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THE BOUNDARY VALUE PROBLEM FOR THE
TWO-DIMENSIONAL LAPLACE EQUATION WITH TRANSMISSION
CONDITIONS GIVEN ON OPEN LIPSCHITZ CURVE
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AnoTaiss.  PosrignyTo KpaifioBy 3ajady s piBHAHHsS Jlanjaca B oOMexkeHIH aBoBuMipHIR
Jnmwuresif 06;1acTi 3 KPaoBOO yMOBOIO CIIPsiZKEHHH, 33/JaHOI0 Ha He3aMKHeHi# kpusiil. g ymosa
BKJIIO9a€ B cebe cTpubOK PO3B’sA3KY 1 3HAYEHHS MOr0 HOPMAaJIBHOI 1oxinuHoI. /l0BeIeHO eKBiBaIEHTHICTD
po3ragHyTOl KpaifioBol 3ajadi Ta OTpMMaHOl BapiamiiiHol 3amadi. /JloBemeHO iCHYBaHHS 1 €IMHICTH
PO3B’s3Ky MOCTABIEHUX 33139 Y BIAMOBIMHUX (PYHKIIOHAIBHUX MpOocTOpax. Ha OCHOBI iHTerpaabrHOTO
OJ@HHS PO3B 3Ky KpalioBa 3a/a9a 3BEIEHA [0 CUCTEMHU IPAHUYHUX IHTErPAJbHUX DiBHSIHB, SKa MA€E
€IUHUI PO3B’I30K.

ABSTRACT. We consider boundary value problem for Laplace equation in bounded two-dimensional
Lipschitz domain with transmission boundary condition given upon open curve. This conditions includes
itself the jump of solution of boundary value problem and the meaning of boundary value of its normal
derivative. We prove the equivalence of considered boundary value problem and obtained variational
problem. As a result we prove existence and uniqueness of solution of the posed problems in appropriate
functional spaces. Based on the integral representation of the solution the considered boundary value
problem is reduced to the system of boundary integral equation which has unique solution.

1 INTRODUCTION

In their work [6] G.S. Kit and Ya.S. Podstrigach proposed mathematical model for determination
of the stationary temperature field in two dimensional infinite body with a linear slit having definite
heat resistance. This mathematical model was reduced to the boundary value problem for the
two-dimensional Laplace equation in plane with boundary conditions of transmission type and
using representation of the solution via potential of double layer it was obtained Prandtl’s integro-
differential equation.

Problems with boundary conditions of transmission type for the second order elliptic equations
and systems in Lipschitz domain were considered in [2,3,9,11].

The aim of the present paper was to prove existence and uniqueness of solution of the boun-
dary value problem for the two-dimensional Laplace equation in bounded Lipschitz domain with
transmission boundary condition of special type given upon open Lipschitz curve. We introduce
some functional spaces and trace operators in domain with open Lipschitz curve and show that
this problem is equivalent to some variational problem which has unique solution according to the
Lax-Milgram Lemma. We also obtained system of the boundary integral and integro-differential
equations which is equivalent to the considered boundary value problem.
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2 FUNCTIONAL SPACES AND TRACE OPERATORS

Let ©; C R? be a bounded connected Lipschitz domain. This means that its boundary curve
¥ is locally the graph of a Lipschitz function [4,5]. The points of R? we denote x = (x1,2),
y = (y1,%2). Let us note that ¥ can be piecewise smooth and have corner points. Q, = Q, UX.
We suppose that S is an open Lipschitz curve with the end points a@ and b, S = S U {a,b} and
S C Qy. Wedenote Q2 = Q4 \ 'S and consider S as a part of a some closed bounded Lipschitz curve
>0 :EUS(], Y0 C Q4.

Since X and X are Lipschitz almost everywhere we can define outward pointing unit vector of
the normal 7, z € ¥ or z € Y. Depend on the direction of 7i,, x € S, we consider S as a double
sided curve with sides ST and S~.

In ©Q, we consider the Laplace operator Lu = —Au = —22 0%y

i=1 o2

H'(Qy) and HY(Q4, L) of real functions with norms and inner products

and the Hilbert spaces

lullzn e, = IVulZq,) + luliy.y llinq, o) = lulfe,) + 1 Lulliyq,),

(uvv)Hl(Q+) = (Vu, VU)LQ(m) + (UaU)LQ(m),
(u,v) g1y ) = (W, 0) g1(a,) + (Lu, L)y,

The trace operators 'y('fz - HY(Q)) — HY2(X) and WL,E : HY(Q,, L) — H'/2(%) are continuous
and surjective [4,5]. Here v yu € H™Y2(Z) = (HY2(X)) and for u € C1(Q4) coincides with

boundary value of normal derivative 597“ on .

Let us denote by C§°(2) the class of infinitely differentiable functions with compact support in
QO If p € CF° () then p(z) =0, 2 € S.

We introduce the Hilbert spaces H'(2) and H(Q, L) of real functions with norms and inner
products

lull3 iy = IVulll 0 + lullf@)  Tulfnq.r = lulfq + 1Zul?,q)
(u, V) () = (Vu, Vo)) + (4,0) 1,(0),

(u,v) g,y = (u,v) gr() + (Lu, Lv) 1,(0),

where derivatives ngfi € Ly(R2) are defined as

(gme) == [0 dr = (u.5)
0" ") 1y o 0 Om 0z ) Ly(@)
for all € C5°(£2).

We consider some trace operators in 2. We denote '78%5 and 'ﬁ%s the restrictions of trace
operators ’Y(j)fzo and fyffzo on S respectively [1,10]. Then we have ’y[jfs - HY(Q) — HY?(S) and
N HY QL) — HY2(S).

We introduce the space H}(Q) = {u € H(Q) : ’Y(:fsu = 077({2“ = 0} and denote dual space
H=Y(Q) = (H(Q)). Then L: HY(Q) — H-1(2). We also have that H}(€) is a closure of C§°(Q)
in the norm [| - || 1 ()

We use the next trace operators : [yo 5] = ’V(J)TS ~Yo.50 [11,8] = *yis — 7.5 Let Q CQy bea
Lipschitz domain bounded by the closed curve ¥o. Q1 = Q1 U g, Qo = Q4 \ﬁl. We denote by
u; = ro,u the restriction of u € H'(Q) to €, i = 1,2. It’s obviously that u; € H*(;), i = 1,2.

Lemma 2.1. If u € H(Q2,) then VSZSU = Y.5U-

Proof. For arbitrary ¢ € C}(Q4) = {p € C1(Q4) : p(x) = 0,2 € £} and for i = 1,2 we have
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IRV RCE P .
/ oz, o(x)dx = o uy () o, dr + 20VO,ZOUI(Q)SO(Z/)COb(”yayz)dSy

)

0

Oua(x do(x
/Q2 82x(i )@(x)da:: —/Q1 uz(x) g:iz)da:—/z fy_zouQ(y)go(y) cos(Tiy, Ui )ds,

Since 6;3(3?) € Ly(Q4) then

duy(x) Oug(x) B ou(x)
/Q1 oz, w(x)dx—i—/ <p(ac)dyc—/Q+ o(z)dz

Qo 8.%'2 8952

and on (Yo, ]u(y)p(y) cos(iiy, ;)ds, = 0 for all ¢ € C1(Xp). It means that V(T,Zo“ = Yoz, U OF
VSL,S“ = Yp,5U- O
Corollary 2.2. If u € HY(Q) then [y5,Ju = 0. If u € HY(Q) and ’yafsu = YosU then
u€ HY Q).
From corollary 1 it follows that we have trace operator [yos] : H'(Q) — H(%Q(S) where
H&éZ(S) = {g € HY?(S) : pog € HY?(Xg)}. Here pog is extension of the function g on Sy by
zero, i.e. pog(x) =0 if z € Sp. The norm in Héé2(5) is given as [7] HgHHééz(S) = [lpogll g1/2(sy)-

As a consequence we obtain that for u € H(£2) the norm || - | z11() We can present as

lllF ) = Nl o, + luallin @)

where u; = ro,u, 1 =1, 2.

Lemma 2.3. The trace maps 70%5 : HY(Q) — HY%(S) and [v0s] : HY(Q) — H(%Z(S) are
continuous and surjective.

Proof. Let g4 € HY2(S) be an arbitrary function. We denote by pgy € HY/2(5g) the extension
of g+ on ¥y. The trace map 7({20 : HY(y) — HY?(X) is continuous and surjective. Thus there

exists function u; € H(€) with trace 'V(J)r,zoul = pg+ and
1291l 17259y < llnll g ayy- (2.1)

Let go € HééQ(S), pogo € HY?(Xp) is the extension of go on Xy by zero. Then for functions
pg— = pgy +pgo € HY?(Xg) and g € HY2(X) there exist function uy € H'(Qy) with traces
Yo, = Pg— and ygsur = g.

Thus we have function u where wu; are the restrictions of v on €;, i = 1,2. Since u; € Hl(QZ)
and [v0,s,]Ju = 0 then u € H*(Q) and ’Y(J)tsu = g4.

The surjectivity of g g : HY(Q) — H'Y2(S) we can show analogously. Then from (2.1) we
obtain

= i < <
HgHHl/’z(s) pgef}?/g(zo) HPQHH1/2(EO) = C||U1HH1(QI) = CH“HHl(m)‘

Here ¢ — some positive constant. O
Lemma 2.4. Ifu € H (Q,, L) then 'Y(ISU = Yo.5u and 'yisu = 715U
Proof. Since u € H'(Q,) then from Lemma 1 we have 70+,Su = 7Ygsu. For arbitrary u €
HY(Q4, L) and v € H*(Q4) we have the first Green formula

(VU, VU)LQ(Q+) = (L’U,, U)LQ(Q+) + <’Yf:2u7 7(—)’:27»

Also for the restrictions of u and v on £;, i = 1,2, we have

(Vu, V) L) = (Lt 0) y(@) + (O 50 Yo 5350
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(Vu, Vo) 1,0, = (Lus ) 1y00) — (Vs % Yos, V) + <fo2qu0+,2“>7

Since (Lu,v)r,(0,) = (L, v) 1, (0,)+ (L, v) 1, (0,) then we obtain (’yIEOu, ’Y(J)F,EOU>_<71_,EOU>’Y(J_,EOU> =
0. From Lemma 1 we have fy{fzov = Yo.5,v thus <[71720]U77({20U> = 0. Trace operator 7(—;20 :
HY(y) — HY?(X) is surjective and as a consequence we have [y x,]u = 0. For arbitrary function
go € H(%Q(S) there exists function v € H(Q) that ’)/S_SU = go and ’yaLSOv = 0. Thus from the
equality <[’Yl,20]u776rgo’0> = 0 we obtain ([v1,5,]u,g0) = 0 for arbitrary go € H[%Q(S). It give us
1w = 0 o1 7 gu = 7y gu. -

Corollary 2.5. If u € H'(Q,L) then [yo,s,Ju = 0 and [y1,,Ju = 0. Ifu € HY(Q,L) and
VSCS“ = Y.5Us fosu =7, s then u € HY Q. L).

From Corollary 2 it follows that we have trace operator [y1.¢] : H(Q,L) — H(i)l/g(S) where
H&)l/2(5) = {f € HY2(S) : pof € H '/2(3g)}. Here pog is extension by zero of functional f on Sp

—1/2 _ 1/2

and Hy,?(S) = (HY2(S)), H-Y2(S) = (Hy)*(S)) [8,10].

Based on the above propositions as in [10] we obtain the first Green formula in domain € for
uwe HY(Q, L) and v € H'(Q):

(Vu, Vo) pya,) = (L, 0) pyo) + (7 g4, [Y0,5]0) +

(1,51 79.5v) + (5w g w)- (2.2)

Here (-,-) are relations of duality between HégQ(S) and H-Y2(S), HY/?(S) and HO_Ol/Q(S),
H'Y2(%) and H~Y2(X) respectively.

3 BOUNDARY VALUE PROBLEM WITH TRANSMISSION BOUNDARY CONDITION AND
IT’S VARIATIONAL FORMULATION

We consider the following boundary value problem in domain 2.
Problem R. Find function v € H'(Q, L) that satisfies

Lu=—-Au=0 in Q, (3.1)

yslu =0, Aoslu+gu=f, gyu=0. (3.2)

Here f € H-Y/2(S) and X € C(S) are given.
We can connect with problem R the next variational problem.
Problem VR. Find function u € HY(Q) = {u € HY(Q) : fyajzu = 0} that satisfies

a(u,v) = l(v)

for every v € HY(Q).
Here
a(u,v) = (Vu, Vo), + (A10,5]4, [70,5]V) £,(5)

l(v) = (f, [o.s]v).

Let us note that the space H(Q4) = {u € HY(Q4) : "ySfEu = 0} is a subspace of the space H!(Q)
and if function v € H}(24) then [yo,s]u = 0.
In the space H'(f2) we introduce the following norm:

ol = V)2, 0 + /S (lo.sTuy))?ds,.
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Lemma 3.1. The norms | - ||g1(q) and || - ||s are equivalent, i.e. there exist constants a > 0
and 3 > 0 that for all u € H'(Q) we have

allulls < flullgre) < Bllulls-

Proof. Let us show that there exists some constant 3 that for all u € H'(Q) we have ull 1) <

B|lulls. We suppose contrary. It means that there exists some sequence {v,} € H'(€) and > nlul|g
for all n € N. Let up = vn/||ull g1(q). Then [[unl|g1(q) =1 and

1

—-

- (3.3)

lotnll = Va2, 0 + /S (0.5 (y))2ds, <

We consider u¥) restriction of u,, on Q;, 7 =1,2. Inasmuch as Hugf) | 71(;) < 1for all n and there

is compact imbedding H'(€;) C La(€2;), i = 1,2, then in L2(€;) there exists subsequence ugf,z and
functions u; € Lo(€2;) that Hu,(f,z — Uil £4(0,) = 0, ng. — 0o. Since Vu,(f,z € Ly(£2;) then Vu; € La(€2;).
From (3.3) we have [|Vuly) || @, < 1/nk, i = 1,2. Thus limp, o0 [ Vs | o) = | Vttill Ly, = 0
or ul® = ¢; = const in ;. From the Corollary 1 it follows that ¢; = ¢o. Since ’yarEuQ = 0 then
ui(x) =0,z € Q, i = 1,2 or u(z) =0, x € Q where u; = rq,u are the restrictions of u on ;.
But according our supposition ||ul|g1(q) = 1 and we obtained contradiction. Thus there exists some
constant 3 > 0 that for all x € H'(2) we have lull () < Bllulls-

Now we consider the inequality afulls < [|ul|g1(q). From the Lemma 2 we have that trace

operator [yo,s] : HY(2) — H&O/Z(S) is bounded. Thus
Ivo,slullzaes) < llboslull gre gy < cllullme),

where ¢ > 0 — some constant. So there exists some constant a > 0 that for all z € H'(Q) we have
aflulls < [lullgra)- O

Theorem 3.2. Problems R and V R are equivalent.

Proof. Let u be a solution of the problem R. It means that v € H'(Q) and [71,5]u = 0. Using the
first Green formula (2.2) and boundary condition (3.2) we have a(u,v) = I(v) for every v € H' ().
Thus v is a solution of the problem V R.

Let now u € H'(Q) be a solution of the problem VR. Then for every v € C5°(Q) we get
(Vu, Vo) r,0,) = (Lu,v) = 0 or Lu =0 in Q. It means that u € H'(, L).

From the first Green formula (2.2) for every v € H'(€) we have

(Avo,s]u +71 gu — £, [0,5]0) + {[11,s]u, 7 5v) = 0.

If v € HY(Qy) C HY(Q) or [v0,s]v = 0 we obtain ([y1,s]u, vy gv) = 0. Since trace operator v g :
H(2) — HY2(S) is surjective then for arbitrary function h € HY/2(S) we have ([y1 s]u, h) = 0 or
[1,s]u = 0. On the another side trace operator [y ] : H} Q) — H%Q(S) is also surjective. From
the equality (A[yo,s]u + 'yISu — f,h) which is valid for arbitrary function h € H'/?(S) we obtain
boundary condition Ao s]u + 'yffsu = f. Thus function u is a solution of the problem R. O
Theorem 3.3. If A € C(S), A(z) > 0, = € S, then problem V R has a unique solution u € H* ()
for arbitrary f € H-Y/2(S). N
_ Proof. Let us show that for A € C(S), A(z) > 0, € S, the bilinear form a(u,v) : H'(Q) x
H'(Q) — R is continuous and H'()-elliptic and functional [ : H'(2) — R is continuous. By using
Lemma 2 we have the following inequality:

ja(u, v)| < (VwVv)Lg(m+M/S[’Yo,s]U(y)l-H’Vo,s]v(y)!dsyS
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<(1+M- C)HU||1§1(Q)”UH1§1(Q)7

where M = max;cg %\(:p), ¢ > 0 - constant. Thus a(u,v) is continuous.
If A(z) >0, x € S then

a(u,u) = || VulZ,q) + /SA([vo,s]U(y)dey > || Vulg, ) + mlhoslulll, )

where m = mingeg \(x).
If m > 1 then a(u,u) > |lul|3. If m < 1 then a(u,u) > m|lul|3. From Lemma 4 we obtain

existence of some constant ¢ > 0 that for all u € H*(Q) we have a(u,u) > cHuH%l(Q), i.e. the

bilinear form a(u,v) is H(€)-elliptic.
Since the trace operator [yo.s] : H'(2) — H%Q(S) is continuous we can get

W)l = [(f, Doslo)l < [ fllz-1r2s)lD0.s1vll gage gy < el f -2 1ol 71 0

where ¢ > 0 — come constant which does not depend on v. Thus functional [ : H L) - Ris
continuous. Then by the Lax-Milgram Lemma we obtain that problem V R has a unique solution
u € HY(Q) for arbitrary f € H-'/2(S). O

Corollary 3.4. Boundary value problem R has a unique solution v € H'(Q2, L) for arbitrary
feHY2(S) and A € C(S), AM(z) >0, z € S.

4 INTEGRAL REPRESENTATION OF SOLUTION AND SYSTEM OF BOUNDARY
EQUATIONS

Let Q(z,y) = o= In - be the fundamental solution of operator L = —A. For function
2m |x—y]

u € H'(Q) which satisfies Laplace equation (3.1) we have the following integral representation:

u(z) = Vim,slu(z) — Wi, slu(z) + Vely slu(z) — Wslyo,s]u(z),

where
_ [ 9Q(z,y
s Ony

VW@%jLQ@wW@M%, W(z) u(y)ds,,

Analogously for 3.
If function u € H(, L) is a solution of the problem R then in 2 we have the next integral
representation:

u(z) = —Wp(z) + Veo(z), (4.1)
where = [y0,5]u, 0 = [y1,5]u,

W) = [ FE i), Vool = [ Qenoti)ds,

Let us note that we may use in (4.1) potential of simple or double layer on ¥ but on S we have
only potential of double layer.
For 7 € H&)l/Q(S) and p € Héf(S) we have wellknown jump relation [4,10]:

1
Y VT =7V, yliVT = :|:§T + N,

) 1
NWWu=9wWp, GgWp=Fu+Mp,

where 1 1
N7 =(WVT+97V7), Mp= (0 W+ g Wa).
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The same relations we have for X.
If 7 € La(S) then

Nra) = [ 2980 0XTY (yds,  Mp(x) = / W@y s,.

ong ony

If we use boundary conditions of the problem R and the jump relations then for searching of
unknown 7 and p we obtain the following system of boundary equations:

M+ Hp+ 7 gVeo = f, w2
4.2
_’Y(—]‘CEWM + KzO' =0.

Here Hu = —v; W is singular integro-differential operator defined on S, and Kxo = 70+ Vso is
integral operator with weak singularity given on X.
Let us note that operators H for arbitrary ¥ and Ky, if Capy, < 1 are positive definite [8], i.e

(Hp, py > Cl”“”?foléz(s (0, Kxo) > C2HU||?171/2(2)~

)’
where ¢; > 0, co > 0 — some constants.

Theorem 4.1. Problem R is equivalent to the system of equations (4.2), i.e. the solution u(z)
of the problem R has presentation (4.1), where p € H(%Q(S) and 0 € H-'/2(X) are the solutions
of the system (4.2) and vice versa function u(zx) given by (4.1) where p and o are solutions of the
system (4.2) is solution of the problem R.

Proof. Function u(z) given by (4.1) satisfies Laplace equation (3.1) in Q and v € HY(Q, L). If
e H§é2(5) and o € H-Y/2(X) are the solutions of the system (4.2) then u(z) satisfies boundary
conditions (3.2).

Let now function u(z) € H' (2, L) is a solution of the problem R. Then it has integral repre-
sentation (4.1), where p € HS(F(S) and 0 € H~Y/2(X). If we use boundary conditions (3.2) we can
reduce this problem to the system (4.2). O

Corollary 4.2. If \ € C(S),A(x) > 0,2 € S then system (4.2) has unique solution for arbitrary
f € HY2(S) and we have the following estimates:

H“”if&éz(S) + ”‘7‘%71/2(2) < CHfH]qul/%sy

where ¢ > 0 — some constant. B
When f in the boundary condition (3.2) is a smooth function, for instance f € C1%(S), the
system of boundary equations (4.2) has the following form:

+
A(x)u(w)—( Wﬂ(y)d8y> - @) s, = f(x), zes

5 OngOny ong

/SGQ(xy y)ds +/Qxy y)dsy = T EX.

ony

Let us note that x(y) must satisfies conditions p(a) = u(b) = 0, where a and b are the ends of S.
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