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Àíîòàöiÿ. Â ðîáîòi ðîçãëÿíóòî ñèëó âèïàäêîâî¨ iíôîðìàöi¨ äëÿ íàáëèæåííÿ â (äåòåðìiíiñ-
òè÷íîìó) íàéãiðøîìó âèïàäêó, ç îñîáëèâèì àêöåíòîì íà iíôîðìàöiþ, ùî ñêëàäà¹òüñÿ ç âèáðàíèõ
ôóíêöiîíàëiâ íåçàëåæíî òà îäíàêîâî ðîçïîäiëåíèõ (iid) âèïàäêîâèì ÷èíîì íà êëàñi äîïóñòèìèõ
iíôîðìàöiéíèõ ôóíêöiîíàëiâ. Ìè ïðåäñòàâëÿ¹ìî çàãàëüíèé ðåçóëüòàò íà îñíîâi ìåòîäó çâàæåíèõ
íàéìåíøèõ êâàäðàòiâ òà íàñëiäêè äëÿ îñîáëèâèõ âèïàäêiâ. Ïîêðàùåííÿ äîñòóïíi, ÿêùî iíôîð-
ìàöiÿ ¹ �ãàóñiâñüêîþ� àáî ÿêùî ìè ðîçãëÿäà¹ìî çíà÷åííÿ ôóíêöi¨ iid äëÿ ïðîñòîðiâ Ñîáîë¹âà.
Ìè âêëþ÷èëè âiäêðèòi çàïèòàííÿ, ùîá ñïðÿìóâàòè ìàéáóòíi äîñëiäæåííÿ ïðî ñèëó âèïàäêîâî¨
iíôîðìàöi¨ â êîíòåêñòi iíôîðìàöiéíî¨ ñêëàäíîñòi.

Abstract. This survey is concerned with the power of random information for approximation in
the (deterministic) worst-case setting, with special emphasis on information consisting of functionals
selected independently and identically distributed (iid) at random on a class of admissible information
functionals. We present a general result based on a weighted least squares method and derive conse-
quences for special cases. Improvements are available if the information is �Gaussian� or if we consider
iid function values for Sobolev spaces. We include open questions to guide future research on the power
of random information in the context of information-based complexity.
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1 Introduction

This survey is oriented towards information-based complexity (IBC) and we refer to [90, 95, 97,
113] for a more comprehensive treatment of information-based complexity. For an introduction to
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the related �eld of optimal recovery we refer to [26,34,102,111]. Perhaps the most prominent display
of the power of iid information, as we understand it, is the �eld of compressed sensing (or sparse
recovery) which is presented in [30] from the viewpoint of IBC. We will only brie�y touch upon this
direction as our focus is on linear approximation.

Numerical approximation, as considered here, is formally speci�ed by two normed real vector
spaces, say H and G, of functions on a set D, a subset F ⊂ H for which also F ⊂ G, and a class
of admissible information Λ consisting of functionals on F . (We often consider F to be the unit
ball BH in H and assume that the functionals are de�ned on H.) The aim is to approximate the
a priori unknown f ∈ F based on n pieces of information (or measurements) `1(f), . . . , `n(f) with
`i ∈ Λ such that we can guarantee a small error with respect to the norm in G. In general, one
does not have access to arbitrary measurements, which is the reason for restricting to Λ. Typical
examples for admissible information are

• Λall := H ′, i.e., all continuous linear functionals on H,
• Λ = �certain expectations of the input function�,
• Λ = �coe�cients w.r.t. a given basis, wavelets etc.� or
• Λstd := {δx : δx(f) = f(x), f ∈ H, x ∈ D} (function values).

It is desirable to minimize the approximation error, which is achieved by the �best information�
from a given class Λ. To make this precise, we identify information with an information mapping
of the form

Nn : H → Rn, Nn(f) =
(
`1(f), . . . , `n(f)

)
, f ∈ H, (1.1)

with `1, . . . , `n ∈ Λ. (One may also consider adaptive information, i.e., `j may depend on the
already computed `1(f), . . . , `j−1(f), but we do not treat this here.) Any approximation method
(or algorithm) based on the information Nn will be of the form

An(f) = ϕn ◦Nn(f) = ϕn

(
`1(f), . . . , `n(f)

)
, f ∈ H, (1.2)

where ϕn : Rn → G is an arbitrary mapping. Linear approximation is concerned with the case of
linear An : H → G. The worst-case error (w.c.e.) of an algorithm An as in (1.2) is then de�ned by

e(An, F,G) := sup
f∈F

‖f −An(f)‖G

and any upper bound on e(An, F,G) guarantees an a priori error bound on An in the class F . Such
a bound should be compared to the best possible error bounds for the given (class of) information.

First, if an information mapping Nn as in (1.1) is �xed, de�ne the radius of information Nn by

r(Nn, F,G) := inf
φn : Rn→G

sup
f∈F

∥∥∥f − ϕn ◦Nn(f)
∥∥∥
G

(1.3)

which quanti�es the quality or power of Nn. This should be seen relative to the �best information�
from the class Λ which gives rise to the n-th minimal error of information from Λ de�ned by

en(F,G,Λ) := inf
Nn∈Λn

r(Nn, F,G) = inf
An

e(An, F,G),

where the latter in�mum is over all algorithms of the form (1.2) with `1, . . . , `n ∈ Λ.
The number en(F,G,Λ) (or rather the associated sequence) quanti�es the power of optimal in-

formation and serves as the benchmark for any information obtainable from Λ. With this benchmark
at our disposal, we clarify what �iid� information is.

Independently and identically distributed (iid) information is given by independent random
continuous functionals `1, . . . , `n ∈ Λ, either on F or H with respect to a metric or norm, de�ned
on some probability space (Ω,Σ,P) and having a common distribution ν on Λ. It is necessarily
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nonadaptive. A random measurement of f ∈ F is given by a random variable `j(f), i.e., a re-
alization `j(f)

ω, ω ∈ Ω, of `j(f) is the application of the realization `ωj ∈ Λ of `j to f . Thus,

N
(ν)
n (f) = (`1(f), . . . , `n(f)) is a random vector with distribution f∗(ν)

⊗n on Rn, where f∗(ν) is
the pushforward measure under ` 7→ `(f). (We suppress the ω and the corresponding probability
space in the following.)

For each realization of N
(ν)
n we study again the minimal error that can be achieved with this

information. That is, we consider the random variable

eiidn (F,G, ν) := r(N (ν)
n , F,G),

which we call the n-th minimal error of iid information w.r.t. ν from Λ, see also (1.3). It is clearly
of interest to study characteristics of the above random variable, but it is still not clear what a
reasonable quantity for this is. We use for example bounds holding in expectation or with high
probability (whp), i.e., with probability tending to one as n goes to in�nity. In any case, we ignore
events of measure zero.

The distribution or probability measure ν depends on the problem. To illustrate this, let us
discuss some examples which are also our main applications.

First, we consider standard information, i.e., if Λ = Λstd, for F ⊂ L2(µ) with some measure µ on
D. (Additional assumptions will guarantee that point evaluations are well-de�ned.) A distribution
on this class of information corresponds to a distribution ν on the domain D, if we consider `(f) =
f(X) where X has distribution ν on D. A natural choice of distribution is given by ν = µ, but we
sometimes need another distribution for proving �near-optimal� results.

On the class of arbitrary linear functionals we consider a Gaussian measure giving rise to Gaus-
sian information, i.e. Gaussian random functionals. Employing an interpretation from the �nite-
dimensional setting, this corresponds to the radius of the intersection of F with a random subspace,
a classical problem from geometric analysis and Banach space theory, see Section 4.3.

Finally, let us also mention random Fourier coe�cients, which are given by `(f) = 〈f, bK〉 with
a �xed orthonormal basis {bk}k∈N of H, where K has distribution ν on N and H is a Hilbert space.
We will present upper and lower bounds in all these cases.

As it is our main object of study, we will use �random information� mostly synonymously with
�iid information� and thus frequently speak of the power of random information. To summarize, we
study eiidn (F,G, ν) for

• approximation of functions from a class F ⊂ H,
• where the error is measured in a normed space G with F ⊂ G, and

• with a random information mapping N
(ν)
n : F → Rn,

• where ν is a probability measure on the class of admissible information Λ.

We state several reasons for studying iid information in this setting:

1. If eiidn (F,G, ν) is �small� with positive probability, we get an upper bound for en(F,G,Λ), i.e.,
the error of optimal approximation, without the need of �nding a sophisticated construction.
This is in the spirit of the well-known probabilistic method.

2. In cases where the minimal worst-case error is known, one might wonder whether the optimal
information is somehow special. One approach to this is to study eiidn (F,G, ν), and see whether
it is with high probability close to optimal, showing that �almost any� information is good, or
not, which indicates that a more involved construction is needed.

3. It is a typical assumption in applications, such as machine learning, that information (or data)
is given by iid samples with respect to an unknown distribution. It is therefore of interest to
identify classes F ⊂ G and distributions on Λ that allow for reliable error guarantees (such as
whp for all f ∈ F ) for random information.
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4. Further, iid information is often universal, that is, useful for many di�erent problems and not
particular to a certain problem instance or function class. This is bene�cial if the available
a priori knowledge is insu�cient. In contrast, deterministic constructions of such universal
methods are often unknown.

Obviously, the idea of employing randomness for worst-case analysis is not new. However, the
power of iid information for linear approximation in a rather general setting, even for restricted
classes of information, seems to have been observed only recently. To the best of our knowledge,
it was only in the survey [53] that a systematic study was initiated. Since then, there has been
some major progress in the case of Gaussian random information and random standard information.
In particular, the power of random information has been determined precisely for certain natural
choices of F , G and ν, and also some general relations between minimal errors for di�erent classes Λ
have been obtained. The present work aims to survey these recent results and to put them into a
general framework. Thus, it can be understood as an update to the survey [53].

Let us note that this work builds on the PhD thesis [107] of the �rst, and the habilitation thesis
of the second author which both contain many of the mentioned recent results obtained together
with several coauthors.

1.1 What this survey is not about

There are numerous aspects in (optimal) numerical approximation where randomness plays an
important role. However, this survey is about aspects that are special to optimal, deterministic
approximation based on iid information in the setting described above, and we therefore refrain
from discussing indirectly related subjects and results in detail.

The most important omissions we are aware of consist of the following:

• Nonlinear algorithms. Random constructions of �good� algorithms played a major role in
numerical analysis in the last decades to tackle problems where explicit constructions are not
available. Often, this is the case for problems where nonlinear algorithms are required, such
as in compressed sensing. We show that sharp results, and some interesting open problems,
can be found in the case of linear algorithms, too.

• Randomized error criterion. The setting considered in this survey should not be confused
with the study of randomized algorithms (sometimes called Monte Carlo methods) with regard
to probabilistic bounds on the error for each individual f . Here, although we assume that
data is produced by random functionals, this information is used for all f ∈ F simultaneously
which in general is a stronger error criterion.

• Other distributions. In the following, we often assume that the information is iid with
respect to a given �optimized� or �natural� distribution. It is clearly of interest, but not our
focus, to study the e�ect of using other distributions or �non-iid� randomness.

• Implementation and computational cost. We are not concerned with implementation
cost of speci�c algorithms but focus on information complexity, which is in general only a
lower bound on the total computational cost.

• Adaptive algorithms. In many cases it is interesting to study adaptive information/algo-
rithms. We will only discuss non-adaptive algorithms and note that, if F is convex and
symmetric, then the corresponding minimal errors (in the deterministic setting) di�er by at
most a factor of 2, see [37] and also [95, Section 4.2.1].

The �rst three topics will be brie�y discussed in Section 5 together with additional aspects such
as subsampling, learning and tractability of high-dimensional problems. We have to omit many
areas where iid information has proven useful, both within and outside of the IBC-framework.
These include, for example, density estimation, discretization, numerical integration (Monte Carlo)
and Bayesian inference.

Notation: For a measure space (D,Σ, µ), we write Lp(µ) for the set of p-integrable functions
with usual norm, and inner product for p = 2, and denote by Lp := Lp(µ) the normed space of
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corresponding equivalence classes. Whenever convenient, we identify a function with its equivalence
class. Moreover, we write F ↪→ G for two metric spaces F ⊂ G (with possibly di�erent metrics),
and say that F is embedded into G, if the identity id : F → G, id(f) = f , is a continuous injection.
(If G consists of equivalence classes, e.g., for G = Lp, then we use the usual modi�cations.) For two
sequences, (en)n≥0 and (gn)n≥0, we write en ≲ gn for en ≤ C gn for some constant C > 0 and all
n ≥ 2, and en � gn if en ≲ gn and gn ≲ en. If the sequences depend only on certain parameters,
say d or s, we write, e.g., en ≲s,d gn and en �s gn, respectively, to indicate the dependencies of
the hidden constants. Without indication it may depend on all involved parameters, except for n.
Given two, possibly in�nite, square matrices A and B we indicate the Loewner order by A ≥ B
meaning that A − B is positive semi-de�nite. Similarly, we use A ≤ B for B ≥ A. The in�nite
identity matrix representing the identity id : `2 → `2 is denoted by I and the n× n identity matrix
by In.

2 Some benchmarks of optimal approximation

In order to assess the power of random information for numerical approximation, optimal in-
formation will serve as a benchmark. Depending on the allowed algorithms or information, this
gives rise to di�erent concepts related to the widths or s-numbers of embeddings. We refer to the
monographs [90,100,102] for more information.

Approximation numbers are the minimal errors achievable by an arbitrary linear algorithm.
That is, we de�ne the n-th approximation numbers (which are sometimes called linear n-widths) of
F ⊂ H in G by

an(F,G) := inf
ℓ1,...,ℓn∈Λall

g1,...,gn∈G

sup
f∈F

∥∥∥f −
n∑

i=1

`i(f) gi

∥∥∥
G
. (2.1)

It is well known that nonlinear algorithms are often superior to linear ones, i.e., en(F,G,Λall) <
an(F,G) holds. However, equality holds, e.g., if F = BH is the unit ball of a Hilbert space H, or if F
is convex and symmetric and G = L∞. In such cases, an(F,G) = en(F,G,Λall), i.e., it is enough to
consider linear algorithms, see e.g. [95, Section 4.2]. Moreover, if F is the unit ball BH in a Banach
space H and H ↪→ G, then an(F,G) ≤ (1 +

√
n) en(F,G,Λall), see [95, Theorem 4.9]. In addition,

linear algorithms have (practical) advantages, which are not part of this survey. Let us just note that
the theory of linear approximations is much more developed than its nonlinear counterpart, with
typical techniques such as linear regression, (polynomial) interpolation and projections on certain
subspaces.

Kolmogorov widths are another prominent benchmark. The Kolmogorov n-width of a set
F ⊂ G is de�ned by

dn(F,G) := inf
Vn⊂G

dim(Vn)=n

sup
f∈F

inf
g∈Vn

∥∥∥f − g
∥∥∥
G
, (2.2)

i.e., it is the minimal distance (in G) that is achievable if we were to choose the best element from
a linear subspace of dimension n.

For this reason, the Kolmogorov widths are in general not related to the theory of algorithms:
The inner in�mum may not be attained by any (linear) algorithm and it appears to be an �unfair�
benchmark.

Still, it is an essential tool in many arguments as it corresponds to the existence of good subspaces
which can be used to de�ne algorithms. There are several relations between dn and an, as well as
to Gelfand widths via duality theory. For example, we have dn(F,L2) = an(F,L2) for F ⊂ L2 since
in this case the best approximation in a subspace is given by orthogonal projection.

Gelfand numbers are closely related to the minimal worst-case errors achievable with arbitrary
algorithms based on arbitrary linear information. That is, if we de�ne the n-th Gelfand number of
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F ⊂ H in G by

cn(F,G) := inf
Wn⊂H

codim(Wn)≤n

sup
f∈F∩Wn

‖f‖G, (2.3)

then it is well known that cn(F,G) di�ers from en(F,G,Λall) by a factor of at most 2 whenever
F ⊂ H is convex and symmetric, see e.g. [95, Section 4.2]. See also [17, 30] for a more general
version of this equivalence.

Sampling numbers are the minimal worst-case errors that can be achieved with algorithms
based on function values as information, i.e.,

gn(F,G) := en(F,G,Λstd) = inf
x1,...,xn∈D
φ : Rn→G

sup
f∈F

∥∥∥f − ϕ(f(x1), . . . , f(xn))
∥∥∥
G
, (2.4)

where F ⊂ G are classes of functions on the set D.

The ubiquity of function values in applications might suggest that sampling numbers have been
studied in depth as a benchmark. However, besides plenty of results in speci�c settings, there are
only few general results about them. An example is a recent optimal bound for L2-approximation in
Hilbert spaces, which is based on the general results on iid information and subsampling described
in Section 5.1, see Theorem 5.1.

Restricting to linear algorithms gives rise to the linear sampling numbers

glinn (F,G) := inf
x1,...,xn∈D
g1,...,gn∈G

sup
f∈F

∥∥∥f −
n∑

i=1

f(xi) gi

∥∥∥
G
,

which can be used to bound gn(F,G) from above.

Remark 2.1. We comment on the di�erence of �width� and �numbers� in the above context.
While the width of a set F ⊂ G can be de�ned solely based on the knowledge of F and (the norm
of) G, the de�nition of the (approximation/Gelfand) numbers also requires the normed space H
containing F to de�ne the class Λall of all linear functionals. We refer again to [100,102], and note
that there is also a concept of Gelfand width that can yield di�erent results, see [32]. This can also
be the case for linear widths/approximation numbers, see [46], and Remark 2.8 in [61].

3 Approximation based on iid information

In the following we develop a general approach for approximation based on random information
and a very simple linear algorithm: A weighted least squares method on a suitable subspace and
with suitable (explicitly given) weights. This will be done in four steps: We show

1. an L2-error bound for given information mappings,

2. how this relates to (in�nite) matrices in the case of Hilbert spaces,

3. how concentration inequalities lead to optimal bounds, and �nally,

4. how we can treat more general classes and approximation w.r.t. other norms.

3.1 L2-approximation and least squares methods

We �rst treat the case of approximation in L2-norm. For this, we �x some measure space
(D,Σ, µ), and write Lp := Lp(µ). We consider the weighted least squares estimator

AN (f) := argmin
g∈Vn

N∑
i=1

wi |`i(f − g)|2 (3.1)
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for some subspace Vn of L2 of dimension n, some weights wi > 0 and linear functionals `i ∈ Λ,
i = 1, . . . , N . Note that this map is well-de�ned and linear under condition (3.2) below, see
Proposition 3.1 and its proof. Since we have di�erent types of admissible information Λ in mind,
we present results in more general form than in the literature.

In any case, the algorithm AN in (3.1) is well studied, see e.g. the recent contributions [11,15,18]
and the references therein. It seems surprising that, when fed with random information, this simple
method often leads to (near-)optimal bounds. The next result forms a basis for many results
discussed in this survey, such as the ones in [29,54,72].

Proposition 3.1. Let H ⊂ L2 be a normed space of functions on D, and, for n ≤ N , let Vn be
a n-dimensional subspace of H, and `1, . . . , `N be linear functionals on H. Assume that

inf
g∈Vn

√∑N
i=1wi |`i(g)|2

‖g‖L2

≥ α (3.2)

for some α > 0 and some weights w1, . . . , wN > 0. Then, for all f ∈ H and g ∈ Vn, the algorithm
from (3.1) with the corresponding Vn, `i and wi is well-de�ned and satis�es

∥∥∥f −AN (f)
∥∥∥
L2

≤
∥∥f − g

∥∥
L2

+
1

α

√√√√ N∑
i=1

wi |`i(f − g)|2.

Note that, for studying the error over a set F ⊂ H, it is necessary to assume linearity of the used
functionals on the a�ne spaces f + Vn for each f ∈ F ∪ {0}, and introducing such a surrounding
normed space H seems a convenient way to do so.

The above proposition shows that information functionals `i are �good� for L2-approximation
in F if one can choose a subspace Vn and weights wi such that the squared sum in (3.2) has large
values on Vn and, for each f ∈ F , there is some g ∈ Vn such that ‖f−g‖L2 and

∑N
i=1wi |`i(f − g)|2

are small.

Condition (3.2) says that the discrete (semi)norm based on the functionals and given weights
should be comparable to the L2-norm on Vn. Finding such functionals and weights in the case of
standard information is called discretization (another interesting topic that we do not discuss in
detail). That is, one wants to �nd a point set such that the L2-norm of all functions from some n-
dimensional Vn can be �discretized� using function values at these points. Also here, random points
are used as a tool, and variants of Proposition 3.1 appear. We refer to [23, 44, 63] and references
therein.

For approximation in classes of functions, we note that Proposition 3.1, in general, also requires
a suitable discretization of the �remainder� f−g, which appears to be more involved. This simpli�es
slightly if we compare the L2-error of AN with best approximation in the uniform norm, see e.g. [112,
Theorem 2.1]. As usual, set ‖f‖∞ := supx∈D |f(x)| for f ∈ B(D), i.e., the space of bounded
functions on D.

Corollary 3.1. Let µ be a �nite measure and H ⊂ B(D) be a normed space of functions on
D, and `1, . . . , `N be bounded linear functionals on B(D). Then, for each Vn ⊂ H with (3.2) for
wi =

1
N the corresponding unweighted least squares method from (3.1) satis�es∥∥∥f −AN (f)

∥∥∥
L2

≤ c

α
inf
g∈Vn

‖f − g‖∞ for all f ∈ H

with c ≤ sup{‖f‖L2 + |`i(f)| : f ∈ H, ‖f‖∞ = 1, i = 1, . . . , N}.
In particular, if we are free to choose Vn, then we might want to take one that minimizes the

right hand side. For �nding corresponding functionals in the case of function evaluations, it has
been observed in [6, Theorem 6.2] that for every Vn ⊂ C(D) of dimension n, there exist x1, . . . , xN
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with N � n with (3.2) for wi = 1/N ; see also [21, 78, 112] for earlier results. Applied to the
(near-)optimal subspace Corollary 3.1 gives

sup
f∈F

∥∥∥f −AN (f)
∥∥∥
L2

≲ dn(F,L∞)

with AN (f) = argming∈Vn

∑N
i=1 |f(xi) − g(xi)|2 with the Kolmogorov width as in (2.2), see [6,

Coro. 6.4] and [112, Thm. 1.1]. This is proven using slightly larger iid point sets which are sub-
sampled to obtain point sets of optimal size. This technique will be discussed brie�y in Section 5.1.
Following the same arguments, similar results can be obtained for more general classes of functionals.

For obtaining optimality of the used method AN among all linear algorithms, it is of interest to
replace the L∞ on the right hand side by L2 since dn(F,L2) = an(F,L2). This is possible under
further (necessary) assumptions on F and `i, and will be the subject of the following sections.

We end this section with the proof of Proposition 3.1, which follows very closely the lines of
Section 3 in [73].

Proof of Proposition 3.1. Let Vn = span{b1, . . . , bn} ⊂ H for some orthonormal system in L2.
Then, the algorithm from (3.1) can be written as

AN (f) =

n∑
k=1

(
G+N(f)

)
k
bk,

where N : F → RN with N(f) :=
(√

wi `i(f)
)
i≤N

is the (weighted) information mapping and

G+ ∈ Rn×N is the Moore-Penrose inverse of the matrix

G := (
√
wi `i(bk))i≤N, k≤n ∈ RN×n,

whenever G has full rank.

This is ful�lled, because (3.2) is equivalent to sn(G) ≥ α, where sn(G) denotes the n-th singular
value of G. In particular, we have AN (g) = g for every g ∈ Vn and ‖G+‖2→2 = sn(G)−1 ≤ 1

α .
Therefore,

‖f −AN (f)‖L2 ≤ ‖f − g‖L2 + ‖g −AN (f)‖L2 = ‖f − g‖L2 + ‖AN (f − g)‖L2

= ‖f − g‖L2 + ‖G+N(f − g)‖ℓn2

≤ ‖f − g‖L2 +
1

α
‖N(f − g)‖ℓN2 ,

which proves the claim. □

3.2 Hilbert spaces and (random) matrices

The very general result in Proposition 3.1 has useful implications for Hilbert spaces. In the
following, we consider a separable Hilbert space H which is continuously embedded into L2 = L2(µ),
where µ is a measure on some set. We shall assume that the norm of H is given by

‖f‖2H :=
∞∑
k=1

|〈f, σkbk〉H |2 =
∞∑
k=1

| 〈f, bk〉L2
|2

σ2
k

, (3.3)

where {b1, b2, . . . } is an orthogonal basis of H that is orthonormal in L2(µ), and σ1 ≥ σ2 ≥ · · · > 0.
Note that by the spectral theorem such a basis exists and σn → 0 holds, if the embedding H ↪→
L2(µ) is compact, see e.g. [95, Section 4.2.3]. Further, it holds that dk(BH , L2) = ak(BH , L2) =
ck(BH , L2) = σk+1 for all k ∈ N.
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If we choose Vn = span{b1, . . . , bn} as the optimal subspace of H, see e.g. [102, Thm. IV.2.2.],
we obtain the following consequence of Proposition 3.1, see e.g. [54].

Proposition 3.2. Let H ↪→ L2 be a separable Hilbert space with norm as in (3.3). Moreover,
for N ≥ n, let `1, . . . , `N be continuous linear functionals on H, Pn be the orthogonal projection
onto Vn := span{b1, . . . , bn}, and assume that( N∑

i=1

wi `i(bk) `i(bj)

)n

k,j=1

≥ α2 In (3.4)

and ( N∑
i=1

wi `i(σkbk) `i(σjbj)

)∞

k,j=n+1

≤ β2 I, (3.5)

for some α > 0, β ≥ 0 and weights w1, . . . , wN ≥ 0. Then, for all f ∈ H, the algorithm from (3.1)
with the corresponding Vn, `i and wi satis�es∥∥∥f −AN (f)

∥∥∥
L2

≤
(
σn+1 +

β

α

)∥∥f − Pnf
∥∥
H
. (3.6)

For the worst-case error over the unit ball BH of H we obtain from (3.6) that

e(AN , BH , L2) ≤ σn+1 +
β

α
. (3.7)

Since we always have e(AN , BH , L2) ≥ σN+1, this leads to an optimal bound (up to constants)
provided that β

α ≲ σn+1 with N � n. Later, we will see that this can be obtained whp for certain
classes of random information. But �rst we consider a general result that works for many more
classes of information if we allow a logarithmic oversampling.

Let us also mention that it is well known that in the setting of Proposition 3.2 optimal infor-
mation N∗

n is given by `i(·) = 〈bi, ·〉, i = 1, . . . , n. In this case, we can choose N = n and equal
weights wi = 1 to have α = 1 and β = 0. Then, in fact, AN = Pn and equality holds in (3.7), i.e.,
e(N∗

n, BH , L2) = σn+1. This recovers the best possible bound for approximation in Hilbert spaces,
see e.g. [95, Thm. 4.11].

The above results show that the least squares algorithm from (3.1) sati�es �good� error bounds
for all f ∈ H at once, if weights and functionals can be found that satisfy (3.4) and (3.5) with large
α and small β. For later use we restate these conditions in the form

sn

((√
wi `i(bj)

)
1≤i≤N,1≤j≤n

)
≥ α (3.8)

and
s1

((√
wi `i(σjbj)

)
1≤i≤N,j>n

)
≤ β, (3.9)

where sk(A) denotes the k-th singular value of a matrix A. In the following, we will see that
the existence of good (iid) information can be guaranteed for rather general classes of information
Λ and Hilbert spaces H. This is based on results from random matrix theory, in particular the
concentration result for sums of rank-one matrices in Lemma 3.3 below, which we shall apply to get
(3.4) and (3.5) whp. In this way we obtain the �local version� of the main result from [72], but in
a slightly more general form, see also [115].

Theorem 3.2. LetH ↪→ L2 be a Hilbert space with norm as in (3.3) and
∑

k σ
2
k < ∞. Moreover,

let Λ ⊂ H ′ be a class of information, and ν be a (possibly in�nite) measure on Λ with∫
Λ
`(f) · `(g) dν(`) = 〈f, g〉L2 for all f, g ∈ H. (3.10)
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Further, let `1, . . . , `N ∈ Λ be iid random functionals distributed with ν-density

ρn(`) :=
1

2

 1

n

∑
k≤n

|`(bk)|2 +
∑

k>n σ
2
k |`(bk)|2∑

k>n σ
2
k

 , ` ∈ Λ. (3.11)

Then, with probability (at least) 1−N−c, the algorithm AN from (3.1) with Vn = span{b1, . . . , bn},
N ≳c n log n, functionals `i and weights wi = ρn(`i)

−1 satis�es∥∥∥f −AN (f)
∥∥∥
L2

≤ 3max

{
σn+1,

√
1

n

∑
k>n

σ2
k

} ∥∥f − Pnf
∥∥
H

(3.12)

for all f ∈ H, where Pn is the orthogonal projection onto Vn. In particular,

eiidN (BH , L2, ρ32n · dν) ≤
√

1

n

∑
k>n

σ2
k

with the same probability if N ≳c n log n.
The expression 1

n

∑
k≤n |`(bk)|2 in the density (3.11) is also called (the inverse of) the Christo�el

function, at least for `(f) = δx(f) being given by function evaluations, see e.g. [21] and the references
therein.

Another way to write the density is

ρn(`) ∼ sup
g∈Vn

|`(g)|
‖g‖L2

+ τn · sup
g∈H∩V ⊥

n

|`(g)|
‖g‖H

with τn := ( 1n
∑

k>n σ
2
k)

−1.
To illustrate the e�ect of the sampling density ρn, which also appears inversely in the weights

in the algorithm AN , assume that the `(bk) can attain arbitrarily large and small values. Roughly
speaking, while functionals with large values of ρn(`) are likely to be sampled, their contribution
in the algorithm is �damped� and vice versa for functionals for which the density small. It is not
entirely clear why these competing e�ects are bene�cial.

We recently learned that a density similar to (3.11) has been used in [4] in the context of random
feature expansions. Hence, this density appears useful also in the context of constructing �good�
random subspaces for approximation, in contrast to our emphasis on �nding �good� information.

Let us also add that sampling according to ρn might be non-trivial. However, in many cases,
like for Gaussian information or for function evaluations for certain Sobolev spaces one can sample
instead from the underlying measure ν.

We end this section by providing the proofs of Proposition 3.2 and Theorem 3.2.
Proof of Proposition 3.2. Since( N∑

i=1

wi `i(bk) `i(bj)

)n

k,j=1

≥ α2 In

is equivalent to (3.2), i.e.,

inf
g∈Vn

√∑N
i=1wi |`i(g)|2

‖g‖L2

≥ α,

we obtain from Proposition 3.1 with g := Pnf that∥∥∥f −AN (f)
∥∥∥
L2

≤
∥∥f − Pnf

∥∥
L2

+
1

α

√√√√ N∑
i=1

wi |`i(f − Pnf)|2

≤ σn+1 ‖f − Pnf‖H +
1

α

√√√√ N∑
i=1

wi |`i(f − Pnf)|2.
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Note that for every f ∈ H we have f − Pnf ∈ H ∩ V ⊥
n and, by continuity, `i(f − Pnf) =∑

k>n 〈f, σkbk〉H `i(σkbk), i = 1, . . . , N . From( N∑
i=1

wi `i(σkbk) `i(σjbj)

)∞

k,j=n+1

≤ β2 I,

which is equivalent to

sup
g∈H∩V ⊥

n

√∑N
i=1wi |`i(g)|2

‖g‖H
≤ β, (3.13)

we obtain √√√√ N∑
i=1

wi |`i(f − Pnf)|2 ≤ β ‖f − Pnf‖H

which completes the proof. □
The proof of Theorem 3.2 is based on the following concentration inequality for in�nite matrices,

which was essentially proved in [86, Theorem 2.1], see also [1, 98, 114]. Here we use a tailored
reformulation of this result from [115, Prop. 1].

Lemma 3.3. Let N ≥ 3, R > 0 and y1, . . . , yN be i.i.d. random sequences from `2(N) satisfying
‖yi‖22 ≤ R2 almost surely and ‖E‖2→2 ≤ 1, where E = E(yiy∗i ).

Then

P

(∥∥∥∥ 1

N

N∑
i=1

yiy
∗
i − E

∥∥∥∥ >
1

2

)
≤ 4

N c
,

whenever
N

ln(N)
≥ 64(2 + c)R2,

e.g., if N ≥ 29(1 + c) ln(e+ c)R2 ln(eR2) for R ≥ 2.
(Numbers in the last line have been checked numerically.)
Proof of Theorem 3.2. We follow the lines of [72] (see also [29]).
In order to apply Proposition 3.2, it remains to show that (3.4) and (3.5) hold for some α, β > 0

with su�ciently high probability. De�ne the random vectors

(yi)k =


√
wi `i(bk), if 1 ≤ k ≤ n,

√
wi `i(σk bk)

γn
, if k > n,

where

γn := max

{
σn+1,

√
1

n

∑
k>n

σ2
k

}
> 0.

By the choice of the weights wi = ρn(`i)
−1, we obtain

‖yi‖22 = wi

∑
k≤n

|`i(bk)|2 + γ−2
n

∑
k>n

σ2
k |`i(bk)|2

 ≤ 2n.

Further,

(yiy
∗
i )k,j =


wi `i(bk) `i(bj), if 1 ≤ k, j ≤ n,

wi `i(σk bk) `i(σj bj)

γ2n
, if k > n,
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and using (3.10) we obtain

Eyiy∗i =

(
In 0

0 C

)
,

where C is an in�nite diagonal matrix with spectral norm at most one, and the expectation is with
respect to ρn · dν.

Lemma 3.3 yields ( N∑
i=1

wi `i(bk) `i(bj)

)n

k,j=1

≥ NIn − N

2
In =

N

2
In

and ( N∑
i=1

wi `i(σkbk) `i(σjbj)

)∞

k,j=n+1

≤ Nγ2n(C +
1

2
I) ≤ 3N

2
γ2n I,

simultaneously with probability 1 − 4N−c, if N ≥ C ′n log n for some constant C ′ > 0 that only
depends on c. Hence, we have that the algorithm AN from Proposition 3.2 satis�es, with the same
probability, that ∥∥∥f −AN (f)

∥∥∥
L2

≤ (σn+1 + 3γn)
∥∥f − Pnf

∥∥
H

for all f ∈ H. Using that

γ2n = max

{
σ2
n+1,

1

n

∑
k>n

σ2
k

}
≤ 2

n

∑
k>n/2

σ2
k,

one obtains the bound ∥∥∥f −AN (f)
∥∥∥
L2

≤

√√√√32

n

∑
k≥⌈n/2⌉

σ2
k

∥∥f − Pnf
∥∥
H
.

Replacing n by 32n and taking the supremum over f ∈ BH implies the uniform bound over BH . □

3.3 General classes of functions

The purpose of this and the following section is to transfer the above results for L2-approximation
in Hilbert spaces to more general situations. In fact, it will turn out that the �local� result from the
last section (referring to the expression ‖f − Pnf‖H on the right hand side of (3.12)) can be used
directly to prove bounds for more general classes of functions.

The main idea is to construct a Hilbert space H containing F , and then apply Theorem 3.2
to H. In the context of random information, this approach was used already in [73]. Another
construction of such an H, which is also the one we employ here, has been found recently in [68].

Unfortunately, we need that the information functionals `i are continuous on this Hilbert space,
which seems di�cult to formalize in a nice form. In fact, as the last proof showed, we need that
`(f) =

∑
k∈N 〈f, bk〉L2

`(bk) holds for all f ∈ F (or a dense subset) for almost all ` ∈ Λ with respect
to the chosen measure on Λ. Here, we work under the following assumption.

Assumption A. We consider the following setting.

(A.1) F is a separable metric space of functions on a set D.
(A.2) µ is a measure on D such that F is continuously embedded into L2 := L2(µ). Λ is a class of

functionals on L2(µ), the µ-square integrable functions on D.
(A.3) ν is a measure on Λ such that ν-almost every (ν-a.e.) ` ∈ Λ is continuous on F and for every

f ∈ L2 the map ` 7→ `(f) belongs to L2(ν), in particular is well-de�ned, and∫
Λ
`(f) · `(g) dν(`) = 〈f, g〉L2 , f, g ∈ L2.
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Assumption (A.3) seems to be quite restrictive, but it �ts the examples we have in mind, like
function evaluations or Gaussian information, see Section 4. However, other classes of information,
like derivative values or local averages of the input, see e.g. [13], do not satisfy this assumption,
meaning that we cannot �nd a measure ν such that (A.3) holds. Note that (A.3) readily implies
that, for all f, g ∈ L2, we have `(f + g) = `(f) + `(g) for ν-a.e. ` ∈ Λ, see the proof of Lemma 3.5.

Remark 3.1. Note that in IBC, or numerical analysis in general, a common assumption is
that the information functionals must be de�ned solely on the class F , or a �surrounding� normed
space H ⊃ F . Our analysis, however, requires that we can extend a.e. ` ∈ Λ also to more general
subspaces of L2. This led us to Assumption (A.3), which may be weakened to equality up to
constants independent of f, g ∈ L2. It would be interesting to �nd for given F necessary conditions
on Λ such that (A.3) holds.

Under the above assumption we obtain the following general statement.
Theorem 3.4. There are constants b, C ∈ N such that for any F , D, µ, Λ, ν that satisfy

Assumption A and all n ∈ N and N ≥ Cn log(n+ 1), we have

eiidN (F,L2, ρbn · dν) ≤ 1√
n

∑
k≥n

dk(F,L2)√
k

with probability 1 − N−42 where the density ρn is given by (3.11), with suitable {bk} and σk :=
k−1/2d⌊k/8⌋(F,L2). The bound is achieved by the corresponding algorithm AN from Theorem 3.2.

Recall that dk(F,L2) = ak(F,L2) if F ⊂ L2, and that dn(F,L2) < ε is equivalent to the existence
of an n-dimensional Vn ⊂ F with supf∈F infg∈Vn ‖f − g‖L2 < ε.

The following technical lemma is a composition from Section 6.1 of [29] and the proof of [68,
Prop. 11], extended to general information.

Lemma 3.5. Let Assumption A be ful�lled and assume dk(F,L2) > 0, k ∈ N, with∑
k∈N

dk(F,L2)√
k

< ∞.

Then, there is an ordered orthonormal system (bk)k∈N in L2 such that F ⊂ H ⊂ L2, where the
Hilbert space H is the completion of span {bk}k∈N with respect to the norm

‖f‖2H :=
∞∑
k=1

√
k | 〈f, bk〉L2

|2

d⌊k/8⌋(F,L2)

and, for each n ∈ N, we have

sup
f∈F

‖f − Pnf‖H ≤ 4

√√√√ ∑
k>⌊n/8⌋

dk(F,L2)√
k

, (3.14)

where Pn is the orthogonal projection onto Vn := span{b1, . . . , bn}.
Moreover, for every countable set F0 ⊂ F , there is some Λ0 ⊂ Λ with ν(Λ \ Λ0) = 0 such that

`(f) =

∞∑
k=1

〈f, bk〉L2
`(bk) (3.15)

for all f ∈ F0 and ` ∈ Λ0.
(The modi�cations in case of dk(F,L2) = 0 for k ≥ k0 are straightforward.)
Before we prove this lemma, let us see how it implies Theorem 3.4.
Proof of Theorem 3.4. We want to apply Theorem 3.2 to the Hilbert space H from Lemma 3.5.

In order to extend Λ to linear and continuous functionals on H, let us �x a countable dense subset
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F0 ⊂ F , and corresponding Λ0 as in Lemma 3.5, and (formally) de�ne, for each ` ∈ Λ0, the
functionals `(f) : H → R by `(f) =

∑
k∈N 〈f, bk〉L2

`(bk).

In order to show the boundedness/continuity of ` : H → R, note that

|`(f)| ≤
∑
k∈N

| 〈f, bk〉L2
`(bk)| ≤ ‖f‖H

√∑
k∈N

σ2
k `(bk)

2

with σ2
k := k−1/2d⌊k/8⌋(F,L2). Using∫

Λ

n∑
k=1

σ2
k`(bk)

2 dν(`) ≤
∑
k∈N

σ2
k < ∞,

for n ∈ N, we obtain with the monotone convergence theorem that there is Λ′ ⊂ Λ with ν(Λ\Λ′) = 0
such that

∑
k∈N σ2

k`(bk)
2 < ∞ for all ` ∈ Λ′.

Thus, for every ` ∈ Λ1 := Λ0 ∩ Λ′, the functional ` : H → R is linear and continuous on H, and
we set Λ := {` : ` ∈ Λ1} ⊂ H ′.

We can now apply Theorem 3.2 to H and Λ, where we equip Λ in the natural way with the same
measure as Λ. Equation (3.10) then follows from Assumption (A.3). We obtain, with probability
1−N−c, that

∥∥∥f −A′
N (f)

∥∥∥
L2

≤

√√√√ 1

n

∑
k≥n

dk(F,L2)√
k

· ‖f − P32nf‖H

for all f ∈ H, if N ≳c n log(n+ 1) and A′
N : H → V32n is the algorithm from Theorem 3.2 with iid

functionals `i ∈ Λ according to ρ32n dν.

Now, for the algorithm AN as described in Theorem 3.4, note that `i ∈ Λ1 almost surely and,
by Lemma 3.5, ` = ` on F0 for all ` ∈ Λ1. This implies that �AN (f) = A′

N (f) for all f ∈ F0� with
probability one. We obtain that

sup
f∈F0

∥∥∥f −AN (f)
∥∥∥
L2

≤ 4√
n

∑
k≥n

dk(F,L2)√
k

with probability 1 − N−c if N ≳c n log(n + 1), where we also used (3.14). Since F0 is dense in F
and both id : F → L2 and An : F → L2 are continuous ν-a.e., the same is true for F . □

Proof of Lemma 3.5. From [73, Lemma 3], using that dn(F,L2) = an(F,L2) for all F ⊂ L2, we
�nd an ordered orthonormal system (bk)k∈N in L2 such that

sup
f∈F

‖f − Pnf‖L2 ≤ 2 d⌊n/4⌋(F,L2)

for all n ∈ N. In particular, every f ∈ F expands into f =
∑

k∈N 〈f, bk〉L2
bk in L2.

Let H be the Hilbert space in the statement of Lemma 3.5, i.e., we complete span {bk}k∈N with
respect to the norm

‖f‖2H :=
∑
k∈N

| 〈f, bk〉L2
|2

σ2
k

with σ2
k :=

d⌊k/8⌋(F,L2)√
k

, k ∈ N.

Then, writing dk := dk(F,L2) and αn := supf∈F ‖f − Pnf‖2, we have αk ≤ 2d⌊k/4⌋ and obtain for
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n ∈ N and f ∈ F that

‖f − Pnf‖2H =
∑
k>n

√
k
∣∣〈f, bk〉L2

∣∣2
d⌊k/8⌋

≤
∞∑
ℓ=0

√
2ℓ+1n

d⌊2ℓ−2n⌋

2ℓ+1n∑
k=2ℓn+1

∣∣〈f, bk〉L2

∣∣2
≤

∞∑
ℓ=0

√
2ℓ+1n ·

α2
2ℓn

d⌊2ℓ−2n⌋
≤ 2

∞∑
ℓ=0

√
2ℓ+1n · d⌊2ℓ−2n⌋

≤ 2

∞∑
ℓ=0

√
2ℓ+1n · 1

2ℓ−3n

2ℓ−2n∑
k=⌊2ℓ−3n⌋+1

dk

≤ 8
√
2

∞∑
ℓ=0

2ℓ−2n∑
k=⌊2ℓ−3n⌋+1

dk√
k

≤ 12
∑

k>⌊n/8⌋

dk√
k
.

In particular, limn→∞ Pnf = f ∈ H.
For (3.15), note that, by Assumption (A.3), the mapping IΛ : L2(D,µ) → L2(Λ, ν), IΛf(`) :=

`(f) is an isometry, and hence linear and injective on L2(D,µ). Thus, {IΛbk}k∈N is an orthonormal
system in L2(Λ, ν), and for every f ∈ L2(D,µ) we have fΛ =

∑
k∈N 〈f, bk〉L2

bΛk in L2(Λ, ν), where

we write fΛ := IΛf . Every f ∈ F satis�es∑
k≥1

k | 〈f, bk〉L2
|2 =

∑
n≥0

∑
k>n

| 〈f, bk〉L2
|2 =

∑
n≥0

‖f − Pnf‖2L2
< ∞,

and hence, by the Rademacher-Menchov theorem, see e.g. [85,105], we obtain

`(f) = fΛ(`) =
∑
k∈N

〈f, bk〉L2
bΛk (`) =

∑
k∈N

〈f, bk〉L2
`(bk) (3.16)

for ν-almost all ` ∈ Λ. Since F0 is countable, the almost everywhere convergence holds simultane-
ously for all f ∈ F0, i.e., there is Λ0 ⊂ Λ with ν(Λ \ Λ0) = 0 and (3.16) for all f ∈ F0 and ` ∈ Λ0.
In particular, `(bk) is well-de�ned for ` ∈ Λ0 and k ∈ N. □

3.4 Approximation in general norms

We will now present the techniques from [68] to transfer the L2-error bounds to more general
seminorms. However, the results come with additional restrictions on the used approximation
spaces.

Assumption B. We consider the following setting.

(B.1) G is a seminormed space which contains F , and G∩L2 is complete w.r.t. the natural seminorm
‖ · ‖∗ := ‖ · ‖G + ‖ · ‖L2 . If two functions from G are equal µ-almost everywhere, then their
seminorm in G is the same.

(B.2) (Vn)
∞
n=1 is a sequence of subspaces of G ∩ L2, respectively of dimension n.

Assumption (B.1) is satis�ed, e.g., if F is a compact subset of C(D), where D is a compact
domain, µ is a �nite measure on D, and G = Lq(µ) for 1 ≤ q ≤ ∞. Note that for probability
measures, and q ≤ 2, the above presented upper bounds for L2-approximation directly transfer to
Lq-approximation via ‖ · ‖Lq ≤ ‖ · ‖L2 , and in also to the integration problem. See [68] for the
discussion of more general norms, in particular G = C(D).

We introduce the quantities

Bn := B(Vn, G) := sup
f∈Vn, f ̸=0

‖f‖G
‖f‖2

(3.17)
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and
αn := α(Vn, F ) := sup

f∈F
‖f − PVnf‖2 = sup

f∈F
inf
g∈Vn

‖f − g‖2.

Note that Bn corresponds to the (inverse) of the Christo�el function if G = L∞. Further, for
optimal subspaces the quantity B(Vn, G) is equal to

inf
dim(Vn)=n

sup
f∈Vn, f ̸=0

‖f‖G
‖f‖2

= bn−1(id : G → L2)
−1,

where bn denotes the Bernstein n-width, see [102, Ch. II].
The following lemma is easy to prove. We refer to [68, Lemma 10].
Lemma 3.6. Let Assumption B hold. For any n ∈ N, any mapping A : F → Vn and all f ∈ F ,

we have

‖f −Af‖G ≤ 2
∑

k>⌊n/4⌋

αk B4k

k
+ Bn · ‖f −Af‖2.

This bound can now be used in combination with the algorithm and sampling strategy from
above. We only state a special case, and refer to [68] for the general result, the proof and a discussion
of some cases where this leads to sharp results (up to the logarithmic oversampling).

Theorem 3.7. Let Assumptions A and B hold and let α, β, γ and δ be real parameters with
α > max{β, 1/2}. If

B(Vn, G) ≲ nβ(log n)δ and α(Vn, F ) ≲ n−α(log n)γ

then
eiidN (F,L2, ρn · dν) ≲ n−α+β(log n)γ+δ

with probability 1−N−α if N ≳ n log n, where ρn is as in Theorem 3.4.
Note that this includes the (sharp) corollary of Theorem 3.4 for G = L2: In this case β = δ = 0,

and with the choice of (Vn) such that α(Vn, F ) ≤ 2d⌊n/4⌋(F,L2), we obtain that dn(F,L2) �
n−α(log n)γ with α > 1/2 implies

eiidn logn(F,G, ρn · dν) ≲ dn(F,L2) = an(F,L2)

with probability 1− n−α whenever Assumption A holds.

3.5 Sharpness for L2-approximation

Let us note that Theorem 3.4 may be applied to the setting in Section 3.2 and in particular
Theorem 3.2, where dk(BH , L2) = σk+1. A qualitative comparison gives bounds on eiidN (BH , L2,Λ)
whp, where N ≳ n log n, which are of order

1√
n

∑
k>n

σk√
k

vs.
1√
n

√∑
k>n

σ2
k,

where apart from the common prefactor the �rst expression is the Lorentz `2,1-norm and the second
the `2-norm of the tail. In general, we have `2,1 ⊂ `2,2 = `2, see e.g. [101, Prop. 2.1.10]. That is, if
the second sum converges, then so does the �rst. Let us give some more details on the convergence.

In Section 4, we shall be interested in sequences (σn) with σn � n−α(log n)−β for α, β > 0,
which is the case for n-widths of Sobolev embeddings, see e.g. [102, Ch. VII] or [111, Ch 5]. In this
case,

1√
n

∑
k>n

σk√
k

�α,β

σn if α > 1/2,

σn log n if α = 1/2 and β > 1,
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and

1√
n

√∑
k>n

σ2
k �α,β

σn if α > 1/2,

σn
√
log n if α = 1/2 and β > 1/2,

and in the remaining cases the sum does not converge. So, the second bound is slightly smaller for
poly-log decay.

We obtain that n log n iid measurements are asymptotically optimal whp, i.e., eiidn logn(BH , L2,Λ)

� σn, provided that the singular numbers decay at a rate n−α with α > 1/2. At α = 1/2 we lose
logarithmic factors. But also these bounds are sometimes sharp up to the oversampling, see [29,74].
In certain cases, the oversampling can be removed, see Section 4. In others, it is necessary, as we
shall see in the following.

For this, assume that H is as in Theorem 3.2 and Λ := {〈·, h〉 : h ∈ B}, where B is some
orthonormal basis of L2. Note that Assumption (A.3) is ful�lled if ν is the counting measure on Λ.
Theorem 3.2 now implies that n log n random coe�cients w.r.t. B are as powerful as the optimal
information for Hilbert spaces.

Now, if B = {b1, b2, . . . } is the optimal basis as in (3.3), then the density with respect to the
counting measure ν on {〈·, bk〉 : k ∈ N} is given by

ρn(〈·, bℓ〉) =
1

2


1
n if ` ≤ n,

σ2
ℓ∑

k>n σ2
k

if ` > n.

Further, by virtue of the coupon collectors theorem, the asymptotics n log n cannot be improved.
More precisely, one needs on average n log n samples drawn according to ρn (or any other distribu-
tion) to guarantee that the �rst n Fourier coe�cients are evaluated. For completeness, we give a
formal statement below. A similar e�ect occurs if we approximate Sobolev functions using function
samples, see Section 4.2. This shows that in general Theorem 3.2 and thus Theorem 3.4 cannot be
improved.

Proposition 3.3. Assume that H is as in Theorem 3.2 and Λ := {〈·, h〉 : h ∈ B}, where B is
some orthonormal basis of L2. Let ν be any probability measure on Λ. If N/n log n → 0, then for
any α > 0 we have

eiidN (BH , L2, ν) ≥ σ⌊αn⌋

whp for all large enough n.
If the sequence (σn) decays fast enough, i.e., if limK→∞ supn∈N

σKn
σn

= 0 such as for polynomial
decay, then under the conditions in the proposition we deduce that for any C > 0

eiidN (BH , L2, ν) ≥ Cσn

whp for all n large enough. Thus, for sampling Fourier coe�cients, N � n log n iid functionals are
whp worse by an arbitrary factor than n optimal functionals.

This shows that for some classes of information that clearly contain optimal information, we
need a logarithmic oversampling. This might not come as a surprise. However, we will see in
Section 4 that this is not true in general, depending on the classes of information and inputs. This
leads to the following question.

Open Problem 3.1. What are conditions on Λ and H such that the conclusion of Proposi-
tion 3.3 holds?

This should be compared to Theorems 4.5 and 4.4, and Open Problem 4.2 below.
Proof of Proposition 3.3. We identify Λ with N and thus N iid functionals `1, . . . , `N in Λ

sampled according to ν correspond to N numbers sampled randomly from N.
Since N/n log n → 0, for any n large enough we have N ≤ 1

2n log n. By the coupon collector's

problem, the probability that we miss one of the numbers in {1, . . . , n}, say i, is at least 1− e−
√
n.
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For this, combine the classical limit law in [33] with the fact that equidistribution on {1, . . . , n}
stochastically needs the least amount of coupons, see [12, p.52]. In this case, the i-th Fourier
coe�cient is not measured and any algorithm AN lacking this information has error at least σi ≥ σn
(since ±σibi ∈ BH , it has to return zero for these functions).

Thus, eiidN (BH , L2, ν) ≥ σn in this case. By replacing n with bαnc for α > 0 we get that with

probability at least 1− e−
√
αn for all large enough n we have

eiidN (BH , L2, ν) ≥ σ⌊αn⌋.

□

4 Applications and improvements

The results above show that n log n pieces of iid information are often as valuable as optimal
information, and we have even seen that this cannot be improved in general. However, there are cases
where the logarithmic oversampling factor can be removed and iid information is asymptotically
optimal. We report on two instances. Namely, Lq-approximation in (isotropic) Sobolev spaces W s

p

with p > q if iid uniform samples are used, and L2-approximation if the iid information is Gaussian,
in both a linear and a nonlinear setting. We still do not completely understand what makes these
settings special in this respect, and add some open problems related to them.

We start with a more detailed explanation of the general case of standard information, i.e.,
function evaluations. In particular, we discuss a natural limitation of this class of information.

4.1 Random function evaluations

Approximation of (regular or smooth) functions using function evaluations was the main motiva-
tion and application of the results introduced in Section 3. Clearly, for Λ = Λstd, Assumption (A.3)
is obvious by identifying ν with µ (from L2(µ)) by ν({δx : x ∈ M}) = µ(M) for µ-measurable
M ⊂ D. For applying the results we would like point evaluation to be continuous on H.

Especially Hilbert spaces of this type are of interest and intensively studied:

A Hilbert space H of functions on a set D is called a reproducing kernel Hilbert space (RKHS)
on D if point evaluation δx : H → R is a continuous functional for all x ∈ D, i.e., H is a RKHS
if and only if Λstd ⊂ H ′. The crucial property of RKHS is the existence of a (reproducing) kernel
K : D×D → R such that f(x) = 〈f,K(x, ·)〉H for all f ∈ H and x ∈ D. If H ↪→ L2(µ) is compact,
the kernel characterizes H in the sense of (3.3) being equivalent to

K(x, y) =
∞∑
k=1

σ2
k bk(x) bk(y), x, y ∈ D, (4.1)

where, again, (σk) ∈ `2 is a non-increasing sequence and {bk}∞k=1 is an orthonormal system in L2,
see e.g. [108, Thm. 3.1]. We refer to [2] for more on RKHS.

Let us note that the results from the last section do not require every δx to be in H ′; almost all
would su�ce. However, this is not a major restriction, as we can always pass to the (full-measure)
subset D0 ⊂ D, where function evaluation is continuous. This does not change the L2-error, or the
random sampling.

Again, we obtain from Theorem 3.2, see [72], that there is some sampling density ρn, such that
n log n random sampling points are enough for a near-optimal bound. In particular, the algorithm

AN (f) = argmin
g∈Vn

N∑
i=1

|g(xi)− f(xi)|2

ρn(xi)
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for suitable Vn and ρn from (3.11) (with ` = δx) satis�es

e(AN , BH , L2) ≤
√

1

n

∑
k>n

ck(BH , L2)2,

with probability 1−N−c, whenever N ≳c n log n, and x1, . . . , xN are iid w.r.t. ρn dµ.
It has already been observed in [58] that the square-summability of (cn) is a necessary condition

for a general comparison with (gn). In fact, it is shown in [74] that there exists some c > 0 such
that

g⌊cn⌋(BH , L2) ≥
√

1

n

∑
k>n

ck(BH , L2)2

for some (simple, univariate) Hilbert space H and all n, see (2.4). That is, the upper bound is
optimal, up to the logarithmic oversampling factor, and even for optimal function evaluations the
square-summability of (cn) is necessary. In fact, for many important examples, as the Sobolev
spaces discussed below, this summability corresponds to the embedding into C(D). It is therefore
necessary to work with function evaluations and only a weak restriction. We will see in Section 4.3
that the same restriction appears for Gaussian information.

So, in the case of standard information in a RKHS, iid information is optimal up to the loga-
rithmic oversampling factor. Similar results exist for more general classes, see [29,73].

Remark 4.1. (gn 6= cn?). It is easy to �nd examples where standard information is as powerful
as arbitrary linear information. For this consider the (pathological) example of D = N and a RKHS
H ⊂ `2 on N as in (3.3) with norm ‖f‖H =

∑∞
k=1 f

2
kσ

−2
k , for f = (f1, f2, . . . ), i.e., the ONB

{bk}∞k=1 is given by the canonical basis of `2. Clearly, function evaluation is the same as computing
coe�cients w.r.t. the (optimal) basis (bk), and so gn(BH , L2) = cn(BH , L2) in this case.

However, when we turn to approximation in other norms, then it seems that, so far, no general
�for all H� comparison has been observed, and additional conditions appear; often involving the
quantity B(Vn, G) from (3.17). Let us only discuss the case of uniform approximation G = L∞,
and refer to [68] for generalizations. In this case, we have

B(Vn) := B(Vn, L∞) = sup
f∈Vn, f ̸=0

‖f‖∞
‖f‖2

=
∥∥∥ n∑

k=1

|bk|2
∥∥∥1/2
∞

,

where {b1, . . . , bn} is an arbitrary L2-orthonormal basis of Vn.
As Theorem 3.7 shows, bounds on B(Vn), together with good L2-approximation properties of

Vn, leads to a corresponding upper bound on the error of AN from above. However, for �nite µ, we
have

B(Vn, L∞) ≥
( 1

µ(D)

n∑
k=1

‖bk‖22
)1/2

=

√
n

µ(D)
,

which shows that we lose at least a factor of
√
n compared to the L2-error.

For RKHS on �nite measure spaces with B(Vn) �
√
n for the optimal subspaces Vn we have the

following result which is essentially Theorem 6 in [68] and was obtained independently in [39].
Theorem 4.1. There are absolute constants b, c ∈ N such that the following holds. Let µ be a

�nite measure on a set D and H ↪→ L2 be a reproducing kernel Hilbert space with kernel as in (4.1)
with σ2n ≳ σn and

sup
n

∥∥∥ 1
n

n∑
k=1

|bk|2
∥∥∥
∞

< ∞.

Then, H ↪→ L∞ and the unweighted least squares method

Au
N (f) := argmin

g∈Vn

N∑
i=1

|g(xi)− f(xi)|2 (4.2)
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with Vn = span{b1, . . . , bn} and x1, . . . , xN
iid∼ µ satis�es

e(Au
N , BH , L∞) ≲ cn(BH , L∞) = an(BH , L∞)

with probability 1−N−c, whenever N ≳c n log n.

Note that no decay condition on (cn) and no sampling density depending on a basis is needed
- the unweighted least squares algorithm is universal. We will see in the following section that for
Lq-approximation with q < 2 the logarithmic oversampling can be removed in the case of Sobolev
spaces.

The assumptions of Theorem 4.1 hold for example if the basis {bk} is bounded which is the case
for the trigonometric system or the Chebychev system or (Haar) wavelets, if µ is their corresponding
orthogonality measure. This includes many interesting RKHSs such as certain Sobolev spaces.
See [68] for several examples.

Still, it is not clear how far this result can be extended.

Open Problem 4.1. Find necessary conditions on H such that the conclusion of Theorem 4.1
holds. Moreover, �nd a variant for more general F ↪→ L∞.

Note that Theorem 4.1 is only implicitly contained in [39,68] as both papers work directly with
the optimal subsampled algorithm from [29]. (We discuss this shortly in Section 5.1). However,
since the proof is based on a variant of Lemma 3.6, see Section 3.2 of [68], it is apparent that one
may also work with the algorithm AN from Theorem 3.2.

Another ingredient in the above theorem is the next result that allows for removing the weights
from algorithm and sampling. We state it for future reference.

Proposition 4.4. Let H, µ and Λ = Λstd be as in Theorem 4.1. Then the conclusion of
Theorem 3.2 and consequently Theorems 3.4 and 3.7 continue to hold for the sampling density
%n ≡ µ(D)−1, n ∈ N.

Note that constant weights can be replaced by 1 in (3.1) and thus the algorithm is an unweighted
least squares method as in (4.2).

Proof of Proposition 4.4. We consider Theorem 3.2 for H, µ and Λstd as in the statement of the
proposition. Then Λstd ⊂ H ′ and (3.10) hold. The sampling density enters the proof of Theorem 3.2
in the estimate ‖yi‖22 ≤ 2n. Using the density ρ ≡ 1

µ(D) , and therefore wi = µ(D), instead, we see

that ‖yi‖22 ≤ 2Cµ(D)n a.s. is implied by |ρn(x)| ≤ C for µ-almost all x ∈ D and all n. We can
therefore apply Lemma 3.3 with the corresponding R.

Regarding the �rst summand in (3.11), we have for µ-almost all x ∈ D that

1

n

n∑
k=1

|bk(x)|2 ≤
∥∥∥ 1
n

n∑
k=1

|bk|2
∥∥∥
L∞(µ)

=
1

n
B(Vn, L∞(µ))2 ≲ 1.

To investigate the second summand in (3.11), let n ∈ N and pick ` ∈ N such that 2ℓ ≤ n ≤ 2ℓ+1.
Then, for µ-almost all x ∈ D,

∑
k≥n

σ2
k|bk(x)|2 ≤

∑
k≥2ℓ

σ2
k|bk(x)|2 ≤

∞∑
i=ℓ

σ2
2i

2i+1−1∑
k=2i

|bk(x)|2

≲
∞∑
i=ℓ

σ2
2i2

i+1 ≲
∞∑
i=ℓ

2i−1∑
k=2i−1

σ2
k ≲

∑
k≥n/4

σ2
k.

It remains to use
∑

k≥n/4 σ
2
k ≲

∑
k≥n σ

2
k which follows from assuming σ2n ≳ σn. □
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4.2 Sharp results for Sobolev spaces

In this section we take a closer look at Lq-approximation in isotropic Sobolev spaces for which we
have a characterization of the quality of (random) samples due to [70,71] which implies asymptotic
optimality of n or n log n iid measurements depending on the parameters involved. There are also
generalizations to similarly structured isotropic function spaces such as Holder, Triebel-Lizorkin or
Besov spaces.

On a domain D ⊂ Rd (i.e., an open and nonempty set), equipped with the Lebesgue measure,
the Sobolev space of smoothness s ∈ N and integrability 1 ≤ p ≤ ∞ is given by

W s
p (D) :=

{
f ∈ Lp(D) : ‖f‖W s

p (D) :=
( ∑

|α|≤s

‖Dαf‖pLp(D)

)1/p
< ∞

}
,

where the sum is over all multi-indices α ∈ Nd
0 with |α| = α1+ . . .+αd ≤ s and Dαf = ∂|α|

∂x
α1
1 ···∂xαd

d

f

denotes a weak partial derivative of order |α|. In the following, we denote by Bs
p(D) the unit ball

of W s
p (D).
Sobolev functions from W s

p (D) do have well-de�ned function values if the embedding W s
p (D) ↪→

Cb(D) into the bounded continuous functions holds, i.e., if

s > d/p if 1 < p ≤ ∞ or s ≥ d if p = 1, (4.3)

and D ⊂ Rd is a bounded Lipschitz domain, and if s > d/p the embedding is compact, see,
e.g., [84, Sec. 1.4.5]. Then the sampling numbers, i.e., the minimal worst-case errors based on
function values, are known to satisfy

gn(B
s
p, Lq) � n−s/d+(1/p−1/q)+ , (4.4)

where (x)+ = max{0, x}.
These asymptotics are classical for special domains like the cube and have been obtained with

linear algorithms, see e.g. [92] and the references therein.
Let us apply the general results from above in the special case of p = 2. Then W s

2 is a Hilbert
space and since the embedding W s

2 ↪→ Cb is compact and D is bounded, also W s
2 ↪→ L2 is compact.

By the spectral theorem, W s
2 is of the form (3.3) with

σn+1 = cn(B
s
2, L2) � n−s/d,

see e.g. [92, Thm. 26]. Since s > d/2, Theorem 3.2 gives that whp N � n log n iid points sampled
according to the density ρ32n are as powerful as n optimal points. In order to apply Proposition 4.4
and in particular to conclude the same result with constant sampling density, it is su�cient to have
B(Vn) ≲

√
n for (almost) optimal subspaces.

This is for example the case if the domain is a compact Riemannian manifold M of dimension
d, where the eigensystem of the Laplace-Beltrami operator provides such subspaces. Combining
Proposition 4.4 with Corollary 31 in [68] gives that the unweighted least squares method Au

N from
(4.2) using N � n log n iid random points sampled according to the normalized uniform measure
µM on M achieves

eiidn logn(B
s
2, Lq, µM ) ≲ gn(B

s
2, Lq)

whp for all 1 ≤ q ≤ ∞. We will see in the following that the logarithmic oversampling is necessary
if q ≥ 2 and can be removed otherwise if we use a particular �localized� least squares method.

For simplicity, in the remainder of this section, the domain D will be a bounded convex domain
(and in particular Lipschitz) and we refer to [71] for (almost) analogous results on manifolds. We
will suppress D in the notation.
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Given a point set Pn = {x1, . . . , xn} ⊂ D we identify it with the corresponding evaluations. The
following characterization of the n-th minimal error of iid information, that is, iid points sampled
according to the uniform measure µD on D, is taken from [67, Thm. 2] (see [70, Cor. 2] for the
original result) and conjectured already in [53], where the case d = s = 1 has been obtained.

Theorem 4.2. Let 1 ≤ p, q ≤ ∞ and s ∈ N as in (4.3). Then,

E eiidn
(
Bs

p, Lq, µD

)
�

gn/ logn
(
Bs

p, Lq

)
if q ≥ p,

gn
(
Bs

p, Lq

)
if q < p.

Let us note that this result also holds with high probability. The following questions are obvious:
Open Problem 4.2. Do the bounds of Theorem 4.2 also hold for general classes F? In

particular, under which conditions on q and F ⊂ Lq(µ) do we have asymptotic optimality of
iid function evaluations, i.e., E eiidn (F,Lq, µ) � gn(F,Lq)? Moreover, is logarithmic oversam-
pling necessary, i.e., do we have E eiidn (BH , L2, µ) � gn/ logn(BH , L2) for any RKHS H, and

E eiidn (F,L∞, µ) ≳ gn/ logn(F,L∞) for more general F ⊂ L∞?
Remark 4.2. At this point, it seems worthwhile noting that in [92] the authors also concluded

that, if one restricts to linear methods, linear information can be asymptotically better than standard
information if and only if p < 2 < q.

The algorithm achieving the upper bound in Theorem 4.2 is linear and is based on the moving
least squares method applied to cones adapted to local density of the sampled point set. For more
details we refer to [67] and [119, Ch. 4].

In order to describe the algorithm, we introduce a geometric regularity condition on the domain.
We say that a setD ⊂ Rd satis�es an interior cone condition with radius r > 0 and angle θ ∈ (0, π/2)
if, for all x ∈ D, there is a direction ξ(x) ∈ Sd−1 such that the cone

C(x, ξ(x), r, θ) :=
{
x+ λy : y ∈ Sd−1, 〈y, ξ(x)〉 ≥ cos θ, λ ∈ [0, r]

}
with apex x is contained in D. Convex sets satisfy this condition and also bounded Lipschitz
domains, see [70] for proofs and references. Additionally, we can and do assume that θ ≤ π/5 and
that ξ depends continuously on x for almost all x ∈ D.

In the following we will describe the algorithm for a �xed point set P = {x1, . . . , xn} ⊂ D. We
can later insert any realization of a random point set. We shall assume that P is su�ciently dense
in D.

Given f ∈ Cb(D) and x ∈ D we approximate f(x) by

AP f(x) := argmin
v∈Vm

∑
y∈P∩KP (x)

w(x, y) |f(y)− v(y)|2,

where Vm is the space of real polynomials of degree at most m = dse, KP (x) := C(x, ξ(x), rP (x), θ)
and the radius rP (x) > 0 is minimal such that there are su�ciently many points in KP (x) to
reconstruct all polynomials in Vm. Further, the weight function takes the form w(x, y) = Φ(x− y)
where Φ is supported in Bn

2 (0, δ) and positive on Bn
2 (0, δ/2), where δ depends on P ∩KP (x).

Thus for evaluating the approximant AP f at x ∈ D we solve a weighted least squares problem
depending on the density of points around x; hence, the terminology �moving least squares�.

Open Problem 4.3. Is there an unweighted least squares algorithm such that the bounds of
Theorem 4.2 hold?

By Proposition 4.4 we know that this is the case for q ≥ 2 = p, at least for manifolds.
Note that Theorem 4.2 holds in fact on all domains satisfying the interior cone condition, see [67,

Thm. 2]. However, for bounded convex domains there is a convenient characterization of the radius
of information which explains why random points are sometimes optimal and sometimes not.
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To this end, introduce the covering radius hPn,D := supx∈D dist(x,Pn) which is the supremum
of the distance function

dist(·,Pn) : Rd → [0,∞), dist(x,Pn) := min
y∈Pn

‖x− y‖2

to the n-point sampling set Pn ⊂ D. Although commonly used, the covering radius is insu�cient
to characterize the power of information as the following result taken from [70, Thm. 0.1] shows.

Proposition 4.5. Let 1 ≤ p, q ≤ ∞ and s ∈ N as in (4.3). For any point set Pn ⊂ D, we have

r
(
Pn, B

s
p, Lq

)
�


∥∥ dist(·,Pn)

∥∥s−d(1/p−1/q)

L∞(D)
if q ≥ p,∥∥ dist(·,Pn)

∥∥s
Lγ(D)

if q < p,

where γ = s(1/q − 1/p)−1 and the implicit constants are independent of Pn.
Thus, the quality of a point set is asymptotically determined by the radius of the largest hole

amidst the points if q ≥ p and by an average of the distance to the point set if q < p. Partial results
have been obtained in [53,88,92,99,109].

Theorem 4.5 is a tool to analyze the asymptotic optimality of arbitrary (sequences of) point sets
and, in particular, random or typical ones. To compare, the optimal behaviour of the Lγ-norm of
the distance function is

inf
#Pn≤n

‖ dist(·,Pn)‖Lγ(D) � n−1/d for every 0 < γ ≤ ∞.

By Theorem 4.5, point sets attaining this rate yield the upper bound in (4.4).
For uniform random points on a bounded convex domain, that is, iid points distributed according

to µD, it is known that the average hole size is on average of optimal order n−1/d, see e.g. [43,
Theorem 9.2], whereas the largest hole is on average of size n−1/d(log n)1/d and thus slightly larger
than optimal, essentially due to the coupon collectors' problem, see e.g. [103, Corollary 2.3]. This
provides an explanation for Theorem 4.2.

It is natural to end this section with the following questions:
Open Problem 4.4. What can be used in place of dist(·,Pn) to derive a �geometric� charac-

terization of good point sets for other classes F , such as unit balls in anisotropic Sobolev spaces?
We now turn to random information on Λall, which does not have a limitation in the sense of

optimal information.

4.3 Gaussian information

A geometric problem that was actually the starting point of the renewed interest in random
information in the IBC community, see [53,54], is the classical problem of recovering vectors from a
symmetric convex body (a compactum with nonempty interior) K ⊂ Rm in the norm of `m2 by using
n linear measurements `1, . . . , `n with nmuch smaller thanm. This �ts the above setting by choosing
F = K, which is the unit ball of a normed space (Rm, ‖ · ‖K), G = `m2 and Λ = {〈·, y〉 : y ∈ Rm}.
(Note that we can consider vectors as functions on a discrete set.)

In this case, the radius of information r((`i)
n
i=1,K, `m2 ), see (1.3), has a geometric interpretation

since it is equal up to a factor of 2 to the radius

rad(K ∩ En) := sup
x∈K∩En

‖x‖2,

of K intersected with the subspace En = {x ∈ Rm : `1(x) = · · · = `n(x) = 0}, see e.g. [95, Lem. 4.3].
If the measurements are linearly independent, then En is of codimension n < m, i.e., of dimension
m − n, and the smallest possible radius corresponds to the Gelfand numbers/width cn(K, `m2 ),
see (2.3).

It is natural to ask:
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How large is a �typical� intersection, if we choose the subspace En uniformly at random?

A canonical choice of a uniform distribution is the normalized Haar measure on the set of all
subspaces of codimension n < m, i.e. on the Grassmannian manifold Gn,m. It turns out that if Nn

is a Gaussian matrix with independent standard Gaussian entries, that is if we choose the standard
Gaussian measure γm on Rm, then Eran

n = kerNn is distributed according to this measure, and
that is why we focus on this Gaussian information. The radius of the intersection of a convex body
K ⊂ Rm with such a random subspace therefore satis�es

rad(K ∩ Eran
n ) � eiidn (K, `m2 , γm), (4.5)

where the implicit constant is independent of any realization.
The above is a classical and well-studied question, which was tackled by many authors, especially

for n of the order m, i.e., intersections of large codimension. See e.g. the classical results [40,41,81],
or the recent �ndings [42,80] which were obtained in the context of asymptotic geometric analysis,
see [3] for additional references.

In the following we apply the above results to ellipsoids of the form

Eσ =

{
(x1, x2, . . . ) ∈ `2 :

∑
k∈N

σ−2
k x2k ≤ 1

}

with square-summable semi-axes σ1 ≥ σ2 ≥ · · · ≥ 0, i.e.,
∑

σ2
j < ∞. In this case Eσ is the unit ball

of a separable Hilbert space H ↪→ `2. Note that this includes the �nite-dimensional case, where we
set σk = 0 for k > m and demand then that xk = 0.

Let {e1, e2, . . . } ⊂ `2 be the standard basis and g1, g2, . . . be iid standard Gaussian random
variables. The sequence (g1, g2, . . . ) is distributed on RN according to the countable product of
standard Gaussian measure. We de�ne a Gaussian random functional by f 7→ `(f) =

∑∞
j=1〈f, ej〉2gj

for f ∈ H which almost surely absolutely converges and is therefore in H ′. Then the restriction
γ of the distribution of ` to H ′ is a centered Gaussian measure on H ′ and (3.10) holds. Gaussian
information is universal in the sense that it is invariant under change of basis, i.e., we have `(f) =∑∞

j=1 〈f, uj〉2 gj in distribution for any other orthonormal basis {uj} and f ∈ H. We refer to [10]
for details.

In order to apply Theorem 3.2, note that for every f, h ∈ H,∫
H′
〈f, g〉2〈h, g〉2 dγ(g) = E

( ∞∑
j=1

〈f, ej〉2gj
)( ∞∑

j=1

〈h, ej〉2gj
)

=
∞∑
j=1

〈f, ej〉2〈h, ej〉2 = 〈f, h〉2

and we get a bound on eiidN (H,L2, ρ32n · dν) with N ≳ n log n whp. For Theorem 3.2, we choose
the random functionals `(·) =

∑∞
j=1〈·, ej〉2vj by choosing the coe�cients (vk)k∈N w.r.t. the density

ρn dγ, where

ρn(`) =
1

2

( 1
n

∑
k≤n

|vk|2 +
∑
k>n

βk|vk|2
)

with βk =
σ2
k∑

k>n σ
2
k

.

This density concentrates around 1 (with respect to γ) as n → ∞, see e.g. [77, Lem. 1]. In order
to apply Lemma 3.3 we need an almost sure bound and so we cannot use density equal to one
which would correspond to the geometric setting. In the following, we will see that we can choose
a constant density and remove the logarithmic oversampling.

Recall that for `1, . . . , `N
iid∼ γ and f ∈ H we have `i(f) =

∑∞
j=1〈f, ej〉2gij for iid standard

Gaussians gij and thus `i(ek) = gik, i.e., the matrices in (3.8) and (3.9) will be structured Gaussian.
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Following [54], we use matrix concentration bounds for these random matrices and in the following
lemma combine the lower bound on the n-th singular value from [25, Thm. II.13] and the upper
bound on the �rst from [5, Cor. 3.11] for simplicity in the special case N = 2n.

Lemma 4.3. Let n ∈ N and N = 2n. Consider σ1 ≥ σ2 ≥ · · · ≥ 0 with σ ∈ `2. There exists
c > 0 such that with probability 1− 2e−cn we have

sn

((
N−1/2 gij

)
1≤i≤N,1≤j≤n

)
≥ 1

2

and

s1

((
N−1/2 σjgij

)
1≤i≤N,j>n

)
≤ 2

√
1

n

∑
j>n

σ2
j + 2σn+1.

Combining Lemma 4.3 with Proposition 3.2, see also (3.8) and (3.9), implies that with probability
1 − 2e−cn the least squares algorithm AN in (3.1) using N = 2n Gaussian random functionals
`1, . . . , `N and weights 1/N has error on f ∈ H bounded by

‖f −AN (f)‖ℓ2 ≤ 5
(
σn+1 +

√
1

n

∑
j>n

σ2
j

)
‖f − Pnf‖H . (4.6)

Due to σn+1 +
√

1
n

∑
j>n σ

2
j ≲

√
1
n

∑
j>n/2 σ

2
j we deduce the following result obtained in [54, Thm.

3].
Theorem 4.4. There are absolute constants b, c ∈ N such that, for all σ ∈ `2, we have that bn

Gaussian measurements satisfy

eiidbn (Eσ, `2, γ) ≤
√

1

n

∑
j>n

σ2
j

with probability 1− e−cn.
In [54] even a lower bound was shown such that for σk � n−α(log n)−β with α > 0 and β ∈ R

the characterization

eiidn (Eσ, `2, γ) �α,β


σ1 if α < 1/2 or β ≤ α = 1/2,

σn
√
log n if β > α = 1/2,

σn if α > 1/2,

holds with high probability, see the proof of Corollary 7 in [54]. It turns out that the n-th minimal
error of iid Gaussian information is of the same order as the minimal radius if σ ∈ `2, while random
information seems useless if σ /∈ `2. Note that this is exactly the threshold we have seen for (random)
standard information, see Section 4.1.

Thus, in the case of Hilbert spaces we have a complete picture of the power Gaussian information
for `2-approximation, at least for poly-logarithmic decay, and the corresponding algorithms are
linear.

In contrast, not much is known about the case of `p-approximation.
Open Problem 4.5. Investigate eiidn (Eσ, `p, γ) for p 6= 2, or approximation in more general

norms.
In the following, we brie�y discuss implications for non-Hilbert spaces. For simplicity, we restrict

ourselves to the better known �nite-dimensional case.
For the unit ball K of a normed space (Rm, ‖ ·‖K), Assumption A is satis�ed if µ is the counting

measure on {1, . . . ,m} and ν the standard Gaussian measure on Rm. By Lemma 3.5 we �nd a
suitable Hilbert space in Rm such that for each n ∈ N and x ∈ K we have

‖x− Pnx‖H ≲
m∑

k=⌊n/8⌋+1

dk(K, `m2 )√
k

.
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If we insert this into (4.6), then we obtain (similarly to the proof of Theorem 3.7) that with some
constant oversampling factor b > 1 the unweighted least-squares algorithm AN based on N = bn
iid Gaussian random functionals satis�es

‖x−AN (x)‖2 ≲ 1√
n

m∑
k=n+1

dk(K, `m2 )√
k

,

for every x ∈ Rm with probability 1 − 2e−cn, where c > 0 is as in Lemma 4.3. Thus, we get the
following upper bound.

Corollary 4.5. Let K ⊂ Rm be a convex body. There exist c, C > 0 such that

eiidn (K, `m2 , γm) ≤ C√
n

m∑
k=⌊cn⌋

dk(K, `m2 )√
k

holds with probability 1− 2e−cn for all n ≤ m.
Via (4.5) this upper bound holds for the radius of a typical section. There is a similar bound in

terms of Gelfand widths, which correspond to optimal sections and therefore seems better suited as
a benchmark.

Proposition 4.6. ( [81, Thm. 3.2]). Let K ⊂ Rm be a convex body. There exist c, C > 0 such
that

eiidn (K, `m2 , γm) ≤ C√
n

m∑
k=⌊cn⌋

ck(K, `m2 )√
k

, (4.7)

holds with probability 1− e−cn for all n ≤ m.
The proof of this result relies on a �rounding technique� together with an M∗-estimate, which

is also employed for example in [40, 41, 54]. It gives a direct estimate on the radius rad(K ∩ Eran
n )

instead of providing an explicit reconstruction algorithm using Gaussian information. Thus, only
an abstract nonlinear algorithm can be given which matches the bound (4.7), see Section 5.2.

Using the asymptotics stated in Section 3.5 we can derive that Gaussian information is asympto-
tically optimal if the Gelfand widths decay a little faster than n−1/2, i.e., the bodies are su�ciently
�thin� as the dimension increases. It would be interesting whether this threshold of n−1/2 is sharp.
Again, this is the threshold we have seen for (random) standard information, see Section 4.1.

Open Problem 4.6. Is there someK ⊂ `2 such that (cn(K, `2)) /∈ `2, but still e
iid
n (K, `2, γ) → 0

a.s.?
In order to investigate the sharpness of the bound (4.7), in [59] random sections of `p-ellipsoids

have been studied which are images of `p-balls with 0 < p ≤ ∞ under diagonal operators. In the
case 1 < p ≤ ∞ the logarithmic gaps present for poly-log decay with α = 1/2 can be narrowed. It
would be interesting to do this also for general convex bodies. The proofs behind build on the same
techniques used in [54] and [81], and consequently yield a nonlinear algorithm.

Remark 4.3. (More general linear information). In the �nite-dimensional case with a symmetric
convex body K ⊂ Rm which corresponds to the geometric problem of �nding small sections of K
we note that the obtained general results not only hold for the Gaussian measure. In fact, to satisfy
Assumption (A.3), we can take any measure ν on Rm which is isotropic in the sense of∫

Rm

〈x, u〉〈y, u〉 dν(u) = 〈x, y〉.

If additionally ν has barycenter at the origin, then this corresponds to isotropicity as used in asymp-
totic geometric analysis, see e.g. [3, Sec. 10.2]. Further note that Lemma 4.3, which works without
logarithmic oversampling, also holds for example for Rademacher random variables instead of stan-
dard Gaussian ones, see [5] and [104], and thus has implications for other types of information.
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5 Further topics

Let us shortly touch upon some topics close to the scope of this survey.

5.1 Subsampling and optimal information

Instead of considering random sampling, and related minimal errors, it is clearly of interest to
�nd relations between the di�erent �benchmarks� of optimal approximation, see Section 2. One
particular reason is the study of the power of certain classes of information, in which case the �best�
information has to be considered.

It is to some extent surprising that the general results of the previous sections already lead to
an optimal comparison in some cases. In fact, one can employ a subsampling technique based on
the famous solution to the Kadison-Singer problem [82] to reduce a given �good� set of information
to an �optimal� subset. We will discuss the essential lemma at the end of this section.

This has been done in [29] in the case of function values, see also [87, 112], and the following
theorem is a slight generalization.

Theorem 5.1. There is a constant b ∈ N such that for any F , D, µ, Λ, ν that satisfy Assump-
tion A and all n ∈ N, we have

ebn(F,L2,Λ) ≤ 1√
n

∑
k≥n

dk(F,L2)√
k

.

The bound is achieved by the corresponding algorithm AN from Theorem 3.2, with the N �
n log n random functionals replaced by a suitable subset of order n. Again, a slight improvement is
possible for Hilbert spaces. We omit the details and refer to [29].

Since dk(F,L2) = ak(F,L2) for all F ⊂ L2, Theorem 5.1 shows that, whenever the approxima-
tion numbers of F decay at a polynomial rate larger 1/2, then information which satis�es Assump-
tion (A.3) is asymptotically as powerful as arbitrary linear information for L2-approximation in F ,
at least if we only allow linear algorithms, see (2.1).

If F = BH is the unit ball of a Hilbert space, then it is known that an(BH , L2) = cn(BH , L2),
and the last result shows that

en(BH , L2,Λ) � cn(BH , L2) (5.1)

whenever cn(BH , L2) � n−α for some α > 1/2.

That is, the class Λ contains optimal information. Recall that this applies, e.g., to Λall, to
coe�cients w.r.t. an arbitrary ONB of L2, or to function evaluations Λstd. The latter case in
particularly interesting as it was an open problem for a while. This, and the corresponding open
problems from [31, 97], were solved in [29], see also [76, 94, 117] for earlier results on this, and [72,
73,87,115] for direct predecessors. It is not clear what makes Λstd, or other information with (A.3),
special in this context.

This motivates the following open problem.

Open Problem 5.1. Find necessary and su�cient conditions on H and Λ, independent of n,
such that (5.1) holds true.

So far, we know that (A.3) together with some decay of (cn) is su�cient, and that supℓ∈Λ |`(f)| >
0 for all f 6= 0 is necessary.

Recall that for Λstd relation (5.1) is, in general, not true for Hilbert spaces with (cn) /∈ `2,
see [58,74]. In contrast, it is obvious by de�nition that no condition on the decay of (cn) is needed
to achieve (5.1) for Λall. It would be interesting to �nd a class Λ such that we have for some
p∗ > 2, that (5.1) holds for Hilbert spaces H with Λ ⊂ H ′ and (cn) ∈ `p with p > p∗, but does not
hold for some H with (cn) ∈ `p∗ . For example, we do not know the answer if Λ = Λcoef consists
of coe�cients w.r.t. an arbitrary ONB of L2. The same questions are clearly of large interest for
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non-Hilbert spaces, and approximation in other norms. We leave that for future research, and just
note that the same subsampling approach was used in [39,68] to obtain the optimal bound

glinbn (BH , L∞) � cn(BH , L∞)

for all RKHS H that satisfy the conditions of Theorem 4.1.

The �nal ingredient for the proof of Theorem 5.1 was the following in�nite-dimensional version
of the subsampling (or sparsi�cation) theorem, which allowed for direct application in the above
described setting, see Proposition 17 of [29].

Lemma 5.2. [29]. There are absolute constants c1 ≤ 43200, c2 ≥ 50, c3 ≤ 21600, with the
following properties. Let n,N ∈ N and y1, . . . , yN be vectors from `2(N0) satisfying ‖yi‖22 ≤ 2n and

‖ 1

N

N∑
i=1

yiy
∗
i −

(
In 0

0 Λ

)
‖2→2 ≤

1

2
,

with the identity In ∈ Cn×n and some Hermitian matrix Λ with ‖Λ‖2→2 ≤ 1. Then, there is a
subset J ⊂ {1, . . . , N} with |J | ≤ c1n, such that(

1

n

∑
i∈J

yiy
∗
i

)
<n

≥ c2 In and
1

n

∑
i∈J

yiy
∗
i ≤ c3 I,

where A<n := (Ak,l)k,l<n and A ≤ B denotes the Loewner order.

A short look to the proof of Theorem 3.2 reveals how to apply this lemma to reduce the number
of samples from n log n to n, while preserving the spectral properties of the involved matrices. This
result, as its �nite-dimensional origin, is fascinating, especially because it does not depend on the
initial sample size N . See also [78] for an application to sampling discretization, or [63] for a survey,
and [36] for the discretization of continuous frames.

Finally, we remark that Lemma 5.2 is ultimately due to the solution of the Kadison-Singer
problem in [82], together with the iterative approach from [89].

5.2 Nonlinear sampling algorithms

Our focus is on linear algorithms but here we want to mention some results regarding nonlinear
algorithms using iid information. We refer to the survey [26], or the recent works [9, 17, 19] and
references therein, for more information on nonlinear approximation.

In general, if H and G are normed spaces and information is given by a map Nn : H → Rn, then
the reconstruction mapping

ϕ∗(y) := argmin
g∈G

sup{‖g − h‖G : h ∈ F, Nn(h) = y},

if it exists, is optimal, i.e., it attains the in�mum in (1.3). In fact, it returns a Chebyshev center of
the set N−1(y)∩F considered as a subset of G. Composed with Nn this gives an optimal nonlinear
algorithm A∗

n. As mentioned in Section 2 and seen in Section 4, often linear algorithms using iid
information can be asymptotically as good but this is not always the case.

One of the most prominent instances of the success of iid information for nonlinear approximation
is the case F = `m1 , G = `m2 and F the unit ball of `m1 which is a special case of the geometric
problem mentioned in Section 4.3. This case is related to sparse recovery, see e.g. [30, 35], and was
resolved already in [62] and [38]. In fact, it was shown that

E eiidn (`m1 , `m2 , γm) � cn(`
m
1 , `m2 ) � min

{
1,

√
log(1 + m

n )

n

}
, (5.2)
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where the hidden constants are absolute and γm denotes the standard Gaussian measure on Rm.
Note that the corresponding approximation numbers are much larger and thus nonlinear reconstruc-
tions are strictly better, see [100].

We refer to [53] for more details on the proof of (5.2) which is based on `1-minimization or basis
pursuit and references to generalizations. Recently, this has been generalized to `p-ellipsoids with
implications for Gelfand numbers of diagonal operators, see [59].

It is remarkable that so far, despite its enormous importance for applications, there is no explicit,
deterministic construction of a near-optimal Nn attaining the upper bound in (5.2). The same is
true for several of the results from Section 3.

Remark 5.1. Let us note that in the original bound in [62] on eiidn (`1, `2, γm) the exponent of
log(1 + m

n ) in (5.2) is 3/2 instead of 1/2. It is somehow interesting that, given the optimal bound
on cn(`

m
1 , `m2 ) in (5.2) this can be obtained from the bound in [81] presented in Proposition 4.6.

In the context of sampling numbers, we want to mention further recent results based on sparse
approximation and iid random points.

Using a greedy (and nonlinear) approximation method, as well as iid uniform random points
on rather general domains [24] obtained bounds for L2-approximation in general function classes,
thereby improving upon recent results in [61] obtained via basis pursuit denoising, another non-
linear reconstruction method. See also [66] for an analysis of this method with emphasis on high-
dimensional approximation.

5.3 Randomized algorithms

Randomized algorithms, also known as Monte Carlo methods, are a larger class of algorithms
which, in contrast to the algorithms discussed so far, are allowed to use di�erent information for each
input, and additional random numbers. (Although we studied random information, we considered
the deterministic worst-case error for each realization as in (1.3), and hence, do not allow random
algorithms in this sense.) That is, a Monte Carlo method Mn is a random variable, that depends in
expectation on n pieces of information of the input, and we de�ne the worst-case (root-mean-square)
error

eran(Mn, F,G) := sup
f∈F

√
E
[
‖f −Mn(f)‖2G

]
as well as the n-th minimal randomized errors erann (F,G,Λ) as the in�mum over all such methods.
We clearly have erann (F,G,Λ) ≤ en(F,G,Λ), because every deterministic algorithm can be considered
a (constant) random variable. In addition, randomized methods might be quite advantageous
and more generally applicable. However, such methods do usually not allow for reliable error
guarantees, in the sense that error bounds only hold with certain probability, and that a realization
of a randomized algorithm may have small error for some f ∈ F , but not for all at once.

There are even many situations (e.g., if H and G are Hilbert spaces, F is the unit ball of
H, and we allow arbitrary linear information) where randomness does not help at all compared
to deterministic algorithms. We refer to [48, 90, 95, 96] for more details and general results on
randomized approximation.

We will see below that a randomized least squares method can attain the optimal results under
much weaker conditions. First, it is intuitively clear, and can be seen from the corresponding proofs,
that the �discretization condition� (3.2), or (3.4), is crucial also in this case. But the �stability
condition� (3.13), or (3.5), which depends on the class F , can be weakened to

P

(
N∑
i=1

wi|`i(g)|2 ≤ β2 ‖g‖2L2

)
≥ 1− η for all g ∈ L2, (5.3)

for some η > 0, where wi and `i are the random weights and functionals, respectively. This condition
is easy to verify for iid `i if they are sampled, as before, with respect to a density ρ′n, and we set
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wi = 1/ρ′n(`i).
The following has been obtained essentially in [21].
Proposition 5.7. Let Vn ⊂ L2 be an n-dimensional space, and wi, `i be such that (5.3) and

P

(
N∑
i=1

wi|`i(g)|2 ≥ α2 ‖g‖2L2
for all g ∈ Vn

)
≥ 1− δ (5.4)

hold for some α, β, η, δ > 0. Then, the algorithm AN from (3.1) satis�es for each f ∈ L2 that∥∥∥f −AN (f)
∥∥∥2
L2

≤
(
1 +

β

α

)
d(f, Vn, L2)

2

with probability 1− η − δ, where d(f, Vn, G) := ming∈Vn

∥∥f − g
∥∥
G
.

We see that, once the conditions are veri�ed, we obtain a near-optimal approximation in arbi-
trary subspaces of L2. We do not need to assume that f ∈ F for some class F with decaying widths.
It is clear that a result of this kind cannot be true in a deterministic setting, or with probability
one.

To obtain a bound in expectation, i.e., on the error eran(AN ), we need to control the error
for realizations of AN for which (5.3) and (5.4) do not hold. This can be done in di�erent ways.
In [21], where this result was applied �rst to N � n log n iid points, the authors proceeded by
considering an error bound in terms of d(f, Vn, L∞), or by adding a term n−r‖f‖2 on the right
hand side, where N must grow with r, see also [15, 18]. The required sampling density ρ′n is the
�rst summand of ρn in (3.11). In [45], the algorithm was analyzed for iid random points distributed
according to this density, conditioned on the event in (5.4). Since (5.3) also holds in expectation,
one obtains E‖f −AN (f)‖2L2

≲ d(f, Vn, L2)
2 for N � n log n. Based on a similar subsampling idea

as discussed in Section 5.1, this led to the important result from [20] which shows that, in the case
of L2-approximation, linear randomized algorithms based on function values can be optimal among
arbitrary linear algorithms. See [64,118] for earlier results, and [16] for a recent re�nement leading
to explicit and smaller constants and oversampling.

Theorem 5.3. [20]. There exist constants b, C ∈ N such that the following holds. For any
n-dimensional space Vn ⊂ L2(D,µ), there is a random variable X on

(
D
bn

)
, i.e., all (bn)-element

subsets of D, such that the algorithm AN from (3.1) with N = bn, {x1, . . . , xbn} = X and wi :=

minv∈Vn

∥v∥2L2
|v(xi)|2 satis�es

E
∥∥∥f −AN (f)

∥∥∥2
L2

≤ C min
g∈Vn

∥∥f − g
∥∥2
L2

for all f ∈ L2.

In particular,
eranbn (F,L2,Λ

std) ≤ C · an(F,L2)

for any compact subset F ⊂ L2.
The random sample used by the above algorithm is not given by iid random points, and it is

again not too di�cult to see (by using the coupon collector's problem) that such a result cannot be
true for iid information in general.

Similar to the results and techniques from Section 4.2, it has been shown in [67] that iid samples
are asymptotically optimal in expectation for Lq-approximation of Sobolev functions in W s

p on
very general domains, except for the case p = q = ∞. This is an improvement compared to the
deterministic error discussed in Section 4.2. Again, we would like to know how this generalizes.

Open Problem 5.2. Find conditions on F such that there exists a density ρ with E‖f −
AN (f)‖2L2

≲ d(f, Vn, L2)
2 for all f ∈ F , where AN from (3.1) is based on N � n iid points from ρ.

Regarding nonlinear approximation which was discussed in Section 5.2, Gaussian information
has proven useful also in the randomized setting for approximation between sequence spaces and
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Lq-approximation in Sobolev spaces, see e.g. [47,83]. Recently, in [75], following [49], improvements
using adaptivity have been shown, which is in contrast to the deterministic case, where adaption is
useless for linear problems, see [95, Thm. 4.4].

5.4 High dimensions and tractability

Many problems in numerical approximation have an associated dimension d, that of the domain,
which in�uences the error. In IBC it is of large interest to study the dependence of the minimal
errors on d.

In this context, it can be useful to state results in terms of the information complexity

n(ε, F,G,Λ) := min
{
n ∈ N : en(F,G,Λ) ≤ ε

}
,

which is the minimal number of values of information functionals from Λ needed to achieve an error
of at most ε > 0. That is, every algorithm that achieves an error in G of at most ε > 0 for all f ∈ F
needs at least n(ε, F,G,Λ) pieces of information from Λ.

To classify the di�culty of a problem in higher dimensions we consider a sequence of function
classes Fd on domains Dd (and associated Gd and Λd), d ∈ N. A problem (or a sequence thereof)
is then called polynomially tractable, if there exist absolute constant α, β,C ≥ 0, such that

n(ε, Fd, Gd,Λd) ≤ C dα ε−β for all ε > 0 and d ∈ N,

i.e., the needed amount of information depends at most polynomially on d and 1/ε. In contrast, a
problem is said to su�er from the curse of dimension, if there exist absolute constants ε0, d0, γ, C > 0,
such that

n(ε, Fd, Gd,Λd) ≥ C (1 + γ)d for all ε ∈ (0, ε0) and d ≥ d0.

That is, one needs exponentially many pieces of information to �nd an approximate solution to the
problem. Such a problem is generally assumed to be intractable. For a comprehensive account on
tractability and the concepts mentioned in the remainder of this section we refer to the books [95�97].

Remark 5.2. The term �curse of dimension� has been introduced by Bellmann [8] in 1957
for the phenomenon that the number of needed samples increases exponentially with the (input)
dimension. This is very much inspired by classi�cations in discrete complexity theory and we use
the same concept. Note, however, that this term gained prominence in several other areas and is
sometimes used for saying that the order of convergence decreases to zero (e.g., like en �d n1/d).
The examples below will show that this is not the same, and that the d-dependent �constants� are
of signi�cance.

As a result of the structure of function spaces, in many cases the curse of dimension cannot
be avoided. It is largely open, and one of the main concerns of IBC, to identify natural classes of
functions where the curse of dimension does not hold, especially for Λstd.

In the context of this survey let us only mention that the spaces W s
p (D) from Section 4.2 are

too large to be tractable. Namely, it has been shown in [55�57], see also [109] for the case s = 1,
that for any sequence of volume-normalized domains (Dd), like Dd = [0, 1]d, already the integration
problem for W s

∞(Dd) su�ers from the curse of dimension. In fact,

n(ε,W s
∞(Dd), Lq,Λ

std) ≳s

(
d

ε

)d/s

for all 1 ≤ q ≤ ∞, s ∈ N and volume-normalized (Dd). Even larger bounds exist for q = ∞, see [65],
in which case the curse also holds for s = ∞, see [93].

As a remedy to the curse of dimension we mention the prominent example of weighted spaces,
introduced in [106], where di�erent �weights� are assigned to di�erent coordinates, see [95�97] for a
discussion. For recent progress in the context of �unweighted� spaces, see [66] where tractability of
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Lq-approximation in spaces with bounded sum of absolute values of Fourier coe�cients with respect
to a suitable basis was obtained.

Note that many of the error bounds presented above come with (explicit) absolute constants
and are therefore also suitable for tractabilty studies, see e.g. [39, 69].

There is another prominent problem in IBC, which emphasizes the value of iid information in
this context: Distributing points �uniformly� on [0, 1]d.

For this, let the (star-)discrepancy of a point set Pn be given by

D(Pn) = := sup
x∈[0,1]d

∣∣∣#(Pn ∩ [0, x])

n
− vol([0, x])

∣∣∣,
where [0, x] = [0, x1] × · · · × [0, xd]. Optimizing over all n-point sets Pn ⊂ [0, 1]d gives the n-th
minimal discrepancy

D(n, d) := inf
Pn

D(Pn).

This is a very important and extensively studied quantity in the �eld of irregularity of distribution [7].
See also [27,52,91] for recent treatments.

Via the prominent Koksma-Hlawka inequality [60] the discrepancy of Pn is related to the radius
of information for integration in a space of mixed smoothness, see e.g. [27]. To date, the best bounds
(for large n) are

n−1 (log n)(d−1)/2+ηd ≲d D(n, d) ≲d n−1 (log n)d−1, (5.5)

with some small ηd > 0, see [14] for the lower bound and e.g. [27] for the upper bound. Regarding
the dependence on d, there exist c1, c2, ε0 > 0 such that

c1 min
{
ε0,

d

n

}
≤ D(n, d) ≤ c2

√
d

n
for all d, n ∈ N, (5.6)

see [50, 51]. We obtain that the number of points needed to achieve a discrepancy less than ε > 0
is (up to constants) between d ε−1 and d ε−2 and hence, linear in d. The bound from (5.5), which
increases exponentially with d, is therefore not enough to conclude a statement on the complexity
in high-dimensions.

The upper bound due to [50] is achieved by iid uniform random points and relies on [110] which
employs empirical process theory and the concept of Vapnik- �Cervonenkis (VC) dimension, a notion
of complexity originating from statistical learning theory. In high dimensions, iid points achieve
also the best known bounds for the related notion of dispersion, which measures the volume of the
largest empty box, see [79,116].

Note that due to the central limit theorem the rate n−1/2 in (5.6) cannot be improved for iid
points. Even more, for uniformly distributed iid points there is also a lower bound of the order√
d/n for n ≳ d which holds with exponentially large (in d) probability, see [28].
Improvements on (5.5) and (5.6), and the construction of points satisfying the latter, seem to

be very challenging open problems.
Open Problem 5.3. Is the upper bound in (5.6) sharp for all n that are at most polynomi-

ally large in d? In other words, do iid uniform random points have optimal discrepancy in high
dimension? Moreover, �nd explicit deterministic constructions that satisfy D(Pn) ≲ d42√

n
.

5.5 A machine learning perspective

In this �nal section we want to provide a di�erent point of view on the setting of this sur-
vey. In other literature, especially from data science, it is usually assumed that some �data�
(x1, y1), . . . , (xN , yN ) ∈ X×Y is produced by iid samples of a random vector (X,Y ) with distribution
ρ on X×Y . Our setting (for standard information) amounts to (X,Y ) = (X, f(X)) for some function
f : X → Y which we would like to approximate using the given data (x1, f(x1)), . . . , (xN , f(xN )).
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In machine learning, one wants to �explain� the data by �nding a function f : X → Y (a model)
that maps an input x to an output y. Here, an additional (additive) noise is a typical assumption.
Denoting by ρY |X the conditional probability distribution given X, the regression function

fρ(x) =

∫
Y
y dρY |X(y|x), x ∈ X ,

is the best guess of y given x with respect to an L2-error and the goal is to approximate this function
using the given data. For example, one uses empirical best approximation in an hypothesis space
H, i.e.,

f̂z := argmin
f̂∈H

1

N

N∑
i=1

|f̂(xi)− yi|2,

where z := ((x1, y1), . . . , (xN , yN )) is the given data.

If we de�ne the (squared) error of the model g by

E(g) := Eρ(g) :=

∫
X
|g(x)− y|2 dρ(x, y),

then it is easy to verify that the error of the least squares estimator decomposes into

E(f̂z) =
∫
X
|f̂z(x)− fρ(x)|2 dρX(x) +

∫
X
|fρ(x)− y|2 dρ(x, y),

where ρX denotes the marginal of ρ on X.

Naively, our setting in Section 3 corresponds to choosing H = Vn for a suitable n-dimensional
subspace Vn of L2, where n depends on N , and fρ = f (i.e., yi = f(xi)). This excludes for example
the noisy case (X,Y ) = (X, f(X) + ε) where ε is centered noise independent of X.

However, there is another interpretation we would like to comment on. We only know the data
(xi, yi)

N
i=1 ∼ ρ, and the goal is to compute fρ. Assuming all xi are di�erent and there is no noise,

we may assume that yi = y(xi) for some function y : X → Y . Hence, we can write f̂z = Au
N (y) with

Au
N from (4.2). If the data and hypothesis space Vn is such that Au

N (g) = g for all g ∈ Vn, and

f̂ := argming∈Vn
‖fρ − g‖L2 , then

‖fρ −AN (y)‖L2 ≤ ‖fρ − f̂‖L2 + ‖f̂ −AN (y)‖L2 = E(f̂)1/2 + ‖AN (y − f̂)‖L2 .

The �rst term is often called the approximation error, and can not be avoided due to the choice of
the hypothesis space. The second is the sample error, and depends on the �quality� of the given data.
Hence, if we assume that the �error� ε = y− f̂ is not �just random� but has a certain structure, then
the considerations of this survey might be of interest for further studies, see e.g. Section 4 of [63].

For the mathematical foundations of learning we refer to [22] and [34].
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