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Àíîòàöiÿ. Ðîçãëÿíóòî êðàéîâó çàäà÷ó äëÿ ðiâíÿííÿ Ëàïëàñà â îáìåæåíié äâîâèìiðíié

ëiïøèöåâié îáëàñòi ç êðàéîâîþ óìîâîþ ñïðÿæåííÿ, çàäàíîþ íà íåçàìêíåíié êðèâié. Öÿ óìîâà

âêëþ÷à¹ â ñåáå ñòðèáîê ðîçâ'ÿçêó i çíà÷åííÿ éîãî íîðìàëüíî¨ ïîõiäíî¨. Äîâåäåíî åêâiâàëåíòíiñòü

ðîçãëÿíóòî¨ êðàéîâî¨ çàäà÷i òà îòðèìàíî¨ âàðiàöiéíî¨ çàäà÷i. Äîâåäåíî iñíóâàííÿ i ¹äèíiñòü

ðîçâ'ÿçêó ïîñòàâëåíèõ çàäà÷ ó âiäïîâiäíèõ ôóíêöiîíàëüíèõ ïðîñòîðàõ. Íà îñíîâi iíòåãðàëüíîãî

ïîäàííÿ ðîçâ'ÿçêó êðàéîâà çàäà÷à çâåäåíà äî ñèñòåìè ãðàíè÷íèõ iíòåãðàëüíèõ ðiâíÿíü, ÿêà ìà¹

¹äèíèé ðîçâ'ÿçîê.

Abstract. We consider boundary value problem for Laplace equation in bounded two-dimensional

Lipschitz domain with transmission boundary condition given upon open curve. This conditions includes

itself the jump of solution of boundary value problem and the meaning of boundary value of its normal

derivative. We prove the equivalence of considered boundary value problem and obtained variational

problem. As a result we prove existence and uniqueness of solution of the posed problems in appropriate

functional spaces. Based on the integral representation of the solution the considered boundary value

problem is reduced to the system of boundary integral equation which has unique solution.

1 Introduction

In their work [6] G.S.Kit and Ya.S. Podstrigach proposed mathematical model for determination
of the stationary temperature �eld in two dimensional in�nite body with a linear slit having de�nite
heat resistance. This mathematical model was reduced to the boundary value problem for the
two-dimensional Laplace equation in plane with boundary conditions of transmission type and
using representation of the solution via potential of double layer it was obtained Prandtl's integro-
di�erential equation.

Problems with boundary conditions of transmission type for the second order elliptic equations
and systems in Lipschitz domain were considered in [2, 3, 9, 11].

The aim of the present paper was to prove existence and uniqueness of solution of the boun-
dary value problem for the two-dimensional Laplace equation in bounded Lipschitz domain with
transmission boundary condition of special type given upon open Lipschitz curve. We introduce
some functional spaces and trace operators in domain with open Lipschitz curve and show that
this problem is equivalent to some variational problem which has unique solution according to the
Lax-Milgram Lemma. We also obtained system of the boundary integral and integro-di�erential
equations which is equivalent to the considered boundary value problem.
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2 Functional spaces and trace operators

Let Ω+ ⊂ R2 be a bounded connected Lipschitz domain. This means that its boundary curve
Σ is locally the graph of a Lipschitz function [4, 5]. The points of R2 we denote x = (x1, x2),
y = (y1, y2). Let us note that Σ can be piecewise smooth and have corner points. Ω+ = Ω+ ∪ Σ.
We suppose that S is an open Lipschitz curve with the end points a and b, S = S ∪ {a, b} and
S ⊂ Ω+. We denote Ω = Ω+ \S and consider S as a part of a some closed bounded Lipschitz curve
Σ0 = S ∪ S0, Σ0 ⊂ Ω+.

Since Σ and Σ0 are Lipschitz almost everywhere we can de�ne outward pointing unit vector of
the normal n⃗x, x ∈ Σ or x ∈ Σ0. Depend on the direction of n⃗x, x ∈ S, we consider S as a double
sided curve with sides S+ and S−.

In Ω+ we consider the Laplace operator Lu = −∆u = −
∑2

i=1
∂2u
∂x2

i
and the Hilbert spaces

H1(Ω+) and H1(Ω+, L) of real functions with norms and inner products

∥u∥2H1(Ω+) = ∥∇u∥2L2(Ω+) + ∥u∥2L2(Ω+), ∥u∥
2
H1(Ω+,L) = ∥u∥2H1(Ω+) + ∥Lu∥2L2(Ω+),

(u, v)H1(Ω+) = (∇u,∇v)L2(Ω+) + (u, v)L2(Ω+),

(u, v)H1(Ω+,L) = (u, v)H1(Ω+) + (Lu,Lv)L2(Ω+).

The trace operators γ+0,Σ : H1(Ω+) → H1/2(Σ) and γ+1,Σ : H1(Ω+, L) → H−1/2(Σ) are continuous

and surjective [4, 5]. Here γ+1,Σu ∈ H−1/2(Σ) = (H1/2(Σ))′ and for u ∈ C1(Ω+) coincides with

boundary value of normal derivative ∂u
∂nx

on Σ.
Let us denote by C∞

0 (Ω) the class of in�nitely di�erentiable functions with compact support in
Ω. If φ ∈ C∞

0 (Ω) then φ(x) = 0, x ∈ S.
We introduce the Hilbert spaces H1(Ω) and H1(Ω, L) of real functions with norms and inner

products

∥u∥2H1(Ω) = ∥∇u∥2L2(Ω) + ∥u∥2L2(Ω), ∥u∥2H1(Ω,L) = ∥u∥2H1(Ω) + ∥Lu∥2L2(Ω),

(u, v)H1(Ω) = (∇u,∇v)L2(Ω) + (u, v)L2(Ω),

(u, v)H1(Ω,L) = (u, v)H1(Ω) + (Lu,Lv)L2(Ω),

where derivatives ∂u
∂xi

∈ L2(Ω) are de�ned as(
∂u

∂xi
, φ

)
L2(Ω)

= −
∫
Ω
u(x)

∂φ(x)

∂xi
dx = −

(
u,

∂φ

∂xi

)
L2(Ω)

for all φ ∈ C∞
0 (Ω).

We consider some trace operators in Ω. We denote γ±0,S and γ±1,S the restrictions of trace

operators γ±0,Σ0
and γ±1,Σ0

on S respectively [1, 10]. Then we have γ±0,S : H1(Ω) → H1/2(S) and

γ±1,S : H1(Ω, L) → H−1/2(S).

We introduce the space H1
0 (Ω) = {u ∈ H1(Ω) : γ±0,Su = 0, γ+0,Σu = 0} and denote dual space

H−1(Ω) = (H1
0 (Ω))

′. Then L : H1(Ω) → H−1(Ω). We also have that H1
0 (Ω) is a closure of C∞

0 (Ω)
in the norm ∥ · ∥H1(Ω).

We use the next trace operators : [γ0,S ] = γ+0,S − γ−0,S , [γ1,S ] = γ+1,S − γ−1,S . Let Ω1 ⊂ Ω+ be a

Lipschitz domain bounded by the closed curve Σ0. Ω1 = Ω1 ∪ Σ0, Ω2 = Ω+ \ Ω1. We denote by
ui = rΩiu the restriction of u ∈ H1(Ω) to Ωi, i = 1, 2. It's obviously that ui ∈ H1(Ωi), i = 1, 2.

Lemma 2.1. If u ∈ H1(Ω+) then γ+0,Su = γ−0,Su.

Proof. For arbitrary φ ∈ C1
0 (Ω+) = {φ ∈ C1(Ω+) : φ(x) = 0, x ∈ Σ} and for i = 1, 2 we have
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∫
Ω1

∂u1(x)

∂xi
φ(x)dx = −

∫
Ω1

u1(x)
∂φ(x)

∂xi
dx+

∫
Σ0

γ+0,Σ0
u1(y)φ(y) cos(n⃗y, y⃗i)dsy∫

Ω2

∂u2(x)

∂xi
φ(x)dx = −

∫
Ω1

u2(x)
∂φ(x)

∂xi
dx−

∫
Σ0

γ−0,Σ0
u2(y)φ(y) cos(n⃗y, y⃗i)dsy

Since ∂u(x)
∂xi

∈ L2(Ω+) then∫
Ω1

∂u1(x)

∂xi
φ(x)dx+

∫
Ω2

∂u2(x)

∂xi
φ(x)dx =

∫
Ω+

∂u(x)

∂xi
φ(x)dx

and
∫
Σ0
[γ0,Σ0 ]u(y)φ(y) cos(n⃗y, y⃗i)dsy = 0 for all φ ∈ C1(Σ0). It means that γ+0,Σ0

u = γ−0,Σ0
u or

γ+0,Su = γ−0,Su. □
Corollary 2.2. If u ∈ H1(Ω) then [γ0,S0 ]u = 0. If u ∈ H1(Ω) and γ+0,Su = γ−0,Su then

u ∈ H1(Ω+).

From corollary 1 it follows that we have trace operator [γ0,S ] : H1(Ω) → H
1/2
00 (S) where

H
1/2
00 (S) = {g ∈ H1/2(S) : p0g ∈ H1/2(Σ0)}. Here p0g is extension of the function g on S0 by

zero, i.e. p0g(x) = 0 if x ∈ S0. The norm in H
1/2
00 (S) is given as [7] ∥g∥

H
1/2
00 (S)

= ∥p0g∥H1/2(Σ0)
.

As a consequence we obtain that for u ∈ H1(Ω) the norm ∥ · ∥H1(Ω) we can present as

∥u∥2H1(Ω) = ∥u1∥2H1(Ω1)
+ ∥u2∥2H1(Ω2)

,

where ui = rΩiu, i = 1, 2.

Lemma 2.3. The trace maps γ±0,S : H1(Ω) → H1/2(S) and [γ0,S ] : H1(Ω) → H
1/2
00 (S) are

continuous and surjective.

Proof. Let g+ ∈ H1/2(S) be an arbitrary function. We denote by pg+ ∈ H1/2(Σ0) the extension
of g+ on Σ0. The trace map γ+0,Σ0

: H1(Ω1) → H1/2(Σ0) is continuous and surjective. Thus there

exists function u1 ∈ H1(Ω1) with trace γ+0,Σ0
u1 = pg+ and

∥pg∥H1/2(Σ0)
≤ c∥u1∥H1(Ω1)

. (2.1)

Let g0 ∈ H
1/2
00 (S), p0g0 ∈ H1/2(Σ0) is the extension of g0 on Σ0 by zero. Then for functions

pg− = pg+ + pg0 ∈ H1/2(Σ0) and g ∈ H1/2(Σ) there exist function u2 ∈ H1(Ω2) with traces
γ−0,Σ0

u1 = pg− and γ+0,Σu1 = g.

Thus we have function u where ui are the restrictions of u on Ωi, i = 1, 2. Since ui ∈ H1(Ωi)
and [γ0,S0 ]u = 0 then u ∈ H1(Ω) and γ+0,Su = g+.

The surjectivity of γ−0,S : H1(Ω) → H1/2(S) we can show analogously. Then from (2.1) we
obtain

∥g∥H1/2(S) = inf
pg∈H1/2(Σ0)

∥pg∥H1/2(Σ0)
≤ c∥u1∥H1(Ω1)

≤ c∥u∥H1(Ω+).

Here c � some positive constant. □
Lemma 2.4. If u ∈ H1(Ω+, L) then γ+0,Su = γ−0,Su and γ+1,Su = γ−1,Su.

Proof. Since u ∈ H1(Ω+) then from Lemma 1 we have γ+0,Su = γ−0,Su. For arbitrary u ∈
H1(Ω+, L) and v ∈ H1(Ω+) we have the �rst Green formula

(∇u,∇v)L2(Ω+) = (Lu, v)L2(Ω+) + ⟨γ+1,Σu, γ
+
0,Σv⟩

Also for the restrictions of u and v on Ωi, i = 1, 2, we have

(∇u,∇v)L2(Ω1) = (Lu, v)L2(Ω1) + ⟨γ+1,Σ0
u, γ+0,Σ0

v⟩,
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(∇u,∇v)L2(Ω2) = (Lu, v)L2(Ω2) − ⟨γ−1,Σ0
u, γ−0,Σ0

v⟩+ ⟨γ+1,Σu, γ
+
0,Σv⟩,

Since (Lu, v)L2(Ω+) = (Lu, v)L2(Ω1)+(Lu, v)L2(Ω2) then we obtain ⟨γ+1,Σ0
u, γ+0,Σ0

v⟩−⟨γ−1,Σ0
u, γ−0,Σ0

v⟩ =
0. From Lemma 1 we have γ+0,Σ0

v = γ−0,Σ0
v thus ⟨[γ1,Σ0 ]u, γ

+
0,Σ0

v⟩ = 0. Trace operator γ+0,Σ0
:

H1(Ω1) → H1/2(Σ0) is surjective and as a consequence we have [γ1,Σ0 ]u = 0. For arbitrary function

g0 ∈ H
1/2
00 (S) there exists function v ∈ H1(Ω1) that γ+0,Sv = g0 and γ+0,S0

v = 0. Thus from the

equality ⟨[γ1,Σ0 ]u, γ
+
0,Σ0

v⟩ = 0 we obtain ⟨[γ1,Σ0 ]u, g0⟩ = 0 for arbitrary g0 ∈ H
1/2
00 (S). It give us

[γ1,Σ0 ]u = 0 or γ+1,Su = γ−1,Su. □
Corollary 2.5. If u ∈ H1(Ω, L) then [γ0,S0 ]u = 0 and [γ1,S0 ]u = 0. If u ∈ H1(Ω, L) and

γ+0,Su = γ−0,Su, γ
+
1,Su = γ−1,Su then u ∈ H1(Ω+, L).

From Corollary 2 it follows that we have trace operator [γ1,S ] : H
1(Ω, L) → H

−1/2
00 (S) where

H
−1/2
00 (S) = {f ∈ H1/2(S) : p0f ∈ H−1/2(Σ0)}. Here p0g is extension by zero of functional f on S0

and H
−1/2
00 (S) = (H1/2(S))′, H−1/2(S) = (H

1/2
00 (S))′ [8, 10].

Based on the above propositions as in [10] we obtain the �rst Green formula in domain Ω for
u ∈ H1(Ω, L) and v ∈ H1(Ω):

(∇u,∇v)L2(Ω+) = (Lu, v)L2(Ω) + ⟨γ+1,Su, [γ0,S ]v⟩+

+⟨[γ1,S ]u, γ−0,Sv⟩+ ⟨γ+1,Σu, γ
+
0,Σv⟩. (2.2)

Here ⟨·, ·⟩ are relations of duality between H
1/2
00 (S) and H−1/2(S), H1/2(S) and H

−1/2
00 (S),

H1/2(Σ) and H−1/2(Σ) respectively.

3 Boundary value problem with transmission boundary condition and

it's variational formulation

We consider the following boundary value problem in domain Ω.

Problem R. Find function u ∈ H1(Ω, L) that satis�es

Lu = −∆u = 0 in Ω, (3.1)

[γ1,S ]u = 0, λ[γ0,S ]u+ γ+1,Su = f, γ+0,Σu = 0. (3.2)

Here f ∈ H−1/2(S) and λ ∈ C(S̄) are given.

We can connect with problem R the next variational problem.

Problem V R. Find function u ∈ H̃1(Ω) = {u ∈ H1(Ω) : γ+0,Σu = 0} that satis�es

a(u, v) = l(v)

for every v ∈ H̃1(Ω).

Here

a(u, v) = (∇u,∇v)L2(Ω+) + (λ[γ0,S ]u, [γ0,S ]v)L2(S),

l(v) = ⟨f, [γ0,S ]v⟩.

Let us note that the space H1
0 (Ω+) = {u ∈ H1(Ω+) : γ

+
0,Σu = 0} is a subspace of the space H̃1(Ω)

and if function u ∈ H1
0 (Ω+) then [γ0,S ]u = 0.

In the space H̃1(Ω) we introduce the following norm:

∥u∥2S = ∥∇u∥2L2(Ω) +

∫
S
([γ0,S ]u(y))

2dsy.
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Lemma 3.1. The norms ∥ · ∥H1(Ω) and ∥ · ∥S are equivalent, i.e. there exist constants α > 0

and β > 0 that for all u ∈ H̃1(Ω) we have

α∥u∥S ≤ ∥u∥H1(Ω) ≤ β∥u∥S .

Proof. Let us show that there exists some constant β that for all u ∈ H̃1(Ω) we have ∥u∥H1(Ω) ≤
β∥u∥S . We suppose contrary. It means that there exists some sequence {vn} ∈ H̃1(Ω) and ≥ n∥u∥S
for all n ∈ N. Let un = vn/∥u∥H1(Ω). Then ∥un∥H1(Ω) = 1 and

∥un∥2S = ∥∇un∥2L2(Ω) +

∫
S
([γ0,S ]un(y))

2dsy ≤ 1

n2
. (3.3)

We consider u
(i)
n restriction of un on Ωi, i = 1, 2. Inasmuch as ∥u(i)n ∥H1(Ωi) ≤ 1 for all n and there

is compact imbedding H1(Ωi) ⊂ L2(Ωi), i = 1, 2, then in L2(Ωi) there exists subsequence u
(i)
nk and

functions ui ∈ L2(Ωi) that ∥u(i)nk −ui∥L2(Ωi) = 0, nk → ∞. Since ∇u
(i)
nk ∈ L2(Ωi) then ∇ui ∈ L2(Ωi).

From (3.3) we have ∥∇u
(i)
nk∥L2(Ωi) ≤ 1/nk, i = 1, 2. Thus limnk→∞ ∥∇u

(i)
nk∥L2(Ωi) = ∥∇ui∥L2(Ωi) = 0

or u(i) = ci = const in Ωi. From the Corollary 1 it follows that c1 = c2. Since γ+0,Σu2 = 0 then
ui(x) = 0, x ∈ Ωi, i = 1, 2 or u(x) = 0, x ∈ Ω where ui = rΩiu are the restrictions of u on Ωi.
But according our supposition ∥u∥H1(Ω) = 1 and we obtained contradiction. Thus there exists some
constant β > 0 that for all x ∈ H1(Ω) we have ∥u∥H1(Ω) ≤ β∥u∥S .

Now we consider the inequality α∥u∥S ≤ ∥u∥H1(Ω). From the Lemma 2 we have that trace

operator [γ0,S ] : H
1(Ω) → H

1/2
00 (S) is bounded. Thus

∥[γ0,S ]u∥L2(S) ≤ ∥[γ0,S ]u∥H1/2
00 (S)

≤ c∥u∥H1(Ω),

where c > 0 � some constant. So there exists some constant α > 0 that for all x ∈ H1(Ω) we have
α∥u∥S ≤ ∥u∥H1(Ω). □

Theorem 3.2. Problems R and V R are equivalent.

Proof. Let u be a solution of the problem R. It means that u ∈ H̃1(Ω) and [γ1,S ]u = 0. Using the

�rst Green formula (2.2) and boundary condition (3.2) we have a(u, v) = l(v) for every v ∈ H̃1(Ω).
Thus u is a solution of the problem V R.

Let now u ∈ H̃1(Ω) be a solution of the problem V R. Then for every v ∈ C∞
0 (Ω) we get

(∇u,∇v)L2(Ω+) = ⟨Lu, v⟩ = 0 or Lu = 0 in Ω. It means that u ∈ H1(Ω, L).

From the �rst Green formula (2.2) for every v ∈ H̃1(Ω) we have

⟨λ[γ0,S ]u+ γ+1,Su− f, [γ0,S ]v⟩+ ⟨[γ1,S ]u, γ−0,Sv⟩ = 0.

If v ∈ H1
0 (Ω+) ⊂ H̃1(Ω) or [γ0,S ]v = 0 we obtain ⟨[γ1,S ]u, γ−0,Sv⟩ = 0. Since trace operator γ−0,S :

H1
0 (Ω+) → H1/2(S) is surjective then for arbitrary function h ∈ H1/2(S) we have ⟨[γ1,S ]u, h⟩ = 0 or

[γ1,S ]u = 0. On the another side trace operator [γ−0,S ] : H̃
1
0 (Ω) → H

1/2
00 (S) is also surjective. From

the equality ⟨λ[γ0,S ]u + γ+1,Su − f, h⟩ which is valid for arbitrary function h ∈ H1/2(S) we obtain

boundary condition λ[γ0,S ]u+ γ+1,Su = f . Thus function u is a solution of the problem R. □
Theorem 3.3. If λ ∈ C(S̄), λ(x) ≥ 0, x ∈ S̄, then problem V R has a unique solution u ∈ H̃1(Ω)

for arbitrary f ∈ H−1/2(S).
Proof. Let us show that for λ ∈ C(S̄), λ(x) ≥ 0, x ∈ S̄, the bilinear form a(u, v) : H̃1(Ω) ×

H̃1(Ω) → R is continuous and H̃1(Ω)-elliptic and functional l : H̃1(Ω) → R is continuous. By using
Lemma 2 we have the following inequality:

|a(u, v)| ≤ |(∇u,∇v)L2(Ω)|+M

∫
S
|[γ0,S ]u(y)| · |[γ0,S ]v(y)|dsy ≤
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≤ (1 +M · c)∥u∥
H̃1(Ω)

∥v∥
H̃1(Ω)

,

where M = maxx∈S λ(x), c > 0 � constant. Thus a(u, v) is continuous.
If λ(x) ≥ 0, x ∈ S̄ then

a(u, u) = ∥∇u∥2L2(Ω) +

∫
S
λ([γ0,S ]u(y))

2dsy ≥ ∥∇u∥2L2(Ω) +m∥[γ0,S ]u∥2L2(Ω),

where m = minx∈S λ(x).
If m ≥ 1 then a(u, u) ≥ ∥u∥2S . If m < 1 then a(u, u) ≥ m∥u∥2S . From Lemma 4 we obtain

existence of some constant c > 0 that for all u ∈ H̃1(Ω) we have a(u, u) ≥ c∥u∥2
H̃1(Ω)

, i.e. the

bilinear form a(u, v) is H̃1(Ω)-elliptic.

Since the trace operator [γ0,S ] : H̃
1(Ω) → H

1/2
00 (S) is continuous we can get

|l(v)| = |⟨f, [γ0,S ]v⟩| ≤ ∥f∥H−1/2(S)∥[γ0,S ]v∥H1/2
00 (S)

≤ c∥f∥H−1/2(S)∥v∥H̃1(Ω)
,

where c > 0 � come constant which does not depend on v. Thus functional l : H̃1(Ω) → R is
continuous. Then by the Lax-Milgram Lemma we obtain that problem V R has a unique solution
u ∈ H̃1(Ω) for arbitrary f ∈ H−1/2(S). □

Corollary 3.4. Boundary value problem R has a unique solution u ∈ H1(Ω, L) for arbitrary

f ∈ H−1/2(S) and λ ∈ C(S̄), λ(x) ≥ 0, x ∈ S̄.

4 Integral representation of solution and system of boundary

equations

Let Q(x, y) = 1
2π ln 1

|x−y| be the fundamental solution of operator L = −∆. For function

u ∈ H1(Ω) which satis�es Laplace equation (3.1) we have the following integral representation:

u(x) = V [γ1,S ]u(x)−W [γ0,S ]u(x) + VΣ[γ1,Σ]u(x)−WΣ[γ0,Σ]u(x),

where

V τ(x) =

∫
S
Q(x, y)τ(y)dsy, Wµ(x) =

∫
S

∂Q(x, y

∂ny
µ(y)dsy,

Analogously for Σ.
If function u ∈ H1(Ω, L) is a solution of the problem R then in Ω we have the next integral

representation:
u(x) = −Wµ(x) + VΣσ(x), (4.1)

where µ = [γ0,S ]u, σ = [γ1,Σ]u,

Wµ(x) =

∫
S

∂Q(x, y

∂ny
µ(y)dsy, VΣσ(x) =

∫
Σ
Q(x, y)σ(y)dsy.

Let us note that we may use in (4.1) potential of simple or double layer on Σ but on S we have
only potential of double layer.

For τ ∈ H
−1/2
00 (S) and µ ∈ H

1/2
00 (S) we have wellknown jump relation [4, 10]:

γ+0 V τ = γ−0 V τ, γ±1 V τ = ±1

2
τ +Nτ,

γ+1 Wµ = γ−1 Wµ, γ±0 Wµ = ∓1

2
µ+Mµ,

where

Nτ =
1

2
(γ+1 V τ + γ−1 V τ), Mµ =

1

2
(γ+0 Wµ+ γ−0 Wµ).
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The same relations we have for Σ.
If τ ∈ L2(S) then

Nτ(x) =

∫
S

∂Q(x, y

∂nx
τ(y)dsy, Mµ(x) =

∫
S

∂Q(x, y

∂ny
µ(y)dsy,

If we use boundary conditions of the problem R and the jump relations then for searching of
unknown τ and µ we obtain the following system of boundary equations:λµ+Hµ+ γ+1,SVΣσ = f,

−γ+0,ΣWµ+KΣσ = 0.
(4.2)

Here Hµ = −γ+1,SWµ is singular integro-di�erential operator de�ned on S, and KΣσ = γ+0,ΣVΣσ is
integral operator with weak singularity given on Σ.

Let us note that operators H for arbitrary Σ and KΣ if CapΣ < 1 are positive de�nite [8], i.e.

⟨Hµ, µ⟩ ≥ c1∥µ∥2
H

1/2
00 (S)

, ⟨σ,KΣσ⟩ ≥ c2∥σ∥2H−1/2(Σ)
.

where c1 > 0, c2 > 0 � some constants.
Theorem 4.1. Problem R is equivalent to the system of equations (4.2), i.e. the solution u(x)

of the problem R has presentation (4.1), where µ ∈ H
1/2
00 (S) and σ ∈ H−1/2(Σ) are the solutions

of the system (4.2) and vice versa function u(x) given by (4.1) where µ and σ are solutions of the

system (4.2) is solution of the problem R.

Proof. Function u(x) given by (4.1) satis�es Laplace equation (3.1) in Ω and u ∈ H1(Ω, L). If

µ ∈ H
1/2
00 (S) and σ ∈ H−1/2(Σ) are the solutions of the system (4.2) then u(x) satis�es boundary

conditions (3.2).
Let now function u(x) ∈ H1(Ω, L) is a solution of the problem R. Then it has integral repre-

sentation (4.1), where µ ∈ H
1/2
00 (S) and σ ∈ H−1/2(Σ). If we use boundary conditions (3.2) we can

reduce this problem to the system (4.2). □
Corollary 4.2. If λ ∈ C(S̄), λ(x) ≥ 0, x ∈ S̄ then system (4.2) has unique solution for arbitrary

f ∈ H−1/2(S) and we have the following estimates:

∥µ∥2
H

1/2
00 (S)

+ ∥σ∥2
H−1/2(Σ)

≤ c∥f∥2
H−1/2(S)

,

where c > 0 � some constant.

When f in the boundary condition (3.2) is a smooth function, for instance f ∈ C1,α(S), the
system of boundary equations (4.2) has the following form:

λ(x)µ(x)−
(∫

S

∂Q(x, y)

∂nx∂ny
µ(y)dsy

)±
+

∫
Σ

∂Q(x, y)

∂nx
σ(y)dsy = f(x), x ∈ S

−
∫
S

∂Q(x, y)

∂ny
µ(y)dsy +

∫
Σ
Q(x, y)σ(y)dsy = 0, x ∈ Σ.

Let us note that µ(y) must satis�es conditions µ(a) = µ(b) = 0, where a and b are the ends of S.
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