∇∗⊥XiV2
Xj +A∇∗⊥XjV2

Xi = 0,
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from which we get

−A∇∗⊥XiV2
Xj +A∇∗⊥XjV2

Xi = 0 (3.21)

after considering the assumption R∗⊥ = 0. Since Xi, . . . , Xn diagonalize all the
shape operators at y, we have, at y, A∇∗⊥XjV2

Xi = aijXi and A∇∗⊥XiV2
Xj = bjiXj for

some numbers aij , b
j
i . Therefore, (3.21) implies that A∇∗⊥

Xj(y)
V2
Xi(y) = 0 for all

i 6= j. As the immersion is minimal, we have A∇∗⊥
Xj(y)

V2
Xi(y) = 0 for all i, j, and

therefore, A∇∗⊥
Xj(y)

V2
= 0 for all j. This in turn implies that ∇∗⊥Xj(y)V2 ∈ P(y),

following the definition of P. That is, P over U is parallel in the normal bundle.
This implies that Q is also parallel in the normal bundle. In fact, take V2 ∈ P and
V1 ∈ Q. As ∇∗⊥ is a metric connection, we have Xg(V2, V1) = g(∇∗⊥X V2, V1) +
g(V2,∇∗⊥X V1) = 0, from which we see that Q is also parallel in the normal bundle.
By Theorem 0.2 of [12, p. 33], there exists a totally geodesic submanifold M ′ of
M such that dimM ′ = n+ 1 and f(M∗) ⊂M ′.

Next, since dimQ = 1, we have dimP = 1. Let V2 ∈ P, then AV2 = 0 by the
definition of P. Thus, Lemma 3.1 gives aA∗ξ + bAN = 0. Taking the trace of this
relation along TM∗, we get a traceA∗ξ+b traceAN = 0. On the other hand, since

M∗ is minimal in M , we have (traceAV1)V1 + (traceAV2)V2 = 0, where V1 ∈ Q.
In view of Lemma 3.1, we have a traceA∗ξ − b traceAN = 0. Therefore, solving

gives traceA∗ξ = 0 and traceAN = 0, showing that (M, g) is minimal in M . This
completes the proof of the first case.

Turn to the second case, where the normal bundle is not flat. Set D(x) =
{V (x) ∈ TxM∗⊥ : ∀X,Y R∗⊥(X,Y )V = 0}. By Lemma 3.9, D is parallel in the
normal bundle. Let P be the orthogonal complement of Q in the normal bundle
TM∗⊥. It is obvious that P ⊂ D. Observe that, by Lemma 3.9, D is parallel and ,
by (3.6), all the shape operators AV , V ∈ D, can be simultaneously diagonalized.
Therefore, we can apply the same arguments as in the first case above, with D
in place of TM∗⊥, to conclude that P, hence Q, is parallel in the normal bundle.
Again, as in the first case, by Megid’s Theorem 0.2 in [12], f(M∗) ⊂ M ′, where
M ′ is a totally geodesic submanifold of M with dimension n+ 1. The minimality
of (M, g), as a null hypersurface of M , also follows as in the previous case. This
completes the proof of the second case, and thus the theorem is proved.
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Нотатки щодо скрiн-iнтегровних iзотропних
гiперповерхонь у лоренцових многовидах

Samuel Ssekajja

У статтi показано, що геометрiя скрiн-iнтегровної iзотропної гiпер-
поверхнi може породжуватися iзометричним зануренням шару її скрiн-
розшарування в обхопний простiр. Ми доводимо, за певних геометри-
чних умов, що такi занурення мiстяться в псевдо-евклiдових сферах або
гiперболiчних просторах, при цьому вихiднi iзотропнi гiперповерхнi обо-
в’язково є омбiлiчними та скрiн-цiлком омбiлiчними. За необхiдностi на-
ведено приклади, що iлюструють основнi iдеї.

Ключовi слова: скрiн-iнтегрованi iзотропнi гiперповерхнi, тензор нор-
мальної кривини шару
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