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AHOTAIIA. B poGoti posrmsayTo cruty Bunasakosol indopmanii nis mabmmkenns B (gerepminic-
THYHOMY ) HAWTIPIIOMY BUTAJKY, 3 OCOOIMBAM AKIIEHTOM Ha TH(OPMAIIIO, MO CKJIATAETHCS 3 BUOPAHNX
dyuKIiORANIB HE3aMEKHO Ta OTHAKOBO po3mosinennx (iid) BMOA KOBHM ©MHOM HA KJACL TOMYCTAMAX
indopwmariiitaux ¢yukrionanais. Mu npemcraBiisgeMo 3araabHUI PE3yJIPTAT HA OCHOBL METO/Yy 3BaXKEHHUX
HaWMEHIMNX KBAPaTiB Ta HACTIIKU I 0COOJUBUX BUIMAAKIB. [lOKpalleHHs TOCTYIIHI, AKIIO iHGpOpP-
Mariis € “rayciBchbkoi0” abo AKIMO MU pO3I/isijiaeMo 3HadeHHs GyHKI iid mms mpocropis CobosieBa.
Mu BR/IIOYMIH BIAKPUTI 3aIUTAaHHSA, 1100 CIPAMyBaTH MAMOYTHI JOCTIMKEHHS PO CHIY BUIAIKOBOI
indopmarii B KOHTeKCTI iH(OopMAaIiiiHol CKIaIHOCTI.

ABsTRACT. This survey is concerned with the power of random information for approximation in
the (deterministic) worst-case setting, with special emphasis on information consisting of functionals
selected independently and identically distributed (iid) at random on a class of admissible information
functionals. We present a general result based on a weighted least squares method and derive conse-
quences for special cases. Improvements are available if the information is “Gaussian” or if we consider
iid function values for Sobolev spaces. We include open questions to guide future research on the power
of random information in the context of information-based complexity.
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1 INTRODUCTION

This survey is oriented towards information-based complezity (IBC) and we refer to [90, 95,97,
113] for a more comprehensive treatment of information-based complexity. For an introduction to
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the related field of optimal recovery we refer to [26,34,102,111]. Perhaps the most prominent display
of the power of iid information, as we understand it, is the field of compressed sensing (or sparse
recovery) which is presented in [30] from the viewpoint of IBC. We will only briefly touch upon this
direction as our focus is on linear approrimation.

Numerical approximation, as considered here, is formally specified by two normed real vector
spaces, say H and G, of functions on a set D, a subset F' C H for which also F' C G, and a class
of admissible information A consisting of functionals on F. (We often consider F' to be the unit
ball By in H and assume that the functionals are defined on H.) The aim is to approximate the
a priori unknown f € F based on n pieces of information (or measurements) ¢1(f),..., ¢, (f) with
¢; € A such that we can guarantee a small error with respect to the norm in G. In general, one
does not have access to arbitrary measurements, which is the reason for restricting to A. Typical
examples for admissible information are

o A%l := H’ ie. all continuous linear functionals on H,

e A = “certain expectations of the input function”,

e A = “coefficients w.r.t. a given basis, wavelets etc.” or

o A = [5,:0,(f) = f(x), f € H,x € D} (function values).

It is desirable to minimize the approximation error, which is achieved by the “best information”
from a given clagss A. To make this precise, we identify information with an information mapping
of the form

Np: H—=R",  No(f) = (t(f),....ta(f)), [e€H, (1.1)

with f1,...,¢, € A. (One may also consider adaptive information, i.e., £; may depend on the
already computed ¢1(f),...,¢j—1(f), but we do not treat this here.) Any approximation method
(or algorithm) based on the information N, will be of the form

An(f) = (PnoNn(f) = Son(gl(f)v-”ygn(f))a f €H, (1'2)

where ¢, : R®" — G is an arbitrary mapping. Linear approximation is concerned with the case of
linear A,,: H — G. The worst-case error (w.c.e.) of an algorithm A,, as in (1.2) is then defined by

e(An, F,G) := sup [[f — An(f)lle
fer

and any upper bound on e(A,, F, G) guarantees an a priori error bound on 4,, in the class F'. Such
a bound should be compared to the best possible error bounds for the given (class of) information.
First, if an information mapping N,, as in (1.1) is fixed, define the radius of information N,, by

N,,F.G) = inf H — oo N, H .
r( G) on B 5D f=¢noNulf), (1.3)

which quantifies the quality or power of N,. This should be seen relative to the “best information”
from the class A which gives rise to the n-th minimal error of information from A defined by

en(F,G,A) := Nirg\n r(Np, F,G) = glnf e(An, F,G),
where the latter infimum is over all algorithms of the form (1.2) with ¢1,...,¢, € A.

The number e, (F, G, A) (or rather the associated sequence) quantifies the power of optimal in-
formation and serves as the benchmark for any information obtainable from A. With this benchmark
at our disposal, we clarify what “iid” information is.

Independently and identically distributed (iid) information is given by independent random
continuous functionals ¢1,...,¢, € A, either on F' or H with respect to a metric or norm, defined
on some probability space (€2,3,P) and having a common distribution v on A. Tt is necessarily
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nonadaptive. A random measurement of f € F' is given by a random variable £;(f), i.e., a re-
alization £;(f)”, w € €, of £;(f) is the application of the realization ¢¥ € A of ¢; to f. Thus,

N,Sy)(f) = (L1(f),...,€n(f)) is a random vector with distribution f.(v)®™ on R", where f.(v) is
the pushforward measure under ¢ — £(f). (We suppress the w and the corresponding probability
space in the following.)

For each realization of Nﬁf/) we study again the minimal error that can be achieved with this
information. That is, we consider the random variable

UG v) = r(NW,F,G),

which we call the n-th minimal error of iid information w.r.t. v from A, see also (1.3). It is clearly
of interest to study characteristics of the above random variable, but it is still not clear what a
reasonable quantity for this is. We use for example bounds holding in expectation or with high
probability (whp), i.e., with probability tending to one as n goes to infinity. In any case, we ignore
events of measure zero.

The distribution or probability measure v depends on the problem. To illustrate this, let us
discuss some examples which are also our main applications.

First, we consider standard information, i.e.,if A = A**4 for F C Ly(u) with some measure z on
D. (Additional assumptions will guarantee that point evaluations are well-defined.) A distribution
on this class of information corresponds to a distribution v on the domain D, if we consider ¢(f) =
f(X) where X has distribution v on D. A natural choice of distribution is given by v = u, but we
sometimes need another distribution for proving “near-optimal” results.

On the class of arbitrary linear functionals we consider a Gaussian measure giving rise to Gaus-
sian information, i.e. Gaussian random functionals. Employing an interpretation from the finite-
dimensional setting, this corresponds to the radius of the intersection of F' with a random subspace,
a classical problem from geometric analysis and Banach space theory, see Section 4.3.

Finally, let us also mention random Fourier coefficients, which are given by ¢(f) = (f, bx) with
a fixed orthonormal basis {by }ren of H, where K has distribution v on N and H is a Hilbert space.
We will present upper and lower bounds in all these cases.

As it is our main object of study, we will use “random information” mostly synonymously with
“iid information” and thus frequently speak of the power of random information. To summarize, we
study e!(F,G,v) for

e approximation of functions from a class F' C H,

e where the error is measured in a normed space G with F' C G, and

e with a random information mapping Néy): F— R"

e where v is a probability measure on the class of admissible information A.

We state several reasons for studying iid information in this setting:

1. If e“4(F, G, v) is “small” with positive probability, we get an upper bound for e, (F, G, A), i.e.,
the error of optimal approximation, without the need of finding a sophisticated construction.
This is in the spirit of the well-known probabilistic method.

2. In cases where the minimal worst-case error is known, one might wonder whether the optimal
information is somehow special. One approach to this is to study €/¢(F, G, v), and see whether
it is with high probability close to optimal, showing that “almost any” information is good, or
not, which indicates that a more involved construction is needed.

3. It is a typical assumption in applications, such as machine learning, that information (or data)
is given by iid samples with respect to an unknown distribution. It is therefore of interest to
identify classes F' C G and distributions on A that allow for reliable error guarantees (such as
whp for all f € F') for random information.
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4. Further, iid information is often universal, that is, useful for many different problems and not
particular to a certain problem instance or function class. This is beneficial if the available
a priori knowledge is insufficient. In contrast, deterministic constructions of such universal

methods are often unknown.
Obviously, the idea of employing randomness for worst-case analysis is not new. However, the

power of iid information for linear approximation in a rather general setting, even for restricted
classes of information, seems to have been observed only recently. To the best of our knowledge,
it was only in the survey [53] that a systematic study was initiated. Since then, there has been
some major progress in the case of Gaussian random information and random standard information.
In particular, the power of random information has been determined precisely for certain natural
choices of F', G and v, and also some general relations between minimal errors for different classes A
have been obtained. The present work aims to survey these recent results and to put them into a
general framework. Thus, it can be understood as an update to the survey [53].

Let us note that this work builds on the PhD thesis [107] of the first, and the habilitation thesis
of the second author which both contain many of the mentioned recent results obtained together
with several coauthors.

1.1 WHAT THIS SURVEY IS NOT ABOUT

There are numerous aspects in (optimal) numerical approximation where randomness plays an
important role. However, this survey is about aspects that are special to optimal, deterministic
approximation based on iid information in the setting described above, and we therefore refrain
from discussing indirectly related subjects and results in detail.

The most important omissions we are aware of consist of the following:

e Nonlinear algorithms. Random constructions of “good” algorithms played a major role in
numerical analysis in the last decades to tackle problems where explicit constructions are not
available. Often, this is the case for problems where nonlinear algorithms are required, such
as in compressed sensing. We show that sharp results, and some interesting open problems,
can be found in the case of linear algorithms, too.

e Randomized error criterion. The setting considered in this survey should not be confused
with the study of randomized algorithms (sometimes called Monte Carlo methods) with regard
to probabilistic bounds on the error for each individual f. Here, although we assume that
data is produced by random functionals, this information is used for all f € F' simultaneously
which in general is a stronger error criterion.

e Other distributions. In the following, we often assume that the information is iid with
respect to a given “optimized” or “natural” distribution. It is clearly of interest, but not our
focus, to study the effect of using other distributions or “non-iid” randomness.

e Implementation and computational cost. We are not concerned with implementation
cost of specific algorithms but focus on information complexity, which is in general only a
lower bound on the total computational cost.

e Adaptive algorithms. In many cases it is interesting to study adaptive information/algo-
rithms. We will only discuss non-adaptive algorithms and note that, if F' is convex and
symmetric, then the corresponding minimal errors (in the deterministic setting) differ by at
most a factor of 2, see [37] and also |95, Section 4.2.1].

The first three topics will be briefly discussed in Section 5 together with additional aspects such
as subsampling, learning and tractability of high-dimensional problems. We have to omit many
areas where iid information has proven useful, both within and outside of the IBC-framework.
These include, for example, density estimation, discretization, numerical integration (Monte Carlo)
and Bayesian inference.

Notation: For a measure space (D, %, 1), we write £,(u) for the set of p-integrable functions
with usual norm, and inner product for p = 2, and denote by L, := L,(x) the normed space of
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corresponding equivalence classes. Whenever convenient, we identify a function with its equivalence
class. Moreover, we write F' — G for two metric spaces F' C G (with possibly different metrics),
and say that F' is embedded into G, if the identity id: F' — G, id(f) = f, is a continuous injection.
(If G consists of equivalence classes, e.g., for G = L, then we use the usual modifications.) For two
sequences, (en)n>0 and (gn)n>0, we write e, < gy for e, < C g, for some constant C' > 0 and all
n>2 and e, < g, if e, < g, and g, < e,. If the sequences depend only on certain parameters,
say d or s, we write, e.g., €, Ssd gn and e, =, gn, respectively, to indicate the dependencies of
the hidden constants. Without indication it may depend on all involved parameters, except for n.
Given two, possibly infinite, square matrices A and B we indicate the Loewner order by A > B
meaning that A — B is positive semi-definite. Similarly, we use A < B for B > A. The infinite
identity matrix representing the identity id: o — f5 is denoted by I and the n X n identity matrix
by Ip,.

2 SOME BENCHMARKS OF OPTIMAL APPROXIMATION

In order to assess the power of random information for numerical approximation, optimal in-
formation will serve as a benchmark. Depending on the allowed algorithms or information, this
gives rise to different concepts related to the widths or s-numbers of embeddings. We refer to the
monographs [90,100,102| for more information.

Approximation numbers are the minimal errors achievable by an arbitrary linear algorithm.
That is, we define the n-th approzimation numbers (which are sometimes called linear n-widths) of
F C H in G by

WG e 5 H =2 il gl 2.1
( ) £1,... 0N feg f ; (g . 2.1)
g1,--,gn€G

It is well known that nonlinear algorithms are often superior to linear ones, i.e., e,(F,G, A?!) <
an(F, G) holds. However, equality holds, e.g., if F' = By is the unit ball of a Hilbert space H, or if F’
is convex and symmetric and G = L. In such cases, a,(F,G) = e,(F, G, A, i.e., it is enough to
consider linear algorithms, see e.g. [95, Section 4.2]. Moreover, if F' is the unit ball By in a Banach
space H and H < G, then a,(F,G) < (1 + /n) en(F, G, A*Y), see [95, Theorem 4.9]. In addition,
linear algorithms have (practical) advantages, which are not part of this survey. Let us just note that
the theory of linear approximations is much more developed than its nonlinear counterpart, with
typical techniques such as linear regression, (polynomial) interpolation and projections on certain
subspaces.

Kolmogorov widths are another prominent benchmark. The Kolmogorov n-width of a set
F C G is defined by

do(F,G) == inf inf ||f— H : 2.2
(F.G) =y s w1 =9 22)
dim(Vy,)=n

i.e., it is the minimal distance (in G) that is achievable if we were to choose the best element from
a linear subspace of dimension n.

For this reason, the Kolmogorov widths are in general not related to the theory of algorithms:
The inner infimum may not be attained by any (linear) algorithm and it appears to be an “unfair”
benchmark.

Still, it is an essential tool in many arguments as it corresponds to the existence of good subspaces
which can be used to define algorithms. There are several relations between d,, and a,, as well as
to Gelfand widths via duality theory. For example, we have d,,(F, L) = a,(F, Lo) for F' C Ly since
in this case the best approximation in a subspace is given by orthogonal projection.

Gelfand numbers are closely related to the minimal worst-case errors achievable with arbitrary
algorithms based on arbitrary linear information. That is, if we define the n-th Gelfand number of
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F C H in G by

ca(F,G) = inf [ Iflle, (2.3)
n (S n
codim(Wp,)<n

then it is well known that c¢,(F,G) differs from e, (F, G, A*!) by a factor of at most 2 whenever
F C H is convex and symmetric, see e.g. [95, Section 4.2|. See also [17,30] for a more general
version of this equivalence.

Sampling numbers are the minimal worst-case errors that can be achieved with algorithms
based on function values as information, i.e.,

nF.G) = RGN = int_swp |f el f@) o @)

¢: R"=G

where F' C G are classes of functions on the set D.

The ubiquity of function values in applications might suggest that sampling numbers have been
studied in depth as a benchmark. However, besides plenty of results in specific settings, there are
only few general results about them. An example is a recent optimal bound for La-approximation in
Hilbert spaces, which is based on the general results on iid information and subsampling described
in Section 5.1, see Theorem 5.1.

Restricting to linear algorithms gives rise to the linear sampling numbers

n
lin :
F,.G) = inf su H — ;) gill
oa"(F,G) i=  inf _sup |f ;f( i),
g1,--,9n€G

which can be used to bound g, (F,G) from above.

Remark 2.1. We comment on the difference of “width” and “numbers” in the above context.
While the width of a set F' C G can be defined solely based on the knowledge of F' and (the norm
of) G, the definition of the (approximation/Gelfand) numbers also requires the normed space H
containing F' to define the class A*! of all linear functionals. We refer again to [100,102], and note
that there is also a concept of Gelfand width that can yield different results, see [32]. This can also
be the case for linear widths/approximation numbers, see [46], and Remark 2.8 in [61].

3 APPROXIMATION BASED ON IID INFORMATION

In the following we develop a general approach for approximation based on random information
and a very simple linear algorithm: A weighted least squares method on a suitable subspace and
with suitable (explicitly given) weights. This will be done in four steps: We show

1. an Ls-error bound for given information mappings,

2. how this relates to (infinite) matrices in the case of Hilbert spaces,
3. how concentration inequalities lead to optimal bounds, and finally,

4. how we can treat more general classes and approximation w.r.t. other norms.

3.1 Lo-APPROXIMATION AND LEAST SQUARES METHODS

We first treat the case of approximation in Ls-norm. For this, we fix some measure space
(D, %, 1), and write Ly, := Ly,(p). We consider the weighted least squares estimator

N
An(f) = argmin Y w; [4(f — g)|? (3.1)

9€Vn =1
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for some subspace V,, of Ly of dimension n, some weights w; > 0 and linear functionals ¢; € A,
i = 1,...,N. Note that this map is well-defined and linear under condition (3.2) below, see
Proposition 3.1 and its proof. Since we have different types of admissible information A in mind,
we present results in more general form than in the literature.

In any case, the algorithm Ay in (3.1) is well studied, see e.g. the recent contributions [11,15,18]
and the references therein. It seems surprising that, when fed with random information, this simple
method often leads to (near-)optimal bounds. The next result forms a basis for many results
discussed in this survey, such as the ones in [29,54, 72].

Proposition 3.1. Let H C Ly be a normed space of functions on D, and, forn < N, let V,, be
a n-dimensional subspace of H, and {1, ...,{N be linear functionals on H. Assume that

N
1 wi [4i(g)]?
inf \/Z : > a (3.2)

for some « > 0 and some weights w1, ..., wy > 0. Then, for all f € H and g € V,,, the algorithm
from (3.1) with the corresponding V,,, ¢; and w; is well-defined and satisfies

[r-ax], < 17-gl, + = S (7 - )P
i=1

Note that, for studying the error over a set F' C H, it is necessary to assume linearity of the used
functionals on the affine spaces f + V,, for each f € F U {0}, and introducing such a surrounding
normed space H seems a convenient way to do so.

The above proposition shows that information functionals ¢; are “good” for Le-approximation
in F' if one can choose a subspace V;, and weights w; such that the squared sum in (3.2) has large
values on V;, and, for each f € F, there is some g € V,, such that ||f —g||z, and Zf\il w; |6:(f — g))?
are small.

Condition (3.2) says that the discrete (semi)norm based on the functionals and given weights
should be comparable to the Lo-norm on V,,. Finding such functionals and weights in the case of
standard information is called discretization (another interesting topic that we do not discuss in
detail). That is, one wants to find a point set such that the Lo-norm of all functions from some n-
dimensional V,, can be “discretized” using function values at these points. Also here, random points
are used as a tool, and variants of Proposition 3.1 appear. We refer to |23, 44, 63| and references
therein.

For approximation in classes of functions, we note that Proposition 3.1, in general, also requires
a suitable discretization of the “remainder” f— g, which appears to be more involved. This simplifies
slightly if we compare the Lo-error of Ay with best approximation in the uniform norm, see e.g. [112,
Theorem 2.1]. As usual, set ||f|lcc = sup,ep |f(x)| for f € B(D), i.e., the space of bounded
functions on D.

Corollary 3.1. Let u be a finite measure and H C B(D) be a normed space of functions on
D, and {1,...,¢N be bounded linear functionals on B(D). Then, for each V,, C H with (3.2) for
w; = % the corresponding unweighted least squares method from (3.1) satisfies

C
< — inf — for all H
LSSl —gle  forallfe

| £ = axn)

with ¢ < sup{||fllz, + [6(F)]: f€H, |fllo=1,i=1,...,N}.

In particular, if we are free to choose V,,, then we might want to take one that minimizes the
right hand side. For finding corresponding functionals in the case of function evaluations, it has
been observed in [6, Theorem 6.2] that for every V,, C C(D) of dimension n, there exist xi,...,zyN
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with N =< n with (3.2) for w; = 1/N; see also [21,78,112] for earlier results. Applied to the
(near-)optimal subspace Corollary 3.1 gives

sup |1 = Aw()

fer

Lo

with Ay (f) = argmingcy, SN 1f () — g(a)|? with the Kolmogorov width as in (2.2), see [6,
Coro. 6.4] and [112, Thm. 1.1|. This is proven using slightly larger iid point sets which are sub-
sampled to obtain point sets of optimal size. This technique will be discussed briefly in Section 5.1.
Following the same arguments, similar results can be obtained for more general classes of functionals.

For obtaining optimality of the used method Ax among all linear algorithms, it is of interest to
replace the Lo, on the right hand side by Lg since d,,(F, La) = an(F, L2). This is possible under
further (necessary) assumptions on F' and ¢;, and will be the subject of the following sections.

We end this section with the proof of Proposition 3.1, which follows very closely the lines of
Section 3 in [73].

Proof of Proposition 3.1. Let V,, = span{by,...,b,} C H for some orthonormal system in Ls.
Then, the algorithm from (3.1) can be written as

n

AN(f) = D _(GTN(f)), br,

k=1
where N: F — RN with N(f) = (V@i li(f)),y

GT € R ig the Moore-Penrose inverse of the matrix

G = (Vi £i(br)) i< . pen € RV,

is the (weighted) information mapping and

whenever G has full rank.

This is fulfilled, because (3.2) is equivalent to s,(G) > «, where s,,(G) denotes the n-th singular
value of G. In particular, we have Ay (g) = g for every g € V;, and ||GT |22 = s5,(G)7! < é
Therefore,

If = AN(DllL, < I =9glle +llg = An(Fllz. = If = gllz. + 1AN(f = 9) Iz,
= [If = gll. +IGTN(f = 9)lleg
1
< Nf = gllze + 2 INCF = 9)lley
which proves the claim. O

3.2 HILBERT SPACES AND (RANDOM) MATRICES

The very general result in Proposition 3.1 has useful implications for Hilbert spaces. In the
following, we consider a separable Hilbert space H which is continuously embedded into Ly = La(p),
where p is a measure on some set. We shall assume that the norm of H is given by

0o 0o ,b 2
1% = 3 (ol = S ol (3.3
k=1

(o2
k=1 k

where {b1, ba, ...} is an orthogonal basis of H that is orthonormal in La(p), and o1 > 09 > -+ > 0.
Note that by the spectral theorem such a basis exists and o, — 0 holds, if the embedding H —
Lo(u) is compact, see e.g. [95, Section 4.2.3]. Further, it holds that di(Bmg, L2) = ar(Bg, L2) =
ck(Bp, L) = op41 for all k € N.
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If we choose V,, = span{bi,...,b,} as the optimal subspace of H, see e.g. [102, Thm. 1V.2.2.],
we obtain the following consequence of Proposition 3.1, see e.g. [54].

Proposition 3.2. Let H < Lo be a separable Hilbert space with norm as in (3.3). Moreover,
for N > n, let {1,...,£N be continuous linear functionals on H, P, be the orthogonal projection
onto V,, := span{by, ..., by}, and assume that

N n
(Z w; i (by) e,-(bj)> > a2, (3.4)
i=1 k,j=1
and

o0

(Zwl (obi) 0 bj)) < B?1I, (3.5)
k,j=n+1

for some a > 0, B > 0 and weights w1, ..., wy > 0. Then, for all f € H, the algorithm from (3.1)

with the corresponding V,,, {; and w; satisfies

| = ann], < <on+1+ )Hf Pufll (3.6)

For the worst-case error over the unit ball By of H we obtain from (3.6) that

E(AN,BH,LQ) < op+1+ g (37)

Since we always have e(An, By, L2) > on41, this leads to an optimal bound (up to constants)
provided that g < on41 with N =< n. Later, we will see that this can be obtained whp for certain
clagses of random information. But first we consider a general result that works for many more
classes of information if we allow a logarithmic oversampling.

Let us also mention that it is well known that in the setting of Proposition 3.2 optimal infor-
mation N is given by 4;(-) = (b;,+), ¢ = 1,...,n. In this case, we can choose N = n and equal
weights w; = 1 to have @ =1 and 8 = 0. Then, in fact, Ay = P, and equality holds in (3.7), i.e
e(N;}, By, Ly) = 0y41. This recovers the best possible bound for approximation in Hilbert spaces,
see e.g. [95, Thm. 4.11].

The above results show that the least squares algorithm from (3.1) satifies “good” error bounds
for all f € H at once, if weights and functionals can be found that satisfy (3.4) and (3.5) with large

a and small 5. For later use we restate these conditions in the form

5 (VI (8) s cicrnyn) = @ (3:8)

and
81((\/’[7i€i(0—jbj))1§i§]\[’j>n> < 8, (39)

where si(A) denotes the k-th singular value of a matrix A. In the following, we will see that
the existence of good (iid) information can be guaranteed for rather general classes of information
A and Hilbert spaces H. This is based on results from random matriz theory, in particular the
concentration result for sums of rank-one matrices in Lemma, 3.3 below, which we shall apply to get
(3.4) and (3.5) whp. In this way we obtain the “local version” of the main result from [72], but in
a slightly more general form, see also [115].

Theorem 3.2. Let H < Ly be a Hilbert space with norm as in (3.3) and Y, 02 < oo. Moreover,
let A C H' be a class of information, and v be a (possibly infinite) measure on A with

[ 40 ta) dtt) = (1.9}, forall Ly (3.10)
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Further, let 1, ...,¢n € A be iid random functionals distributed with v-density

1(1 D ko Ok [0(0)|?
pa(0) == = | =) |e(bp)]*+
2 n ];1 Zkz>n Ul%

, LeA. (3.11)

Then, with probability (at least) 1 — N~ the algorithm Ay from (3.1) with V,, = span{b,...,b,},
N 2. nlogn, functionals ¢; and weights w; = p,(¢;) ! satisfies

< 3max{crn+1, iZUz} Hf—PanH (3.12)

k>n

| £ =antn

2

for all f € H, where P, is the orthogonal projection onto V,,. In particular,

eﬁ\zfd(BH’L%p?)Qn . dl/) S \/ﬂ
k>n

with the same probability if N 2. nlogn.

The expression = >, - [€(bg)|? in the density (3.11) is also called (the inverse of) the Christoffel
function, at least for £(f) = 0,(f) being given by function evaluations, see e.g. [21] and the references
therein.

Another way to write the density is
£(g)] [£(9)]

pn(f) ~ sup + T sup
geVa 91z, gennv l9llm

with 7, := (£ 30, 02) 7.

To illustrate the effect of the sampling density p,, which also appears inversely in the weights
in the algorithm Ay, assume that the £(b) can attain arbitrarily large and small values. Roughly
speaking, while functionals with large values of p,(¢) are likely to be sampled, their contribution
in the algorithm is “damped” and vice versa for functionals for which the density small. It is not
entirely clear why these competing effects are beneficial.

We recently learned that a density similar to (3.11) has been used in [4] in the context of random
feature expansions. Hence, this density appears useful also in the context of constructing “good”
random subspaces for approximation, in contrast to our emphasis on finding “good” information.

Let us also add that sampling according to p, might be non-trivial. However, in many cases,
like for Gaussian information or for function evaluations for certain Sobolev spaces one can sample
instead from the underlying measure v.

We end this section by providing the proofs of Proposition 3.2 and Theorem 3.2.

Proof of Proposition 3.2. Since

n

(ﬁ;wifi(bk)[i(l)j)) > o2,

k,j=1

is equivalent to (3.2), i.e.,

, \/Zi]il w; [€i(g)]?
inf > «,
9€Vn gl

we obtain from Proposition 3.1 with g := P, f that

|r-ax], < 1r-Pusll, + 2 S w7 - Pa)P
i=1

N
1
< ot |f = Pufllu+ 2| > wi l6(f = Paf)l.
1=1
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Note that for every f € H we have f — P,f € HN V.- and, by continuity, 4;(f — P.f) =

Zk>n <f, kak>H gi(dkbk), 7 = 1, .. .,N. From

o0

N
(Zwi&(dkbk)&(%bﬂ) < B,
=1

k,j=n+1

which is equivalent to

VI wilti(g)l?
sup

gEHNV - gl

< B,

we obtain

N
Y owilt(f = Puf)? < BIf = Puflln

i=1

which completes the proof.

(3.13)

O

The proof of Theorem 3.2 is based on the following concentration inequality for infinite matrices,
which was essentially proved in [86, Theorem 2.1], see also [1,98,114]. Here we use a tailored

reformulation of this result from [115, Prop. 1].

Lemma 3.3. Let N >3, R > 0 and y1,...,yn be i.i.d. random sequences from {3(N) satisfying

ly:||3 < R? almost surely and ||E|2—2 < 1, where E = E(y;y).

Then
N 1 4
Pl |l—= af — B < =
whenever
NS 64(2 + c) R?
In(N) — ’

e.g., if N >2%(1+c)In(e + c¢)R?In(eR?) for R > 2.
(Numbers in the last line have been checked numerically.)
Proof of Theorem 3.2. We follow the lines of [72] (see also [29]).

In order to apply Proposition 3.2, it remains to show that (3.4) and (3.5) hold for some a, 8 > 0

with sufficiently high probability. Define the random vectors

Vwi Li(by), if1<k<mn,
(Yi)k = li(op b
\/W, if k>n,

where

1
2
= I > 0.
Yn max {0n+1 - g Uk}

k>n

By the choice of the weights w; = p,(¢;)~!, we obtain

Iyl = wi | Y16 +702 > of ) | < 2n.

k<n k>n
Further,
w; Li(bi) £i(bs), if 1 <k,j<n,
Wi kg = w; bi(oy by) €(0; by)

5 , if £k >n,
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I, 0O
By = 7
ylyz (O C)

where C' is an infinite diagonal matrix with spectral norm at most one, and the expectation is with
respect to p, - dv.
Lemma 3.3 yields

and using (3.10) we obtain

N n
— N N
<Zwm<bkm(bj>) > NI -5 1, = 51
=1

k,j=1

and

—\* 1 3N
(Zwl (okbr) ¢ b])> < Nva(C + SI) < i,
k,j=n+1 2 2

simultaneously with probability 1 — 4N "¢, if N > C’'nlogn for some constant C’ > 0 that only
depends on ¢. Hence, we have that the algorithm Ay from Proposition 3.2 satisfies, with the same
probability, that

| =4, < @ +30) £ = sl
2
for all f € H. Using that
1 2
domfoz 2o <2 50 ot
k>n k>n/2
one obtains the bound

32
n Z ‘71% Hf_P”fHH'

k>[n/2]

Lo

Replacing n by 32n and taking the supremum over f € By implies the uniform bound over By. [

3.3 GENERAL CLASSES OF FUNCTIONS

The purpose of this and the following section is to transfer the above results for Ly-approximation
in Hilbert spaces to more general situations. In fact, it will turn out that the “local” result from the
last section (referring to the expression || f — P, f||z on the right hand side of (3.12)) can be used
directly to prove bounds for more general classes of functions.

The main idea is to construct a Hilbert space H containing F', and then apply Theorem 3.2
to H. In the context of random information, this approach was used already in [73]. Another
construction of such an H, which is also the one we employ here, has been found recently in [68].

Unfortunately, we need that the information functionals ¢; are continuous on this Hilbert space,
which seems difficult to formalize in a nice form. In fact, as the last proof showed, we need that
E(f) = D pen (f5bk) 1, £(b) holds for all f € F' (or a dense subset) for almost all £ € A with respect
to the chosen measure on A. Here, we work under the following assumption.

Assumption A. We consider the following setting.

(A.1) F is a separable metric space of functions on a set D.

(A.2) pis a measure on D such that F' is continuously embedded into Lo := Lo(n). A is a class of
functionals on Lo(u), the p-square integrable functions on D.

(A.3) v is a measure on A such that v-almost every (v-a.e.) ¢ € A is continuous on F' and for every
f € Lo the map ¢ — £(f) belongs to La(v), in particular is well-defined, and

/A Wf)-0g) (0) = {f.g)rar  fog € Lo,
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Assumption (A.3) seems to be quite restrictive, but it fits the examples we have in mind, like
function evaluations or Gaussian information, see Section 4. However, other classes of information,
like derivative values or local averages of the input, see e.g. [13], do not satisfy this assumption,
meaning that we cannot find a measure v such that (A.3) holds. Note that (A.3) readily implies
that, for all f,g € Lo, we have £(f 4+ g) = ¢(f) + £(g) for v-a.e. £ € A, see the proof of Lemma 3.5.

Remark 3.1. Note that in IBC, or numerical analysis in general, a common assumption is
that the information functionals must be defined solely on the class F', or a “surrounding” normed
space H O F. Our analysis, however, requires that we can extend a.e. { € A also to more general
subspaces of Ly. This led us to Assumption (A.3), which may be weakened to equality up to
constants independent of f,g € Lo. It would be interesting to find for given F necessary conditions
on A such that (A.3) holds.

Under the above assumption we obtain the following general statement.

Theorem 3.4. There are constants b,C' € N such that for any F, D, u, A, v that satisfy
Assumption A and alln € N and N > Cnlog(n + 1), we have

d FL
md(F LZ;pbn' dV Z k 2

with probability 1 — N~42 where the density p, is given by (3.11), with suitable {b;} and o} =
k_l/zdtk/gJ (F, Lg). The bound is achieved by the corresponding algorithm Ay from Theorem 3.2.

Recall that dy(F, La) = ai(F, Le) if F' C Lo, and that d,, (F, L) < € is equivalent to the existence
of an n-dimensional V,, C F' with supcpinfyev, ||f —gllz, <e.

The following technical lemma is a composition from Section 6.1 of [29] and the proof of [68
Prop. 11], extended to general information.

Lemma 3.5. Let Assumption A be fulfilled and assume dy(F, Ly) > 0,k € N, with

di(F, Lo)

Then, there is an ordered orthonormal system (bg)ren in Lo such that F C H C Ly, where the
Hilbert space H is the completion of span {by }ren with respect to the norm

il = 3 YR b,
H dy1/s)(F, La)

k=1

and, for each n € N, we have

de(F. L
swp |f = Pufln <4 | 3 “fk) (3.14)
fer k> /8]

where P, is the orthogonal projection onto V,, := span{by,...,by}.
Moreover, for every countable set Fy C F, there is some Ag C A with v(A\ Ag) = 0 such that

= > (fibe)p, ! (3.15)
k=1

for all f € Fy and £ € Ag.

(The modifications in case of d(F, Ly) = 0 for k > ko are straightforward.)

Before we prove this lemma, let us see how it implies Theorem 3.4.

Proof of Theorem 3.4. We want to apply Theorem 3.2 to the Hilbert space H from Lemma 3.5.
In order to extend A to linear and continuous functionals on H, let us fix a countable dense subset
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Fy C F, and corresponding Ap as in Lemma 3.5, and (formally) define, for each £ € Ao, the
functionals £(f): H — R by £(f) = > pen (5 0x) p, £(bk).
In order to show the boundedness/continuity of £: H — R, note that

AL < 1 b, 60 < Iflle [ o2 (by)?
keN keN

with o2 := k:_l/2dtk/8J (F, Ly). Using

A

IN

/Azazf(bk)Qdy(z) Y o} < oo,

k=1 keN

for n € N, we obtain with the monotone convergence theorem that there is A’ C A with v(A\A') =0
such that >, .y o7l(b)? < oo for all £ € A

Thus, for every £ € Ay := Ag N A/, the functional £: H — R is linear and continuous on H, and
weset A:={l: 0 N} C H.

We can now apply Theorem 3.2 to H and A, where we equip A in the natural way with the same
measure as A. Equation (3.10) then follows from Assumption (A.3). We obtain, with probability
1 — N7¢ that

< ide(F’LQ) f = Penflla

|r=av) >

for all f e H,if N Z.nlog(n+ 1) and Ay : H — V3, is the algorithm from Theorem 3.2 with iid
functionals ¢; € A according to psgp dv.

Now, for the algorithm Ay as described in Theorem 3.4, note that ¢; € Ay almost surely and,
by Lemma 3.5, £ = £ on Fy for all £ € A;. This implies that “An(f) = A'y(f) for all f € Fy” with
probability one. We obtain that

4 < du(F, L)
< DR 2T

sup
feFy

7 - An(h)|

with probability 1 — N7¢if N 2. nlog(n + 1), where we also used (3.14). Since Fp is dense in F
and both id: F' — L9 and A,,: F' — Lg are continuous v-a.e., the same is true for F. O

Proof of Lemma 8.5. From [73, Lemma 3|, using that d,(F, L2) = a,(F, L) for all F' C Lo, we
find an ordered orthonormal system (b)ren in Lo such that

sup [|[f — Pofll, < 2djn/a)(F, L2)
JeF

for all n € N. In particular, every f € F' expands into f =3 o (f,bk), bk in La.
Let H be the Hilbert space in the statement of Lemma 3.5, i.e., we complete span {by }reny with
respect to the norm

2 ‘ <f7 bk>L2 |2 . 2 de/SJ <F7 LQ)
= —_ 2 ith of := ————"-, keN.
1= T i of o= ST

Then, writing dy := di.(F, L2) and an, := supsep || f — Pofl2, we have ay < 2d;/4) and obtain for
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n € Nand f € F that

\/>‘ fvbk L2

2€+1n

2
If = Pafllf = |(f:br) L, |
;; dk/s) Z 5 dl2t-om) 2%1 ’
< Z\/2£+1n < QZ V2ltly . dLQ? 25
L2‘ 2nJ
e 1 20—2p
<2) Vaftin. o Yo
=0 k=[2¢=3n]+1
2[ 2n
<

d d
8[2 Z 7%5122 7’%

{=0 k=[2¢—3n]+1

In particular, lim, . P,f = f € H.

For (3.15), note that, by Assumption (A.3), the mapping Ip: La(D, pu) — La(A,v), Inf({) ==
0(f) is an isometry, and hence linear and injective on La(D, p). Thus, {Ipby }ren is an orthonormal
system in Lo(A,v), and for every f € La(D, p1) we have f* =3, (f, bk, b in Lo(A,v), where
we write fA := Ipf. Every f € F satisfies

STk, P =SS o, P =Y IS - PufI, <

k>1 n>0k>n n>0

and hence, by the Rademacher-Menchov theorem, see e.g. [85,105], we obtain

) = MO =D (b, bie(0) = D (F,bw) 1, €(0%) (3.16)

keN keN

for v-almost all £ € A. Since Fy is countable, the almost everywhere convergence holds simultane-
ously for all f € Fp, i.e., there is Ag C A with v(A\ Ag) = 0 and (3.16) for all f € Fy and £ € Ao.
In particular, ¢(by) is well-defined for £ € Ag and k € N. O

3.4 APPROXIMATION IN GENERAL NORMS

We will now present the techniques from [68] to transfer the Lg-error bounds to more general
seminorms. However, the results come with additional restrictions on the used approximation
spaces.

Assumption B. We consider the following setting.

(B.1) G is aseminormed space which contains F', and GN Lg is complete w.r.t. the natural seminorm
|-« =1 lla+1 -z, If two functions from G are equal u-almost everywhere, then their
seminorm in G is the same.

(B.2) (V)52 is a sequence of subspaces of G N L, respectively of dimension n.

Assumption (B.1) is satisfied, e.g., if F' is a compact subset of C(D), where D is a compact
domain, y is a finite measure on D, and G = Ly(p) for 1 < ¢ < co. Note that for probability
measures, and ¢ < 2, the above presented upper bounds for Lo-approximation directly transfer to
Lg-approximation via || - ||z, < || - ||z,, and in also to the integration problem. See [68] for the
discussion of more general norms, in particular G = C(D).

We introduce the quantities

B, = B(V,,G) := sup I/l
fevi, f20 1 fll2

(3.17)
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and
an = a(Vy, F) == sup ||f = Py, fll2 = sup inf [|f — gl
feF feF 9€Va

Note that By, corresponds to the (inverse) of the Christoffel function if G = L. Further, for
optimal subspaces the quantity B(V,,, G) is equal to

- e

= b 1 lng)L2 _17
dim(Vn)=n feVv,,, f£0 Hf||2 ! ( )

where b,, denotes the Bernstein n-width, see [102, Ch. IIJ.
The following lemma is easy to prove. We refer to [68, Lemma 10].
Lemma 3.6. Let Assumption B hold. For any n € N, any mapping A: F — V,, and all f € F,

we have
o Byg,

If-Aflle <2 3

k>|n/4|

+ B [lf = Afll2.

This bound can now be used in combination with the algorithm and sampling strategy from
above. We only state a special case, and refer to [68] for the general result, the proof and a discussion
of some cases where this leads to sharp results (up to the logarithmic oversampling).

Theorem 3.7. Let Assumptions A and B hold and let «, 8,7 and § be real parameters with
a > max{fg,1/2}. If

B(V,,,G) < nﬂ(logn)‘S and «a(V,, F) < n %(logn)”

then )
e%d(F, Lo, pp - dv) < n_a+ﬁ(logn)7+5

with probability 1 — N=% if N 2 nlogn, where p,, is as in Theorem 3.4.

Note that this includes the (sharp) corollary of Theorem 3.4 for G = Lo: In this case § =0 =0,
and with the choice of (Vi) such that a(V,, F') < 2d|,,4)(F, L2), we obtain that d,(F,L2) <
n~*(logn)” with o > 1/2 implies

e e n(F.Gpp - dv) < dp(F,Ly) = an(F, L)

nlogn

with probability 1 — n~™* whenever Assumption A holds.

3.5 SHARPNESS FOR L9-APPROXIMATION

Let us note that Theorem 3.4 may be applied to the setting in Section 3.2 and in particular
Theorem 3.2, where di(Bp, L2) = or+1- A qualitative comparison gives bounds on e%d(BH, Lo, A)
whp, where N 2 nlogn, which are of order

1 Ok 1 9
Lyn e Ly
\/ﬁ k>n \/E \/ﬁ k>n
where apart from the common prefactor the first expression is the Lorentz ¢ 1-norm and the second
the fo-norm of the tail. In general, we have fo1 C fo9 = {5, see e.g. [101, Prop. 2.1.10]. That is, if
the second sum converges, then so does the first. Let us give some more details on the convergence.
In Section 4, we shall be interested in sequences (o) with o, < n=%(logn)™? for o, > 0,
which is the case for n-widths of Sobolev embeddings, see e.g. [102, Ch. VII] or [111, Ch 5|. In this
case,
1 o On if a > 1/27
%Z ﬁ mof oplogn ifa=1/2and g > 1,

k>n
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and
on ifa>1/2,

1 Z 2
__ 0, Xq
\/ﬁ k B On IOgn lfOé:]-/Q and5>1/2a

k>n

and in the remaining cases the sum does not converge. So, the second bound is slightly smaller for
poly-log decay.

We obtain that nlogn iid measurements are asymptotically optimal whp, i.e., eff‘fogn(BH, Lo, A)
= oy, provided that the singular numbers decay at a rate n™® with a > 1/2. At a = 1/2 we lose
logarithmic factors. But also these bounds are sometimes sharp up to the oversampling, see [29,74].
In certain cases, the oversampling can be removed, see Section 4. In others, it is necessary, as we
shall see in the following.

For this, assume that H is as in Theorem 3.2 and A := {(-,h) : b € B}, where B is some
orthonormal basis of Ly. Note that Assumption (A.3) is fulfilled if v is the counting measure on A.
Theorem 3.2 now implies that nlogn random coefficients w.r.t. B are as powerful as the optimal
information for Hilbert spaces.

Now, if B = {b1,bs,...} is the optimal basis as in (3.3), then the density with respect to the
counting measure v on {(-,bx) : k € N} is given by

% if £ <n,
pn(<-,b@>) =

1

= 2

2 ZJZ s if £ >n.
k>n 9k

Further, by virtue of the coupon collectors theorem, the asymptotics nlogn cannot be improved.
More precisely, one needs on average nlogn samples drawn according to p, (or any other distribu-
tion) to guarantee that the first n Fourier coeflicients are evaluated. For completeness, we give a
formal statement below. A similar effect occurs if we approximate Sobolev functions using function
samples, see Section 4.2. This shows that in general Theorem 3.2 and thus Theorem 3.4 cannot be
improved.

Proposition 3.3. Assume that H is as in Theorem 3.2 and A := {(-,h) : h € B}, where B is
some orthonormal basis of La. Let v be any probability measure on A. If N/nlogn — 0, then for
any a > 0 we have

ell'zfd(BHv Ly, V) = O\an]
whp for all large enough n.

If the sequence (07,) decays fast enough, i.e., if img o0 Sup, ey 22 = 0 such as for polynomial

decay, then under the conditions in the proposition we deduce that for any C' > 0

e’}f,d(BH, Ly,v) > Coy,

whp for all n large enough. Thus, for sampling Fourier coefficients, N < nlogn iid functionals are
whp worse by an arbitrary factor than n optimal functionals.

This shows that for some classes of information that clearly contain optimal information, we
need a logarithmic oversampling. This might not come as a surprise. However, we will see in
Section 4 that this is not true in general, depending on the classes of information and inputs. This
leads to the following question.

Open Problem 3.1. What are conditions on A and H such that the conclusion of Proposi-
tion 3.3 holds?

This should be compared to Theorems 4.5 and 4.4, and Open Problem 4.2 below.

Proof of Proposition 3.8. We identify A with N and thus N iid functionals ¢1,...,¢/ny in A
sampled according to v correspond to N numbers sampled randomly from N.

Since N/nlogn — 0, for any n large enough we have N < %nlog n. By the coupon collector’s

problem, the probability that we miss one of the numbers in {1,...,n}, say i, is at least 1 — e Vn,
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For this, combine the classical limit law in [33] with the fact that equidistribution on {1,...,n}
stochastically needs the least amount of coupons, see [12, p.52]. In this case, the i-th Fourier
coefficient is not measured and any algorithm Ay lacking this information has error at least o; > oy,
(since +0;b; € By, it has to return zero for these functions).

Thus, €i(By, Ly,v) > o, in this case. By replacing n with |an] for @ > 0 we get that with
probability at least 1 — e Vo for all large enough n we have

e%d(BHv LQ’ V) > ULanJ'

4  APPLICATIONS AND IMPROVEMENTS

The results above show that nlogn pieces of iid information are often as valuable as optimal
information, and we have even seen that this cannot be improved in general. However, there are cases
where the logarithmic oversampling factor can be removed and iid information is asymptotically
optimal. We report on two instances. Namely, L,-approximation in (isotropic) Sobolev spaces W
with p > ¢ if iid uniform samples are used, and Ls-approximation if the iid information is Gaussian,
in both a linear and a nonlinear setting. We still do not completely understand what makes these
settings special in this respect, and add some open problems related to them.

We start with a more detailed explanation of the general case of standard information, i.e.,
function evaluations. In particular, we discuss a natural limitation of this class of information.

4.1 RANDOM FUNCTION EVALUATIONS

Approximation of (regular or smooth) functions using function evaluations was the main motiva-
tion and application of the results introduced in Section 3. Clearly, for A = AS*d, Assumption (A.3)
is obvious by identifying v with p (from Lo(u)) by v({éz: x € M}) = p(M) for p-measurable
M C D. For applying the results we would like point evaluation to be continuous on H.

Especially Hilbert spaces of this type are of interest and intensively studied:

A Hilbert space H of functions on a set D is called a reproducing kernel Hilbert space (RKHS)
on D if point evaluation d,: H — R is a continuous functional for all z € D, i.e., H is a RKHS
if and only if A** ¢ H’. The crucial property of RKHS is the existence of a (reproducing) kernel
K: D xD — Rsuch that f(z) = (f, K(z,-)) forall f € H and x € D. If H — Lo(p) is compact,
the kernel characterizes H in the sense of (3.3) being equivalent to

K(z,y) = ZU]% bi(z) bi(y), z,y €D, (4.1)
k=1

where, again, (o) € {2 is a non-increasing sequence and {b;}72, is an orthonormal system in Lo,
see e.g. [108, Thm. 3.1]. We refer to [2| for more on RKHS.

Let us note that the results from the last section do not require every 0, to be in H'; almost all
would suffice. However, this is not a major restriction, as we can always pass to the (full-measure)
subset Do C D, where function evaluation is continuous. This does not change the Lo-error, or the
random sampling.

Again, we obtain from Theorem 3.2, see [72], that there is some sampling density p,, such that
nlogn random sampling points are enough for a near-optimal bound. In particular, the algorithm
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for suitable V,, and p,, from (3.11) (with ¢ = §,) satisfies

1
6<AN7BH7L2) S ﬁzck<BH7L2)27
k>n

with probability 1 — N~¢, whenever N 2. nlogn, and x1,...,zy are iid w.r.t. p, du.

It has already been observed in [58] that the square-summability of (¢,) is a necessary condition
for a general comparison with (g). In fact, it is shown in |74] that there exists some ¢ > 0 such
that

1
9len)(Bu, L2) > [= > cr(Bu, La)?
Len) ( ) - ,;1 ( )
for some (simple, univariate) Hilbert space H and all n, see (2.4). That is, the upper bound is
optimal, up to the logarithmic oversampling factor, and even for optimal function evaluations the
square-summability of (¢y) is necessary. In fact, for many important examples, as the Sobolev
spaces discussed below, this summability corresponds to the embedding into C' (D). It is therefore
necessary to work with function evaluations and only a weak restriction. We will see in Section 4.3
that the same restriction appears for Gaussian information.

So, in the case of standard information in a RKHS, iid information is optimal up to the loga-
rithmic oversampling factor. Similar results exist for more general classes, see [29,73].

Remark 4.1. (g, # ¢, 7). It is easy to find examples where standard information is as powerful
as arbitrary linear information. For this consider the (pathological) example of D = N and a RKHS
H C ¢y on N as in (3.3) with norm ||f|lg = > ey f,?ak_Z, for f = (f1, f2,...), Le., the ONB
{br}32, is given by the canonical basis of {5. Clearly, function evaluation is the same as computing
coefficients w.r.t. the (optimal) basis (by), and so gn(Bm, L2) = cn(Bm, L2) in this case.

However, when we turn to approximation in other norms, then it seems that, so far, no general
“for all H” comparison has been observed, and additional conditions appear; often involving the
quantity B(V,,G) from (3.17). Let us only discuss the case of uniform approzimation G = Le,
and refer to [68] for generalizations. In this case, we have

o n 1/2
B(Vy) = B(Vi, L) = sup Wl 1> el
reva, 10 [Ifl12 p o0
where {b1,...,b,} is an arbitrary Ls-orthonormal basis of V.

As Theorem 3.7 shows, bounds on B(V,,), together with good Ls-approximation properties of
Vi, leads to a corresponding upper bound on the error of Ay from above. However, for finite u, we

have
n

B(Vy, Loo) > (@;H%@yQ =

which shows that we lose at least a factor of /n compared to the Ls-error.
For RKHS on finite measure spaces with B(V,,) < /n for the optimal subspaces V,, we have the
following result which is essentially Theorem 6 in [68] and was obtained independently in [39].
Theorem 4.1. There are absolute constants b,c € N such that the following holds. Let i1 be a
finite measure on a set D and H — Lo be a reproducing kernel Hilbert space with kernel as in (4.1)

with o9, = 0, and
1 n
\*E :\WH < .
n o)
k=1

Then, H — L, and the unweighted least squares method

sup
n

N

AR (f) = al;grgin > lgta) = f () (4.2)
€ =1
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with V,, = span{by,...,b,} and z1,...,zN g [ satisfies

6( %,BH,LOO) S C7L<BH7LOO) = an(BH,LOO)
with probability 1 — N=¢, whenever N 2. nlogn.

Note that no decay condition on (¢,) and no sampling density depending on a basis is needed
- the unweighted least squares algorithm is universal. We will see in the following section that for
L -approximation with ¢ < 2 the logarithmic oversampling can be removed in the case of Sobolev
spaces.

The assumptions of Theorem 4.1 hold for example if the basis {bx} is bounded which is the case
for the trigonometric system or the Chebychev system or (Haar) wavelets, if u is their corresponding
orthogonality measure. This includes many interesting RKHSs such as certain Sobolev spaces.
See [68] for several examples.

Still, it is not clear how far this result can be extended.

Open Problem 4.1. Find necessary conditions on H such that the conclusion of Theorem 4.1
holds. Moreover, find a variant for more general F' — Ly

Note that Theorem 4.1 is only implicitly contained in [39,68] as both papers work directly with
the optimal subsampled algorithm from [29]. (We discuss this shortly in Section 5.1). However,
since the proof is based on a variant of Lemma 3.6, see Section 3.2 of |68], it is apparent that one
may also work with the algorithm Ay from Theorem 3.2.

Another ingredient in the above theorem is the next result that allows for removing the weights
from algorithm and sampling. We state it for future reference.

Proposition 4.4. Let H, y and A = A be as in Theorem 4.1. Then the conclusion of
Theorem 3.2 and consequently Theorems 3.4 and 3.7 continue to hold for the sampling density
on=pu(D)", neN,

Note that constant weights can be replaced by 1 in (3.1) and thus the algorithm is an unweighted
least squares method as in (4.2).

Proof of Proposition 4.4. We consider Theorem 3.2 for H, y and AS*? as in the statement of the
proposition. Then A**Y ¢ H’ and (3.10) hold. The sampling density enters the proof of Theorem 3.2
in the estimate ||y;||2 < 2n. Using the density p = ﬁ, and therefore w; = (D), instead, we see
that [|yil|3 < 2Cu(D)n as. is implied by |p,(z)| < C for p-almost all z € D and all n. We can
therefore apply Lemma 3.3 with the corresponding R.

Regarding the first summand in (3.11), we have for p-almost all © € D that

*Z!bk ‘2<H*Z’bk| H B(Vy, Loo(1))? S 1.

To investigate the second summand in (3.11), let n € N and pick £ € N such that 2¢ < n < 2¢F1
Then, for p-almost all x € D,

2i+1_1
> oilbr(@)? < ) oplbr(@)? < Zazz > Jbe(@))
k>n k>2¢ k=2i
oo 20—1
<ZO’ 21+1<ZZU]€NZJ]%.
=0 k=2i—1 k>n/4

It remains to use >y~ 02 <Y s, 02 which follows from assuming o2, 2 0y O
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4.2 SHARP RESULTS FOR SOBOLEV SPACES

In this section we take a closer look at Ls-approximation in isotropic Sobolev spaces for which we
have a characterization of the quality of (random) samples due to [70,71] which implies asymptotic
optimality of n or nlogn iid measurements depending on the parameters involved. There are also
generalizations to similarly structured isotropic function spaces such as Holder, Triebel-Lizorkin or
Besov spaces.

On a domain D C R¢ (i.e., an open and nonempty set), equipped with the Lebesgue measure,
the Sobolev space of smoothness s € N and integrability 1 < p < oo is given by

/
WD) = {f € L(D): I fllwgor = (X 10715, ) " < o0},
|| <s
olel

where the sum is over all multi-indices o € Ng with |a| = a1 +...+ag < s and D¥f = T
1 Y%y

denotes a weak partial derivative of order |a|. In the following, we denote by B,(D) the unit ball
of W3 (D).

Sobolev functions from W7 (D) do have well-defined function values if the embedding W (D) —
Cy(D) into the bounded continuous functions holds, i.e., if

s>d/p ifl<p<oo or s>d ifp=1, (4.3)

and D C R? is a bounded Lipschitz domain, and if s > d/p the embedding is compact, see,
e.g., [84, Sec. 1.4.5]. Then the sampling numbers, i.e., the minimal worst-case errors based on
function values, are known to satisfy

gn(B5, Lg) = n~8/d+A/p=1/0)+ (4.4)

where ()1 = max{0, z}.

These asymptotics are classical for special domains like the cube and have been obtained with
linear algorithms, see e.g. [92] and the references therein.

Let us apply the general results from above in the special case of p = 2. Then W5 is a Hilbert
space and since the embedding W3 — C} is compact and D is bounded, also W5 < Ly is compact.
By the spectral theorem, W3 is of the form (3.3) with

Ont1 = cn(B5, Lo) < n=o/4,

see e.g. [92, Thm. 26]. Since s > d/2, Theorem 3.2 gives that whp N < nlogn iid points sampled
according to the density p3o, are as powerful as n optimal points. In order to apply Proposition 4.4
and in particular to conclude the same result with constant sampling density, it is sufficient to have
B(V,,) < +/n for (almost) optimal subspaces.

This is for example the case if the domain is a compact Riemannian manifold M of dimension
d, where the eigensystem of the Laplace-Beltrami operator provides such subspaces. Combining
Proposition 4.4 with Corollary 31 in [68] gives that the unweighted least squares method A% from
(4.2) using N =< nlogn iid random points sampled according to the normalized uniform measure
par on M achieves

eiﬁogn(BSa le :UM) 5 gn(Bgv Lq)

whp for all 1 < ¢ < oco. We will see in the following that the logarithmic oversampling is necessary
if ¢ > 2 and can be removed otherwise if we use a particular “localized” least squares method.

For simplicity, in the remainder of this section, the domain D will be a bounded convex domain
(and in particular Lipschitz) and we refer to [71] for (almost) analogous results on manifolds. We
will suppress D in the notation.
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Given a point set P, = {z1,...,x,} C D we identify it with the corresponding evaluations. The
following characterization of the n-th minimal error of iid information, that is, iid points sampled
according to the uniform measure pup on D, is taken from [67, Thm. 2| (see |70, Cor. 2| for the
original result) and conjectured already in [53], where the case d = s = 1 has been obtained.

Theorem 4.2. Let 1 < p,q < oo and s € N as in (4.3). Then,

gn/logn(B;an) lfq > p,

E e (B2, L, =
w (B L o) (B3, Ly) ifqg<p.

Let us note that this result also holds with high probability. The following questions are obvious:

Open Problem 4.2. Do the bounds of Theorem 4.2 also hold for general classes F'?7 In
particular, under which conditions on ¢ and F C Ly(p) do we have asymptotic optimality of
iid function evaluations, ie., Ee%d(F, Ly, u) < gn(F,L,)? Moreover, is logarithmic oversam-
pling necessary, i.e., do we have Eel(By, Lo, p) = In/1ogn(BH, L) for any RKHS H, and
R el (F, Loo, 1) 2, In/1ogn(Fs Leo) for more general F' C Loo?

Remark 4.2. At this point, it seems worthwhile noting that in [92] the authors also concluded
that, if one restricts to linear methods, linear information can be asymptotically better than standard
information if and only if p < 2 < q.

The algorithm achieving the upper bound in Theorem 4.2 is linear and is based on the moving
least squares method applied to cones adapted to local density of the sampled point set. For more
details we refer to [67] and [119, Ch. 4].

In order to describe the algorithm, we introduce a geometric regularity condition on the domain.
We say that a set D C R? satisfies an interior cone condition with radius r > 0 and angle § € (0,7/2)
if, for all z € D, there is a direction &(z) € S! such that the cone

C(x,&(x),r,0) = {a:+ \y:y e ST, (y,&(x)) > cosB, \ € [0,7“]}

with apex x is contained in D. Convex sets satisfy this condition and also bounded Lipschitz
domains, see [70] for proofs and references. Additionally, we can and do assume that 6 < 7/5 and
that £ depends continuously on x for almost all z € D.

In the following we will describe the algorithm for a fixed point set P = {x1,...,z,} C D. We
can later insert any realization of a random point set. We shall assume that P is sufficiently dense
in D.

Given f € Cp(D) and = € D we approximate f(z) by

Apf(x) := argmin Y w(z,y)|f(y) — vy,

VeV e PAK p(x)

where V,,, is the space of real polynomials of degree at most m = [s|, Kp(x) := C(z,&(x),rp(x),0)
and the radius rp(z) > 0 is minimal such that there are sufficiently many points in Kp(z) to
reconstruct all polynomials in V;,. Further, the weight function takes the form w(x,y) = ®(x — y)
where @ is supported in B (0,0) and positive on B%(0,d/2), where § depends on P N Kp(x).

Thus for evaluating the approximant Apf at x € D we solve a weighted least squares problem
depending on the density of points around «; hence, the terminology “moving least squares”.

Open Problem 4.3. Is there an unweighted least squares algorithm such that the bounds of
Theorem 4.2 hold?

By Proposition 4.4 we know that this is the case for ¢ > 2 = p, at least for manifolds.

Note that Theorem 4.2 holds in fact on all domains satisfying the interior cone condition, see [67,
Thm. 2|. However, for bounded convex domains there is a convenient characterization of the radius
of information which explains why random points are sometimes optimal and sometimes not.
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To this end, introduce the covering radius hp, p := sup,ep dist(z, Py) which is the supremum
of the distance function

dist(-, P,): R — [0, 00), dist(z, Pp) := m%)n Iz —yl|2
yehln

to the n-point sampling set P, C D. Although commonly used, the covering radius is insufficient
to characterize the power of information as the following result taken from [70, Thm. 0.1] shows.
Proposition 4.5. Let 1 <p,q < oo and s € N as in (4.3). For any point set P,, C D, we have

dist(o. P[40 s
(P B L) = A 18P )™ ez

[ dist (-, Pl () if g <p,

where v = s(1/q — 1/p)~! and the implicit constants are independent of P,.

Thus, the quality of a point set is asymptotically determined by the radius of the largest hole
amidst the points if ¢ > p and by an average of the distance to the point set if ¢ < p. Partial results
have been obtained in [53,88,92,99,109].

Theorem 4.5 is a tool to analyze the asymptotic optimality of arbitrary (sequences of) point sets
and, in particular, random or typical ones. To compare, the optimal behaviour of the Ly-norm of
the distance function is

. . ) - . —1/d
bl distC, Pr)llz, ) < n

for every 0 <y < oo0.
By Theorem 4.5, point sets attaining this rate yield the upper bound in (4.4).

For uniform random points on a bounded convex domain, that is, iid points distributed according
to pup, it is known that the average hole size is on average of optimal order n~Yd gsee e.g. [43,
Theorem 9.2|, whereas the largest hole is on average of size n~'/%(logn)*/* and thus slightly larger
than optimal, essentially due to the coupon collectors’ problem, see e.g. [103, Corollary 2.3|. This
provides an explanation for Theorem 4.2.

It is natural to end this section with the following questions:

Open Problem 4.4. What can be used in place of dist(-, Py,) to derive a “geometric” charac-
terization of good point sets for other classes F', such as unit balls in anisotropic Sobolev spaces?

We now turn to random information on A*!, which does not have a limitation in the sense of
optimal information.

4.3 (GAUSSIAN INFORMATION

A geometric problem that was actually the starting point of the renewed interest in random
information in the IBC community, see [53,54], is the classical problem of recovering vectors from a
symmetric convex body (a compactum with nonempty interior) X C R™ in the norm of ¢5* by using
n linear measurements {1, . .., £, with n much smaller than m. This fits the above setting by choosing
F = K, which is the unit ball of a normed space (R™,| - ||x), G = ¢5" and A = {(-,y) : y € R™}.
(Note that we can consider vectors as functions on a discrete set.)

In this case, the radius of information r((¢;)1"_,, K, €5"), see (1.3), has a geometric interpretation
since it is equal up to a factor of 2 to the radius

rad(K N Ey) == sup |z]2,
xeKNE,
of K intersected with the subspace E,, = {z € R™: {1(z) = --- = {,,(x) = 0}, see e.g. |95, Lem. 4.3]|.
If the measurements are linearly independent, then E,, is of codimension n < m, i.e., of dimension
m — n, and the smallest possible radius corresponds to the Gelfand numbers/width ¢, (K, £5"),
see (2.3).
It is natural to ask:
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How large is a “typical” intersection, if we choose the subspace E, uniformly at random?

A canonical choice of a uniform distribution is the normalized Haar measure on the set of all
subspaces of codimension n < m, i.e. on the Grassmannian manifold G, ,,. It turns out that if N,
is a Gaussian matrix with independent standard Gaussian entries, that is if we choose the standard
Gaussian measure 7, on R™ then E*" = ker N, is distributed according to this measure, and
that is why we focus on this Gaussian information. The radius of the intersection of a convex body
K C R™ with such a random subspace therefore satisfies

rad(K N E™) = e (K, (7, ym), (4.5)

where the implicit constant is independent of any realization.

The above is a classical and well-studied question, which was tackled by many authors, especially
for n of the order m, i.e., intersections of large codimension. See e.g. the classical results [40,41,81],
or the recent findings [42,80] which were obtained in the context of asymptotic geometric analysis,
see [3] for additional references.

In the following we apply the above results to ellipsoids of the form

go': {($1,$27...) 662: ZO.];Q:L% < 1}

keN

with square-summable semi-axes o1 > 09 > --- >0, i.e., Y 0]2. < oo. In this case &, is the unit ball
of a separable Hilbert space H — £5. Note that this includes the finite-dimensional case, where we
set o, = 0 for £ > m and demand then that x; = 0.

Let {e1,ea,...} C lo be the standard basis and ¢1,¢2,... be iid standard Gaussian random
variables. The sequence (g1, ¢2,...) is distributed on RY according to the countable product of
standard Gaussian measure. We define a Gaussian random functional by f +— £(f) = > 22, (f, j)29;
for f € H which almost surely absolutely converges and is therefore in H'. Then the restriction
7 of the distribution of ¢ to H' is a centered Gaussian measure on H' and (3.10) holds. Gaussian
information is universal in the sense that it is invariant under change of basis, i.e., we have £(f) =
> 521 (fiuj)y g; in distribution for any other orthonormal basis {u;} and f € H. We refer to [10]
for details.

In order to apply Theorem 3.2, note that for every f,h € H,

/H/<f, g)2(h, g)2 dv(g) = E(i(f, 6j>2gj> (g% €j>29j>

Zf?ej h€j2_<f7 >
7=1

and we get a bound on e¥4(H, Lo, p3a, - dv) with N > nlogn whp. For Theorem 3.2, we choose
the random functionals £(-) = 72, (-, €;)2v; by choosing the coefficients (vg)ren w.r.t. the density

pn dy, where
2

1 (1 2 2 . Uk;
=—(- lug]” + Br| vk | ) with By = ="
S>> > s

k<n k>n

This density concentrates around 1 (with respect to ) as n — oo, see e.g. |77, Lem. 1|. In order
to apply Lemma 3.3 we need an almost sure bound and so we cannot use density equal to one
which would correspond to the geometric setting. In the following, we will see that we can choose

a constant density and remove the logarithmic oversampling.
iid

Recall that for £1,...,¢y ~ v and f € H we have £;(f) = >222,(f,ej)2g;; for iid standard
Gaussians g;; and thus ¢;(ex) = gik, i.e., the matrices in (3.8) and (3.9) will be structured Gaussian.
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Following [54], we use matrix concentration bounds for these random matrices and in the following
lemma combine the lower bound on the n-th singular value from [25, Thm. I1.13] and the upper
bound on the first from [5, Cor. 3.11] for simplicity in the special case N = 2n.

Lemma 4.3. Let n € N and N = 2n. Consider o1 > o9 > --- > 0 with o € ¢y. There exists
c > 0 such that with probability 1 — 2e™“" we have

1
~1/2
3n<(N / gij)1gi§N,1§j§n) = 9

1
—1/2 E
Sl((N / O-jgij)lgiSN,j>n) S 2 ; O'jz + 20n+1'
i>n

Combining Lemma 4.3 with Proposition 3.2, see also (3.8) and (3.9), implies that with probability
1 — 27" the least squares algorithm Ay in (3.1) using N = 2n Gaussian random functionals
lq,...,0n and weights 1/N has error on f € H bounded by

15 = ANy < 5(omi+ [ S0 02) I = Paflla (1.6
i>n

Due to op41 + \/% > isn 0']2- < \/% D jon)2 0]2- we deduce the following result obtained in [54, Thm.
3].
Theorem 4.4. There are absolute constants b, c € N such that, for all o € {5, we have that bn

Gaussian measurements satisfy
g 1
e (Eorb2,7) <\ [~ 07
i>n
with probability 1 —e™

In [54] even a lower bound was shown such that for oy < n™%(logn)™? with @ > 0 and 8 € R
the characterization

and

cn

o1 if a<l/2orf<a=1/2,
ezd(gUag%’Y) =a,B OnV logn if 5 > o= 1/2’
On if a>1/2,

holds with high probability, see the proof of Corollary 7 in [54]. It turns out that the n-th minimal
error of iid Gaussian information is of the same order as the minimal radius if o € f5, while random
information seems useless if o ¢ f5. Note that this is exactly the threshold we have seen for (random)
standard information, see Section 4.1.

Thus, in the case of Hilbert spaces we have a complete picture of the power Gaussian information
for le-approximation, at least for poly-logarithmic decay, and the corresponding algorithms are
linear.

In contrast, not much is known about the case of £),-approximation.

Open Problem 4.5. Investigate e%d(é’g,ép,’y) for p # 2, or approximation in more general
norms.

In the following, we briefly discuss implications for non-Hilbert spaces. For simplicity, we restrict
ourselves to the better known finite-dimensional case.

For the unit ball K of a normed space (R™, ||-||x), Assumption A is satisfied if p is the counting
measure on {1,...,m} and v the standard Gaussian measure on R™. By Lemma 3.5 we find a
suitable Hilbert space in R™ such that for each n € N and x € K we have

m
_ < (K, 65"
|z — Poxllgr S Z Tr

k=|n/8|+1
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If we insert this into (4.6), then we obtain (similarly to the proof of Theorem 3.7) that with some
constant oversampling factor b > 1 the unweighted least-squares algorithm Ay based on N = bn
iild Gaussian random functionals satisfies

1 & di(K, e
o= An@l: £ = Y- ’“(ﬁj)

k=n+1

for every x € R™ with probability 1 — 27", where ¢ > 0 is as in Lemma 4.3. Thus, we get the
following upper bound.
Corollary 4.5. Let K C R™ be a convex body. There exist ¢, C > 0 such that

C & di(K, )

iid m
€ Kvg y Im S =
( ) < k:zL:an 7

holds with probability 1 — 2e=“" for all n < m.

Via (4.5) this upper bound holds for the radius of a typical section. There is a similar bound in
terms of Gelfand widths, which correspond to optimal sections and therefore seems better suited as
a benchmark.

Proposition 4.6. ( [81, Thm. 3.2]). Let K C R™ be a convex body. There exist ¢,C > 0 such

that
C & (K, 5

ezd(K7€§n77m) S = Z \/E )

(4.7)
\/ﬁ k=|cn|

holds with probability 1 — e~ " for all n < m.

The proof of this result relies on a “rounding technique” together with an M *-estimate, which
is also employed for example in [40,41,54]. It gives a direct estimate on the radius rad(K N E}*")
instead of providing an explicit reconstruction algorithm using Gaussian information. Thus, only
an abstract nonlinear algorithm can be given which matches the bound (4.7), see Section 5.2.

Using the asymptotics stated in Section 3.5 we can derive that Gaussian information is asympto-
tically optimal if the Gelfand widths decay a little faster than n=1/2, i.e., the bodies are sufficiently
“thin” as the dimension increases. It would be interesting whether this threshold of n~1/2 is sharp.
Again, this is the threshold we have seen for (random) standard information, see Section 4.1.

Open Problem 4.6. Is there some K C {5 such that (c, (K, (2)) ¢ 2, but still (K, {5,7) — 0
a.s.?

In order to investigate the sharpness of the bound (4.7), in [59] random sections of £,-ellipsoids
have been studied which are images of £,-balls with 0 < p < oo under diagonal operators. In the
case 1 < p < oo the logarithmic gaps present for poly-log decay with a = 1/2 can be narrowed. It
would be interesting to do this also for general convex bodies. The proofs behind build on the same
techniques used in [54] and [81], and consequently yield a nonlinear algorithm.

Remark 4.3. (More general linear information). In the finite-dimensional case with a symmetric
convex body K C R™ which corresponds to the geometric problem of finding small sections of K
we note that the obtained general results not only hold for the Gaussian measure. In fact, to satisfy
Assumption (A.3), we can take any measure v on R™ which is isotropic in the sense of

[ty dutw) = (o)

If additionally v has barycenter at the origin, then this corresponds to isotropicity as used in asymp-
totic geometric analysis, see e.g. [3, Sec. 10.2]. Further note that Lemma 4.3, which works without
logarithmic oversampling, also holds for example for Rademacher random variables instead of stan-
dard Gaussian ones, see [5] and [104], and thus has implications for other types of information.
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5 FURTHER TOPICS

Let us shortly touch upon some topics close to the scope of this survey.

5.1 SUBSAMPLING AND OPTIMAL INFORMATION

Instead of considering random sampling, and related minimal errors, it is clearly of interest to
find relations between the different “benchmarks” of optimal approximation, see Section 2. One
particular reason is the study of the power of certain classes of information, in which case the “best”
information has to be considered.

It is to some extent surprising that the general results of the previous sections already lead to
an optimal comparison in some cases. In fact, one can employ a subsampling technique based on
the famous solution to the Kadison-Singer problem [82] to reduce a given “good” set of information
to an “optimal” subset. We will discuss the essential lemma at the end of this section.

This has been done in [29] in the case of function values, see also [87,112], and the following
theorem is a slight generalization.

Theorem 5.1. There is a constant b € N such that for any F, D, u, A, v that satisfy Assump-
tion A and all n € N, we have

1« di(F, Lo)
eon(Fy Ly, A) < —= 3 S22
b( 2 ) \/ﬁkzzn \/E

The bound is achieved by the corresponding algorithm Apn from Theorem 3.2, with the N =
nlogn random functionals replaced by a suitable subset of order n. Again, a slight improvement is
possible for Hilbert spaces. We omit the details and refer to [29].

Since di(F, L) = ap(F, Lg) for all F' C Lo, Theorem 5.1 shows that, whenever the approxima-
tion numbers of F' decay at a polynomial rate larger 1/2, then information which satisfies Assump-
tion (A.3) is asymptotically as powerful as arbitrary linear information for Le-approximation in F,
at least if we only allow linear algorithms, see (2.1).

If F' = By is the unit ball of a Hilbert space, then it is known that a,(Bg, L2) = ¢, (Bm, La),
and the last result shows that

en(BH,LQ,A) = Cn(BH,LQ) (5.1)

whenever ¢, (Bg, La) < n~ for some a > 1/2.

That is, the class A contains optimal information. Recall that this applies, e.g., to A to
coefficients w.r.t. an arbitrary ONB of Lo, or to function evaluations AS'Y. The latter case in
particularly interesting as it was an open problem for a while. This, and the corresponding open
problems from [31,97], were solved in [29], see also [76,94,117] for earlier results on this, and [72,
73,87,115] for direct predecessors. It is not clear what makes AS* or other information with (A.3),
special in this context.

This motivates the following open problem.

Open Problem 5.1. Find necessary and sufficient conditions on H and A, independent of n,
such that (5.1) holds true.

So far, we know that (A.3) together with some decay of (¢;,) is sufficient, and that sup,c, [€(f)] >
0 for all f # 0 is necessary.

Recall that for AS relation (5.1) is, in general, not true for Hilbert spaces with (c,) ¢ /o,
see [58,74|. In contrast, it is obvious by definition that no condition on the decay of (¢;) is needed
to achieve (5.1) for A®!. It would be interesting to find a class A such that we have for some
p* > 2, that (5.1) holds for Hilbert spaces H with A C H and (c¢,) € £, with p > p*, but does not
hold for some H with (c,) € £,~. For example, we do not know the answer if A = A%l consists
of coefficients w.r.t. an arbitrary ONB of Ly. The same questions are clearly of large interest for
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non-Hilbert spaces, and approximation in other norms. We leave that for future research, and just
note that the same subsampling approach was used in [39,68] to obtain the optimal bound

gll)ifll(BHa Loo) = Cn(BHa Loo)

for all RKHS H that satisfy the conditions of Theorem 4.1.

The final ingredient for the proof of Theorem 5.1 was the following infinite-dimensional version
of the subsampling (or sparsification) theorem, which allowed for direct application in the above
described setting, see Proposition 17 of [29].

Lemma 5.2. [29]. There are absolute constants ¢; < 43200, co > 50, ¢z < 21600, with the
following properties. Let n, N € N and y1,...,yn be vectors from ¢2(Ny) satisfying ||yi||3 < 2n and

N
1 I, 0O 1
- gk < =
HN ;_1 YiY; (0 A) ||2a2 =9

with the identity I, € C"*" and some Hermitian matrix A with ||Alja—2 < 1. Then, there is a
subset J C {1,...,N} with |J| < ¢in, such that

1 1 .
< E yz‘?ﬁ) > coly and — g viy; < csl,
n <n n

ieJ e

where A<y := (Ag1)ki<n and A < B denotes the Loewner order.

A short look to the proof of Theorem 3.2 reveals how to apply this lemma to reduce the number
of samples from nlogn to n, while preserving the spectral properties of the involved matrices. This
result, as its finite-dimensional origin, is fascinating, especially because it does not depend on the
initial sample size N. See also [78| for an application to sampling discretization, or [63] for a survey,
and [36] for the discretization of continuous frames.

Finally, we remark that Lemma 5.2 is ultimately due to the solution of the Kadison-Singer
problem in [82], together with the iterative approach from [89].

5.2 NONLINEAR SAMPLING ALGORITHMS

Our focus is on linear algorithms but here we want to mention some results regarding nonlinear
algorithms using iid information. We refer to the survey [26], or the recent works [9,17,19] and
references therein, for more information on nonlinear approximation.

In general, if H and G are normed spaces and information is given by a map N,,: H — R"”, then
the reconstruction mapping

©*(y) = argnéin sup{|lg — hllg: h € F, N,(h) =y},
ge

if it exists, is optimal, i.e., it attains the infimum in (1.3). In fact, it returns a Chebyshev center of
the set N~ (y) N F considered as a subset of G. Composed with N,, this gives an optimal nonlinear
algorithm AY. As mentioned in Section 2 and seen in Section 4, often linear algorithms using iid
information can be asymptotically as good but this is not always the case.

One of the most prominent instances of the success of iid information for nonlinear approximation
is the case F' = (1", G = (3" and F the unit ball of /7" which is a special case of the geometric
problem mentioned in Section 4.3. This case is related to sparse recovery, see e.g. [30,35], and was
resolved already in [62] and [38]. In fact, it was shown that

(5.2)

n

B, ) = a6 ) = min {1,450

bg1+g)}
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where the hidden constants are absolute and -, denotes the standard Gaussian measure on R™.
Note that the corresponding approximation numbers are much larger and thus nonlinear reconstruc-
tions are strictly better, see [100].

We refer to [53] for more details on the proof of (5.2) which is based on ¢;-minimization or basis
pursuit and references to generalizations. Recently, this has been generalized to £p-ellipsoids with
implications for Gelfand numbers of diagonal operators, see [59].

It is remarkable that so far, despite its enormous importance for applications, there is no explicit,
deterministic construction of a near-optimal N, attaining the upper bound in (5.2). The same is
true for several of the results from Section 3.

Remark 5.1. Let us note that in the original bound in [62] on €% ({1, 03, ,,) the exponent of
log(1+ o) in (5.2) is 3/2 instead of 1/2. It is somehow interesting that, given the optimal bound
on ¢, (1", €5") in (5.2) this can be obtained from the bound in [81] presented in Proposition 4.6.

In the context of sampling numbers, we want to mention further recent results based on sparse
approximation and iid random points.

Using a greedy (and nonlinear) approximation method, as well as iid uniform random points
on rather general domains [24] obtained bounds for Lg-approximation in general function classes,
thereby improving upon recent results in [61] obtained via basis pursuit denoising, another non-
linear reconstruction method. See also [66] for an analysis of this method with emphasis on high-
dimensional approximation.

5.3 RANDOMIZED ALGORITHMS

Randomized algorithms, also known as Monte Carlo methods, are a larger class of algorithms
which, in contrast to the algorithms discussed so far, are allowed to use different information for each
input, and additional random numbers. (Although we studied random information, we considered
the deterministic worst-case error for each realization as in (1.3), and hence, do not allow random
algorithms in this sense.) That is, a Monte Carlo method M,, is a random variable, that depends in
expectation on n pieces of information of the input, and we define the worst-case (root-mean-square)
error

e (M,, F,G) := sup \/E[!f—Mn(f)H%;}

feF
as well as the n-th minimal randomized errors e;**(F, G, A) as the infimum over all such methods.
We clearly have e}**(F, G, A) < e, (F, G, A), because every deterministic algorithm can be considered
a (constant) random variable. In addition, randomized methods might be quite advantageous
and more generally applicable. However, such methods do usually not allow for reliable error
guarantees, in the sense that error bounds only hold with certain probability, and that a realization
of a randomized algorithm may have small error for some f € F| but not for all at once.

There are even many situations (e.g., if H and G are Hilbert spaces, F' is the unit ball of
H, and we allow arbitrary linear information) where randomness does not help at all compared
to deterministic algorithms. We refer to [48, 90, 95,96] for more details and general results on
randomized approximation.

We will see below that a randomized least squares method can attain the optimal results under
much weaker conditions. First, it is intuitively clear, and can be seen from the corresponding proofs,
that the “discretization condition” (3.2), or (3.4), is crucial also in this case. But the “stability
condition” (3.13), or (3.5), which depends on the class F', can be weakened to

N
P(Zwim(g)? < g rmi) >1-n  forall ge Ly, (5.3)
=1

for some n > 0, where w; and ¢; are the random weights and functionals, respectively. This condition
is easy to verify for iid ¢; if they are sampled, as before, with respect to a density p/,, and we set
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w; = 1/py, (6;).
The following has been obtained essentially in [21].
Proposition 5.7. Let V,, C Ly be an n-dimensional space, and w;, ¢; be such that (5.3) and

N
P(Zwi|€i(g)|2 > o?|gl3, forall g€ Vn> >1-94 (5.4)
i=1
hold for some o, 8,1,6 > 0. Then, the algorithm Ay from (3.1) satisfies for each f € Ly that

| £ = x|

2 /B 9
Lo S (1+Oé> d(f; Vn7L2)

with probability 1 —n — &, where d(f, V,,G) := mingey, Hf - gHG.

We see that, once the conditions are verified, we obtain a near-optimal approximation in arbi-
trary subspaces of Ly. We do not need to assume that f € F for some class F’ with decaying widths.
It is clear that a result of this kind cannot be true in a deterministic setting, or with probability
one.

To obtain a bound in expectation, i.e., on the error e™"(Ay), we need to control the error
for realizations of Ay for which (5.3) and (5.4) do not hold. This can be done in different ways.
In [21], where this result was applied first to N < nlogn iid points, the authors proceeded by
considering an error bound in terms of d(f,V,, L), or by adding a term n™"| f|l2 on the right
hand side, where N must grow with r, see also [15,18]. The required sampling density p), is the
first summand of p,, in (3.11). In [45], the algorithm was analyzed for iid random points distributed
according to this density, conditioned on the event in (5.4). Since (5.3) also holds in expectation,
one obtains E||f — An(f)||7, < d(f, Vn, L2)? for N < nlogn. Based on a similar subsampling idea
as discussed in Section 5.1, this led to the important result from [20] which shows that, in the case
of Le-approximation, linear randomized algorithms based on function values can be optimal among
arbitrary linear algorithms. See [64,118] for earlier results, and [16] for a recent refinement leading
to explicit and smaller constants and oversampling.

Theorem 5.3. [20]. There exist constants b,C € N such that the following holds. For any
n-dimensional space V,, C Lo(D, ), there is a random variable X on (51), ie., all (bn)-element
subsets of D, such that the algorithm Ay from (3.1) with N = bn, {z1,...,2p,} = X and w; :=

. v]lZ .
min,ey, W satisfies

2
E|f—ax(n|, < Cmin|r-gl, forall seLs.
2 n

In particular,
eim (F, Lo, A < C - ap(F, Ly)

for any compact subset F' C Lo.

The random sample used by the above algorithm is not given by iid random points, and it is
again not too difficult to see (by using the coupon collector’s problem) that such a result cannot be
true for iid information in general.

Similar to the results and techniques from Section 4.2, it has been shown in [67] that iid samples
are asymptotically optimal in expectation for Lg-approximation of Sobolev functions in W, on
very general domains, except for the case p = ¢ = oo. This is an improvement compared to the
deterministic error discussed in Section 4.2. Again, we would like to know how this generalizes.

Open Problem 5.2. Find conditions on F such that there exists a density p with E|f —
AN(f)H%2 < d(f,Vpn, Lo)? for all f € F, where Ay from (3.1) is based on N < n iid points from p.

Regarding nonlinear approximation which was discussed in Section 5.2, Gaussian information
has proven useful also in the randomized setting for approximation between sequence spaces and
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Lg-approximation in Sobolev spaces, see e.g. [47,83]. Recently, in |[75], following [49], improvements
using adaptivity have been shown, which is in contrast to the deterministic case, where adaption is
useless for linear problems, see [95, Thm. 4.4].

5.4 HIGH DIMENSIONS AND TRACTABILITY

Many problems in numerical approximation have an associated dimension d, that of the domain,
which influences the error. In IBC it is of large interest to study the dependence of the minimal
errors on d.

In this context, it can be useful to state results in terms of the information complexity

n(e, F,G,A\) := min{n e N: e, (F,G,A) < 8},

which is the minimal number of values of information functionals from A needed to achieve an error
of at most € > 0. That is, every algorithm that achieves an error in G of at most € > 0 for all f € F
needs at least n(e, F, G, A) pieces of information from A.

To classify the difficulty of a problem in higher dimensions we consider a sequence of function
classes Fy on domains Dy (and associated G4 and Ag), d € N. A problem (or a sequence thereof)
is then called polynomially tractable, if there exist absolute constant «, 5,C > 0, such that

n(e, Fy,Gq,A\g) < C d* e h foralle >0 and d €N,

i.e., the needed amount of information depends at most polynomially on d and 1/e. In contrast, a
problem is said to suffer from the curse of dimension, if there exist absolute constants g, dg, v, C' > 0,
such that

n(e, Fy, Gq,Ag) > C (1+7)? for all € € (0,¢9) and d > dp.

That is, one needs exponentially many pieces of information to find an approximate solution to the
problem. Such a problem is generally assumed to be intractable. For a comprehensive account on
tractability and the concepts mentioned in the remainder of this section we refer to the books [95-97].

Remark 5.2. The term “curse of dimension” has been introduced by Bellmann [8] in 1957
for the phenomenon that the number of needed samples increases exponentially with the (input)
dimension. This is very much inspired by classifications in discrete complexity theory and we use
the same concept. Note, however, that this term gained prominence in several other areas and is
sometimes used for saying that the order of convergence decreases to zero (e.g., like e, =g nt/ d),
The examples below will show that this is not the same, and that the d-dependent “constants” are
of significance.

As a result of the structure of function spaces, in many cases the curse of dimension cannot
be avoided. It is largely open, and one of the main concerns of IBC, to identify natural classes of
functions where the curse of dimension does not hold, especially for A5,

In the context of this survey let us only mention that the spaces WPS(D) from Section 4.2 are
too large to be tractable. Namely, it has been shown in [55-57], see also [109] for the case s = 1,
that for any sequence of volume-normalized domains (Dy), like Dy = [0, 1]¢, already the integration
problem for W3 (D,) suffers from the curse of dimension. In fact,

d d/s
e WD), LA 2. (1)
for all 1 < ¢ < oo, s € N and volume-normalized (D). Even larger bounds exist for ¢ = oo, see [65],
in which case the curse also holds for s = oo, see [93].
As a remedy to the curse of dimension we mention the prominent example of weighted spaces,
introduced in [106], where different “weights” are assigned to different coordinates, see [95-97| for a
discussion. For recent progress in the context of “unweighted” spaces, see [66] where tractability of
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L ~approximation in spaces with bounded sum of absolute values of Fourier coefficients with respect
to a suitable basis was obtained.

Note that many of the error bounds presented above come with (explicit) absolute constants
and are therefore also suitable for tractabilty studies, see e.g. [39,69].

There is another prominent problem in IBC, which emphasizes the value of iid information in
this context: Distributing points “uniformly” on [0, 1]%.

For this, let the (star-)discrepancy of a point set P, be given by

n N [0,
D(Pyp) =:= sup #(Pn 0 10,2)) — vol([0, z])|,
xz€[0,1]¢ n
where [0,z] = [0,21] X --- x [0,24]. Optimizing over all n-point sets P, C [0,1]? gives the n-th

minimal discrepancy

D(n,d) = i7£1f D(Py).

This is a very important and extensively studied quantity in the field of irregularity of distribution |7).
See also [27,52,91] for recent treatments.

Via the prominent Koksma-Hlawka inequality |60| the discrepancy of Py, is related to the radius
of information for integration in a space of mixed smoothness, see e.g. [27]. To date, the best bounds
(for large n) are

n~t (logn)@=1/241a <, D(n,d) <4 n~" (logn)?, (5.5)

with some small 74 > 0, see [14] for the lower bound and e.g. [27] for the upper bound. Regarding
the dependence on d, there exist ci, ca,e0 > 0 such that

d d
¢1 min {SO,E} < D(n,d) < 02\/; for all d,n € N, (5.6)

see [50,51]. We obtain that the number of points needed to achieve a discrepancy less than € > 0
is (up to constants) between de~! and de~2 and hence, linear in d. The bound from (5.5), which
increases exponentially with d, is therefore not enough to conclude a statement on the complexity
in high-dimensions.

The upper bound due to [50] is achieved by iid uniform random points and relies on [110] which
employs empirical process theory and the concept of Vapnik-Cervonenkis (VC) dimension, a notion
of complexity originating from statistical learning theory. In high dimensions, iid points achieve
also the best known bounds for the related notion of dispersion, which measures the volume of the
largest empty box, see [79,116].

Note that due to the central limit theorem the rate n in (5.6) cannot be improved for iid
points. Even more, for uniformly distributed iid points there is also a lower bound of the order
\/d/n for n 2 d which holds with exponentially large (in d) probability, see [28].

Improvements on (5.5) and (5.6), and the construction of points satisfying the latter, seem to
be very challenging open problems.

Open Problem 5.3. Is the upper bound in (5.6) sharp for all n that are at most polynomi-
ally large in d? In other words, do iid uniform random points have optimal discrepancy in high

dimension? Moreover, find explicit deterministic constructions that satisty D(Pp) < %.

—1/2

5.5 A MACHINE LEARNING PERSPECTIVE

In this final section we want to provide a different point of view on the setting of this sur-
vey. In other literature, especially from data science, it is usually assumed that some “data”
(1,y1),-- ., (zN,yn) € X x Y is produced by iid samples of a random vector (X, Y') with distribution
pon X xY. Our setting (for standard information) amounts to (X,Y) = (X, f(X)) for some function
f:+ X = Y which we would like to approximate using the given data (z1, f(z1)),..., (zN, f(zN)).
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In machine learning, one wants to “explain” the data by finding a function f: X — ) (a model)
that maps an input = to an output y. Here, an additional (additive) noise is a typical assumption.
Denoting by py|x the conditional probability distribution given X, the regression function

fol) = /y ydpyix(lz), =€ X,

is the best guess of y given x with respect to an Le-error and the goal is to approximate this function
using the given data. For example, one uses empirical best approximation in an hypothesis space
H, ie.,

where z := ((z1,41), ..., (zN,yn)) is the given data.
If we define the (squared) error of the model g by

Eg) = & lg) = /X 19(2) — 92 dp(z, ),

then it is easy to verify that the error of the least squares estimator decomposes into

£(f) = /X @) — o) dpx(2) + /X Fo(@) — P dp(z,y),

where px denotes the marginal of p on X.

Naively, our setting in Section 3 corresponds to choosing H = V), for a suitable n-dimensional
subspace V;, of Lo, where n depends on N, and f, = f (i.e., y; = f(«;)). This excludes for example
the noisy case (X,Y) = (X, f(X) + €) where € is centered noise independent of X.

However, there is another interpretation we would like to comment on. We only know the data
(a:i,yi)fil ~ p, and the goal is to compute f,. Assuming all x; are different and there is no noise,
we may assume that y; = y(x;) for some function y: X — ). Hence, we can write fz = A% (y) with
A%, from (4.2). If the data and hypothesis space V;, is such that A% (g) = g for all g € V;,, and

f = argmingevn pr - g||L27 then
1o = ANWzs < 1fo = fllze + IIf = ANz = EDOY? + |An(y — DIz,

The first term is often called the approrimation error, and can not be avoided due to the choice of

the hypothesis space. The second is the sample error, and depends on the “quality” of the given data.

Hence, if we assume that the “error” e = y— f is not “just random” but has a certain structure, then

the considerations of this survey might be of interest for further studies, see e.g. Section 4 of [63].
For the mathematical foundations of learning we refer to [22] and [34].
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