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Àíîòàöiÿ. Ðåãóëÿðèçîâàíà ïiäâèáiðêà Íèñòðüîìà ¹ ïîïóëÿðíèì ïiäõîäîì äî ïðîáëåì íàâ÷àí-

íÿ, ÿêi ìàþòü ñïðàâó ç íàäâåëèêèì îáñÿãîì âõiäíèõ äàíèõ. Òàêèé àëãîðèòì ìè âèêîðèñòîâó¹ìî

â êîíòåêñòi çàäà÷ äîìåííî¨ àäàïòàöi¨ áåç ó÷èòåëÿ çà óìîâè êîâàðiàöiéíîãî çñóâó. Â ðàìêàõ

êîíöåïöi¨ ãiëüáåðòîâîãî ïðîñòîðó ç ïîðîäæóþ÷èì ÿäðîì ïîáóäîâàíî àëãîðèòì, ÿêèé ¹ êîìáiíàöi¹þ

ïiäâèáiðêè Íèñòðüîìà òà äâîêðîêîâî¨ iòåðîâàíî¨ òèõîíîâñüêî¨ ðåãóëÿðèçàöi¨. Çàïðîïîíîâàíèé

ïiäõiä äîçâîëÿ¹ íå òiëüêè ñóòò¹âî ñêîðîòèòè îáñÿã çàäiÿíèõ îá÷èñëþâàëüíèõ ðåñóðñiâ, àëå äî òîãî

æ çáåðåãòè òàêi ñàìi øâèäêîñòi íàâ÷àííÿ ÿê ó ñòàíäàðòíîìó ìàøèííîìó íàâ÷àííi.

Abstract. The regularized Nystr�om subsampling is a popular approach for learning problems that

deals with big data. We employ such technique in the context of the unsupervised domain adaptation

problems with covariate shift assumption. Within the framework of the Reproducing Kernel Hilbert

Space concept, an algorithm is constructed that is a combination of the Nystr�om subsampling and

the two-steps iterated Tikhonov regularization. This approach allows signi�cantly reduce the amount

of computing resources involved and at the same time maintains the same learning rates as for the

standard machine learning algorithms.

1 Introduction

In statistical learning theory, regularized kernel methods are the most theoretically studied al-
gorithms provided acceptable results for the problems when the number of data is not too large.
But most these methods require computing a kernel matrix which leads to at least quadratic com-
putational cost in the sample size, which means that larger data sets are typically out of reach.
Nystr�om subsampling is an e�ective approach to analyze big data, which serves as standard tool
for reducing computational complexity in machine learning problems where massive data sets are
involved. The present study is focused on the use of the regularized Nystr�om subsampling in the
context of unsupervised domain adaptation problems dealing with big data.

Recall, in the supervised learning, it is commonly assumed that the training data comes from
the same distribution as that of the test data. However, many real world applications, for example,
in natural language processing or computer vision, do not meet this assumption. This obstacle can
be overcome by embedding domain adaptation. Domain adaptation is sub-discipline of machine
learning which aims to improve the performance of a learning model on the target domain by
borrowing knowledge from a well- established source domain and also by reducing the di�erence
between domain distributions or the domain shift. To be more precise, domain adaptation scenario
arises when one studies relationship between the explanatory (input) variable x ∈ X ⊂ Rd and the
response (output) variable under the assumption that they are governed by di�erent probability
distributions with respect to measures ρ(x, y) and q(x, y) on X × Y . This, generally, means that
an input x ∈ X does not determine uniquely the output y ∈ Y , but rather some conditional
probability ρ(y|x) of y given x, which is assumed to be unknown. The inputs x ∈ X is also
assume to be random and governed by marginal probabilities ρS(x) in the source domain (S) and
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ρT (x) in the target domain (T ). Thus, the learning task can be seen as a minimization of the
expected risk of the prediction y from x with respect to the one measure, say, q(x, y) by using a
training data sample z = {(xi, yi), xi ∈ X, yi ∈ Y, i = 1, 2, . . . , n}, |z| = n, drawn independently
and identically (i.i.d.) over the another measure ρ(x, y). In domain adaptation settings, ρ(x, y) and
q(x, y) are usually called the source and the target probabilities, respectively. Generally, the problem
of domain adaptation with two di�erent distributions is unsolvable, since ρ(x, y) and q(x, y) can
be arbitrarily far apart. To guarantee a solvability of the problem, the covariate shift assumption
should be imposed (see [5, 20]). Namely, we assume that ρS(x) ̸= ρT (x), while the conditional
probability ρ(y|x) remains unchanged for both source and target probabilities. This means that the
joint probabilities ρ(x, y) and q(x, y) can be factorized as follows

ρ(x, y) = ρ(y|x)ρS(x), q(x, y) = ρ(y|x)ρT (x).

It should be noted that sample selection bias and missing data are two causes for the covariate
shift. Most of the knowing domain adaptation techniques aim to solve this class of domain gap, which
typically appear in many applications such as classi�cation , handwriting recognition , segmentation
and regression for multimedia data, for example if the background, shape deformation, or quality
are di�erent across domains. Domain adaptation aims to mitigate this and has successfully been
applied for object recognition, AI planning, reinforcement learning and natural language processing
(e.g., the adaptation from document on the one language to another language).

In the present study, we restrict ourselves to learning with the least square loss where the
expected risk of the prediction y from x by means of a function f : X → Y is de�ned in the target
domain as follows

Rq(f) :=

∫
X×Y

(f(x)− y)2dq(x, y),

which is minimized by so-called regression function

f(x) = fq(x) =

∫
Y
ydρ(y|x). (1.1)

But in the unsupervised domain adaptation settings neither Rq(f), nor fq(x) can be com-
puted, since the information about underlying probability q(x, y) is only given as a set X

′
=

(x
′
1, x

′
2, . . . , x

′
m), |X ′ | = m, of unlabeled examples x

′
i of inputs drawn i.i.d. from the target

marginal probability measure ρT (x). Thus, the goal is to use this information together with a
training data set z to approximate the ideal minimizer fq by an empirical estimator fz in the sense
of excess risk

Rq(fz)−Rq(fq) := ∥fz − fq∥2L2,ρT
,

where L2,ρT is the space of square-integrable functions f : X → R with respect to the marginal
probability measure ρT . Following [6], we employ the idea that the unsupervised domain adaptation
problems approximate the same regression function given by (1.1) as in the standard supervised
learning. Therefore, the supervised learning algorithms based on regularization techniques in a
reproducing kernel Hilbert space (RKHS) can be pro�tably used in the context of unsupervised
domain adaptation. Here we refer to [5, 6, 17,20] and to references therein.

The paper is organized as follows. In the next section, we give the strict problem settings and
de�ne the Nystr�om subsampling method. In Section 3, we obtain error estimates for the regularized
Nystr�om subsampling under the assumption that the values of the Radon-Nikodym derivate at the
unlabeled target inputs are known. In Section 4, we prove a theorem which demonstrate how the
Radon-Nikodym derivate can be approximately reconstructed from unlabeled examples of inputs
drawn according to source and target probabilities. For this end, we employ the combination of
Nystr�om subsampling and the two-steps iterated Tikhonov regularization in RKHS. In the last
section, we estimate learning rates of regularized Nystr�om subsampling in the case of the unknown
values of the Radon-Nikodym derivate and provide analysis related to computational cost of the
proposed method in the context of unsupervised domain adaptation problems.
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2 Problem setting

From now on, we assume that the regression function f∗ = fq, minimizing the expected risk
Rq(f), belongs to a speci�ed Hilbert space with reproducing kernel HK. Let JT : HK ↪→ L2,ρT and
JS : HK ↪→ L2,ρS be the inclusion operators. Recall that the information about the source and
the target marginal measures are only provided in the form of samples XS = {x1, x2, . . . , xn} and
XT = {x′

1, x
′
2, . . . , x

′
m}, drawn independently and identically (i.i.d.) from ρS and ρT , respectively.

In the sequel, we de�ne two sample operators

SXT
f = (f(x

′
1), f(x

′
2), · · · , f(x

′
m)) ∈ Rm,

SXS
f = (f(x1), f(x2), · · · , f(xn)) ∈ Rn,

acting from HK to Rm and Rn, where the norms in later spaces are m−1-times and n−1-times the
standard Euclidian norms, such that the adjoint operators S∗

XT
: Rm → HK and S∗

XS
: Rn → HK

are given as

S∗
XT

u(·) = 1

m

m∑
j=1

K(·, x′
j)uj , u = (u1, u2, . . . , um) ∈ Rm,

S∗
XS

v(·) = 1

n

n∑
i=1

K(·, xi)vi, v = (v1, v2, . . . , vn) ∈ Rn.

Since we have no direct access to both the target probability measure ρT and the space L2,ρT in
which we are going to approximate the regression function f∗ = fq, then an assumption should be
put on the relation between the source probability ρS and the target probability ρT . As in [5], we
assume that there is a function β : X → R+ such that

dρT (x) = β(x)dρS(x).

Then β(x) is considered as the Radon-Nikodym derivative dρT
dρS

of the target measure with respect
to the source one. We also assume that we only have access to the values β(xi) of the Radon-

Nikodym derivative β(x) = dρT (x)
dρS(x)

at the points xi, i = 1, 2, . . . , n, drawn i.i.d. from ρS(x) and we

consider a diagonal n×n matrix B = diag(β(x1), β(x2), . . . , β(xn)). Moreover, we assume that β(x)

is uniformly bounded on X, such that 0 ≤ β(x) ≤ b0 for some b0 > 0 and any x ∈ X.
The subsequent analysis is based on two additional assumptions which are common and not

restrictive. We assume that K : X ×X → R is a continuous and bounded kernel that for any x ∈ X
it holds

∥K(·, x)∥HK
= ⟨K(·, x)K(·, x)⟩1/2HK

= [K(x, x)]1/2 < κ0 < ∞.

In addition, we assume that for any input x ∈ X corresponding output y ∈ Y ⊂ R is bounded
|y| ≤ y0 with y0 > 0.

Further, we are going to approximate a solution of the equation arising from the minimization
of the excess risk

Rq(f)−Rq(fq) = ∥f − fq∥2L2,ρT
. (2.1)

In RKHS HK the above mentioned minimization problem (2.1) can be rewritten by means of the
inclusion operator JT : HK ↪→ L2,ρT as a variational problem

∥JT f − fq∥L2,ρT → min,

and it leads to the �nite-dimensional normal equation

LT f = J∗
T fq, (2.2)
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where LT = J∗
TJT . Note that Eq. (2.2) is ill-posed because the involved operator LT is compact

and its inverse can not be bounded in HK. Thus, this equation should be analyzed by the methods
of the Regularization theory.

In the Regularization theory, there is a continuous strictly increasing function ϕ : [0, l] → R, l ≥
∥LT ∥HK→HK

such that ϕ(0) = 0, and allows to present fq by the means of the so-called source
conditions

fq = ϕ(LT )µq, µq ∈ HK. (2.3)

The function ϕ is usually called the index function of the source condition. This function speci�es
the smoothness properties of fq and characterizes the convergence rate of the regularization method.

Let's consider the class F1/2 of operator monotone index functions ϕ : [0, l] → R+∞ such that

ϕ(t) ≤ c1
√
t, t ∈ [0, T ]. (2.4)

Note that F1/2 contains functions ϕ : [0, l] → R+∞ such that c2t ≤ ϕ(t) ≤ c1
√
t, t ∈ [0, T ].

Recall, that a function ϕ is operator monotone if for any non-negative self-adjoint operators
A,B : HK → HK with spectra in [0, l] it holds

∥ϕ(A)− ϕ(B)∥HK→HK
≤ c3ϕ (∥A−B∥HK→HK

) .

It is known (see [1]) that the most regularization schemes can also be indexed by parameterized
function gλ : [0, l] → R, λ > 0. The only requirements are that there are positive constants γ0, γ, γ̃
such that

sup
0<t≤l

|1− tgλ(t)| ≤ γ0, sup
0<t≤l

√
t|gλ(t)| ≤

γ√
α
, sup

0<t≤l
|gλ(t)| ≤

γ̃

λ
. (2.5)

Further important property of the regularization method indexed by gλ is its quali�cation that
is the maximum positive number p for which

sup
0<t≤l

tp|1− tgλ(t)| ≤ γpλ
p,

where γp does not depend on λ. For example, the standard Tikhonov method has the quali�cation
p = 1.

In our research, we apply the two-times iterated Tikhonov regularization, the index function of
which has a form

gλ(t) =

2∑
i=1

λi−1(λ+ t)−i =
1

t

(
1− λ2

(λ+ t)2

)
, λ ̸= 0. (2.6)

It should be noted that the standard Tikhonov method provides optimal order of accuracy for the
index functions of the form ϕ(t) = tα, 0 ≤ α ≤ 1

2 . For domain adaptation problems the solutions
with indicated above smoothness were employed in [6, 7, 22]. Regarding the considered functions
ϕ(t) (2.3), (2.4) for the standard Tikhonov method the saturation e�ect will be observed. To achieve
optimal accuracy for (2.3), (2.4) one needs to employ the regularization with quali�cation p ≥ 2.
In such situation, the two-times iterated Tikhonov regularization with p = 2 is the most applicable.
In addition, the index functions ϕ(t) = tα, α > 1, is out of our study for now. The solutions with
such high smoothness call for the implementation of regularization with higher quali�cation (p ≥ 3).
The implementation of such method requires the modi�ed techniques and will be considered in our
further research.

The following de�nition [11, 13] shows a relation between the quali�cation and the source con-
dition.
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De�nition 2.1. We say that the quali�cation p covers the index function ϕ if the function
t → tp/ϕ(t) is non-decreasing for t ∈ (0, l].

Proposition 2.1. [11, Proposition 2.7] Let the regularization method is indexed by gλ(t) and
has the quali�cation p. If this quali�cation covers the index function ϕ, then

sup
0<t≤l

|1− tgλ(t)|ϕ(t) ≤ γ∗ϕ(λ),

where γ∗ = max{γ0, γp}.
It is known (see, e.g., [2,8]) that for full use of the smoothness of the unknown function fq it is

necessary that the quali�cation of the method gλ implemented in the learning task covers not only
the index function ϕ(t), but also the product ϕ(t)

√
t.

Remark 2.1. It is well-known that various regularization scheme can be pro�tably used in
the standard supervised learning context. For instance, in [21], the Tikhonov regularization was
analyzed as a supervised learning algorithm in RKHS, and the best-known learning rates were
obtained for this scheme. Then in [2] it has been shown that the same type of results are true
for a large class of supervised learning algorithms which are essentially all the linear regularization
schemes. In [6] the authors extend the analysis of [2] to the setting of domain adaptation with
covariate shift. Below we show how the technique from [6] based on iterated Tikhonov regularization
can be extended to the domain adaptation with covariate shift under the big data settings.

One of the most studied approaches to the approximation of the minimizer f∗ = fq of the target
expected risk Rq(f) by using the data z = {(xi, yi)}ni=1, sampled from the source measure ρ(x, y), is
importance weighted regularized least squares (IWRLS) (see, e.g., [5, 7, 22]). Usually, the standard
Tikhonov regularization known as Kernel Ridge Regression (KRR) in machine learning is employed
in the context of this method. It is known that the low quali�cation is a disadvantage of such
regularization. In other words, as we mentioned above, it leads to saturation in the case of highly
smooth solutions. To avoid this in [6] the authors applied iterative Tikhonov regularization, with
the index function (2.6). Herewith, the IWRLS-approximant was performed as follows

fλ
z = gλ(S

∗
XS

BSXS
)S∗

XS
By, (2.7)

where S∗
XS

BSXS
is a self-adjoint, non-negative, and compact operator in RKHS HK.

Note that the approximant (2.7) results from applying the regularization scheme to a �nite-
dimensional equation

S∗
XS

BSXS
f = S∗

XS
By,

which is the discretized version of (2.2). According to [6, 23] a perturbation of (2.2) caused by the
discretization (2.8) can be estimated with probability at least 1− δ as follows

∥LT − S∗
XS

BSXS
∥HK→HK

≤ κ1 log
1
2
1

δ
(m− 1

2 + n− 1
2 ),

∥S∗
XS

BSXS
fq − S∗

XS
By∥HK

≤ κ2 log
1
2
1

δ
(m− 1

2 + n− 1
2 ),

where κ1, κ2 > 0 are some constants.

It is known (cf. [19]) that KRR has at least quadratic computational cost O(|z|2) in the number
of observations |z| and this is the cost of computing the kernel matrix K|z| = |z|SXS

BS∗
XS

, |z| = n,
of values of the kernel K(xi, xj). Therefore in the big data setting where |z| is large enough, it is
reasonable to avoid the computation of the minimizer fλ

z (2.7). The Nystr�om subsampling overcome
extra large computational costs by replacing K|z| by a smaller low-rank matrix obtained by a random
subsample of columns K|z|. An important analysis made in [19] shows that the Nystr�om subsampling
can be considered as a combination of the regularization gλ and a projection scheme on the subset
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Hzν

K := {f : f(·) =
∑

xi : (xi,yi)∈zν
diK (·, xi) , di ∈ R}.

To be more precise, according to the Nystr�om subsampling, the approximation of functions not
carried out through (2.7), and

fλ
z,zν = gλ

(
PzνS

∗
XS

BSXS
Pzν
)
PzνS

∗
XS

By, (2.8)

where Pzν : HK → Hzν

K , ∥Pzν∥HK→HK
= 1 is the orthogonal projection operator with the range Hzν

K .
Note (see [19]), to compute (2.8) it is not necessary to construct Pzν explicitly.

According to [6, 23] a perturbation of (2.2) caused by the discretization (2.8) can be estimated
with probability at least 1− δ as follows

∥LT − S∗
XS

BSXS
∥HK→HK

≤ κ1 log
1
2
1

δ
(m− 1

2 + n− 1
2 ),

∥S∗
XS

BSXS
fq − S∗

XS
By∥HK

≤ κ2 log
1
2
1

δ
(m− 1

2 + n− 1
2 ),

where κ1, κ2 > 0 are some constants.
Later on, we will need the following auxiliary statements (see [14])

∥Pzνϕ(LT )Pzν − ϕ(PzνLTPzν )∥HK→HK

≤ 2ϕ
(
∥L1/2

T (I − Pzν )∥2HK→HK

)
,

(2.9)

∥(I − Pzν )ϕ(LT )∥HK→HK
≤ C∥L1/2

T (I − Pzν )∥HK→HK
. (2.10)

Here and in the sequel, we adopt the convention that C denotes a generic positive coe�cient,
which can vary from inequality to inequality and may only depend on basic parameters such as
ρS , ρT , κ0, β0, y0 and others which may appear below.

Note that within the framework of the Nystr�om subsampling the value ∆T,zν = ∥L1/2
T (I −

Pzν )∥HK→HK
has a probabilistic nature and depends on the way zν is subsampled. Such dependence

is considered in [9, 15, 18,19].

3 Error Estimate of the Regularized Nystr�om Subsampling

In this section, we estimate an approximation accuracy of the minimizer fq of the target expected
risk Rq(f) by using the data z = {(xi, yi)}ni=1, sampled from the source measure ρ(x, y).

Theorem 3.1. Let fq satis�es the source condition (2.4) with ϕ ∈ F1/2, and the approximate

solution f
λm,n

z,zν is of the form (2.8), then for

λ = λm,n = θ−1(m− 1
2 + n− 1

2 ) and ∆T,zν ≤ ϕ
(
θ−1(m− 1

2 + n− 1
2 )
)

with probability 1− δ it holds

∥fq − f
λm,n

z,zν ∥L2,ρT = O

(√
θ−1(m− 1

2 + n− 1
2 )ϕ

(
θ−1(m− 1

2 + n− 1
2 )
)
log

3
4
1

δ

)
,

∥fq − f
λm,n

z,zν ∥HK
= O

(
ϕ
(
θ−1(m− 1

2 + n− 1
2 )
)
log

1
2
1

δ

)
.
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To prove this Theorem we will need the following statement.
Lemma 3.2. For ϕ ∈ F1/2 it holds

∥ϕ(LT )− ϕ
(
PzνS

∗
XS

BSXS
Pzν
)
∥HK→HK

≤ C log
1
2
1

δ

(
∆T,zν + ϕ

(
m− 1

2 + n− 1
2

))
.

Proof. We start with a decomposition

ϕ(LT )− ϕ
(
PzνS

∗
XS

BSXS
Pzν

)
= Pzνϕ(LT )(I − Pzν ) + (I − Pzν )ϕ(LT )

+Pzνϕ(LT )Pzν − ϕ(PzνLTPzν ) + ϕ(PzνLTPzν )− ϕ
(
PzνS

∗
XS

BSXS
Pzν

)
.

Then by (2.9) and (2.10) we get

∥ϕ(LT )− ϕ
(
PzνS

∗
XS

BSXS
Pzν

)
∥HK→HK

≤ C∥L
1
2
T (I − Pzν )∥HK→HK

+Cϕ

(
∥L

1
2
T (I − Pzν )∥2HK→HK

)
+ Cϕ

(
∥LT − S∗

XS
BSXS

∥HK→HK

)
≤ C

(
∥L

1
2
T (I − Pzν )∥HK→HK

+ ϕ
(
∥LT − S∗

XS
BSXS

∥HK→HK

))
.

By Proposition 2.1 and (2.4) with probability 1− δ we have

∥ϕ(LT )− ϕ
(
PzνS

∗
XS

BSXS
Pzν
)
∥HK→HK

≤ C log
1
2
1

δ

(
∆T,zν + ϕ

(
m− 1

2 + n− 1
2

))
.

Lemma is proved. □
Sketch of proof. The proof of Theorem is similar to Theorem 3 [16] for ranking and regression

problems. Applying the techniques from [16] along with Lemma 3.2 one can get the statement of
the theorem. We omit the proof of Theorem since it is fairly technical and lengthy.

Remark 3.1. Note that under the conditions of Theorem 3.1 Nystr�om subsampling has the
same learning rate as the one guaranteed by Theorem 1 [6] for algorithm based on the whole sample
z. Moreover, the application of the Nystr�om subsampling as some projection scheme for machine
learning problems under the big data settings, such as regression and ranking, was considered
earlier in the works [8,15,19]. In particular, in [8,15] was established that such an approach allows
to achieve the above mentioned learning rate with subquadratic cost. In addition, the e�ectiveness
of this approach was proven in the works [3, 4, 9, 10,12].

4 Approximation of the Radon-Nikodym Derivate in RKHS

In this section, we approximate the Radon-Nikodym derivative β = dρT
dρS

which solves the integral
equation

J∗
Sβ =

∫
X
K(x, x

′
)β(x

′
)dρS(x

′
) =

∫
X
K(x, x

′
)dρT (x

′
) = J∗

T1, (4.1)

where 1 is the constant function that takes value 1 everywhere. Following [6] and [7], we assume
that β(x) ∈ HK. Without loss of generality, we assume that 1 ∈ HK. Then the equation (4.1) can
be reduce to

J∗
SJSβ = J∗

TJT1. (4.2)
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Since, in practice, the amount of the unlabeled inputs is usually much greater than that of labeled
ones, we assume that the sizesM andN of i.i.d. samples (x

′
1, x

′
2, . . . , x

′
M ) and (x1, x2, . . . , xN ) drawn

respectively from ρT and ρS are much larger than m and n considered earlier. Then we de�ne two
sample operators

SM,T f = (f(x
′
1), f(x

′
2), · · · , f(x

′
M )) ∈ RM ,

SN,Sf = (f(x1, f(x2), · · · , f(xN )) ∈ RN ,

and a �nite-dimensional problem

S∗
N,SSN,Sβ = S∗

M,TSM,T1, (4.3)

which is an empirical version of the equation (4.2). Here, similar to the above notations the operators
S∗
N,S : RN → HK and S∗

M,T : RM → HK are given as

S∗
N,Sv(·) =

1

N

N∑
i=1

K(·, x′
i)vi, v = (v1, v2, . . . , vN ) ∈ RN ,

S∗
M,Tu(·) =

1

M

M∑
j=1

K(·, xj)uj , u = (u1, u2, . . . , uM ) ∈ RM .

Further, we implement the approach from the previous section. To obtain the Radon-Nikodym
derivative from (4.3) we again apply the combination of the Nystr�om subsampling and the two-
steps iterated Tikhonov regularization. Thus, the approximation to β = dρT

dρS
we will seek as

β̃
αM,N

M,N,zν = gα(PzνS
∗
N,S , SN,SPzν )PzνS

∗
M,TSM,TPzν1. (4.4)

We assume that β = dρT
dρS

satis�es the source condition

β = ϕ(LS)µβ , (4.5)

where LS = J∗
SJS , µβ ∈ HK, ϕ ∈ F1/2.

According to [6, 23] with probability 1− δ it holds

∥S∗
N,SSN,Sβ − S∗

M,TSM,T1∥HK
≤ C(N−1/2 +M−1/2) log

1
2
1

δ
, (4.6)

∥LS − S∗
N,SSN,S∥HK→HK

≤
C log

1
2

1
δ√

N
, (4.7)

∥LT − S∗
M,TSM,T ∥HK→HK

≤
C log

1
2

1
δ√

M
. (4.8)

To simplify the subsequent presentation, let's denote ∆S,zν := ∥L
1
2
S (I − Pzν )∥HK→HK

.

Theorem 4.1. Assume that β = dρT
dρS

satis�es the source condition (4.5) with ϕ ∈ F1/2 and the

approximant β̃
αM,N

M,N,zν given by (4.4), then for

α = αM,N = θ−1
φ

(
1√
N

+
1√
M

)
,

∆S,zν ≤ ϕ

(
θ−1
φ

(
1√
N

+
1√
M

))
, ∆T,zν ≤ ϕ

(
θ−1
φ

(
1√
N

+
1√
M

))
,

(4.9)
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with probability at least 1− δ it holds

∥β − β̃
αM,N

M,N,zν∥HK
= O

(
ϕ

(
θ−1
φ

(
1√
N

+
1√
M

))
log

1
2
1

δ

)
.

Proof. First, consider the decomposition

β − β̃
αM,N

M,N,zν = β − gα(PzνS
∗
N,SSN,SPzν )PzνS

∗
M,TSM,TPzν1

= ω1 + ω2 + ω3 + ω4,
(4.10)

where

ω1 = β − gα(PzνS
∗
N,SSN,SPzν )PzνS

∗
N,SSN,SPzνβ;

ω2 = gα(PzνS
∗
N,SSN,SPzν )PzνS

∗
N,SSN,SPzνβ

− gα(PzνS
∗
N,SSN,SPzν )PzνS

∗
N,SSN,Sβ;

ω3 = gα(PzνS
∗
N,SSN,SPzν )PzνS

∗
N,SSN,Sβ

− gα(PzνS
∗
N,SSN,SPzν )PzνS

∗
M,TSM,T1;

ω4 = gα(PzνS
∗
N,SSN,SPzν )PzνS

∗
M,TSM,T1

− gα(PzνS
∗
N,SSN,SPzν )PzνS

∗
M,TSM,TPzν1.

We are going to estimate the norm of each ωi, i = 1, 4. By Lemma 3.2 and (2.5) it is easy to show
that

∥ω1∥HK
≤ C log

1
2

1
δ

(
ϕ(α) + ∆S,zν + ϕ

(
N− 1

2

))
. (4.11)

Further, we estimate the norm of ω2. Applying the polar decomposition and (2.5) we get

∥ω2∥HK
≤ ∥gα(PzνS

∗
N,SSN,SPzν )

(
PzνS

∗
N,SSN,SPzν

) 1
2 ∥HK→HK

× ∥
(
S∗
N,SSN,S

) 1
2 (I − Pzν )β∥HK

≤ .
C√
α

(
∥L1/2

S − (S∗
N,SSN,S)

1/2∥HK→HK

+ ∥L1/2
S (I − Pzν )∥HK→HK

)
∥(I − Pzν )ϕ(LS)µβ∥HK

.

Now, by means of (4.7), (2.10) and the fact that
√
t is the monotone function with con�dence 1− δ

we get

∥ω2∥HK
≤ C√

α

(
∥LS − S∗

N,SSN,S∥1/2HK→HK
+ ∥L1/2

S (I − Pzν )∥HK→HK

)
× ∥L1/2

S (I − Pzν )∥HK→HK
≤ C√

α
log

1
4
1

δ

((
1√
N

) 1
2

+∆S,zν

)
∆S,zν .

(4.12)

Let's estimate the third term in the right-hand side of (4.10). By (2.5) and (4.6) with con�dence
1− δ we get

∥ω3∥HK
≤ C

α log
1
2

1
δ

(
1√
N

+ 1√
M

)
. (4.13)

It remains to estimate the last term in the right-hand side of (4.10). First, we rewrite ω4 as follows

ω4 = gα(PzνS
∗
N,SSN,SPzν )Pzν

[
(S∗

M,TSM,T − LT ) + LT (I − Pzν )
]
(I − Pzν )1.
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Since, HK is generated by the operator LT and 1 ∈ HK, there is always µ1 ∈ HK such that

1 = LTµ1.

In view of this and the relations (2.5) and (4.8)

∥ω4∥HK
≤ C

α

(
∥LT − S∗

M,TSM,T ∥HK→HK
+ ∥L

1
2
T (I − Pzν )∥HK→HK

)
× ∥(I − Pzν )LTµ1∥HK

≤ C

α

(
∥LT − S∗

M,TSM,T ∥HK→HK

+ ∥L
1
2
T (I − Pzν )∥HK→HK

)
∥L

1
2
T (I − Pzν )∥HK→HK

≤ C

α
log

1
2
1

δ

(
1√
M

+∆T,zν

)
∆T,zν .

(4.14)

Summing up (4.11), (4.12), (4.13) and (4.14), we �nally obtain

∥β − β̃
αM,N

M,N,zν∥HK
≤ C log

1
2
1

δ

[ (
ϕ(α) + ∆S,zν + ϕ

(
N− 1

2

))
+

1√
α

((
1√
N

) 1
2

+∆T,zν

)

+
1

α

(
1√
N

+
1√
M

)
+

1

α

(
1√
M

+∆T,zν

)
∆T,zν

]
.

The regularization parameter α is chosen according with (4.9), namely

1√
N

+
1√
M

= αϕ(α).

and consequently 1√
N
+ 1√

M
≤ α ⇒ 1√

N
≤ α, 1√

M
≤ α and 1√

N
+ 1√

M
≤ ϕ(α) ⇒ 1√

N
≤ ϕ(α), 1√

M
≤

ϕ(α). Hence, by ∆S,zν ≤ ϕ(α) and ∆T,zν ≤ ϕ(α) with con�dence 1− δ we have

∥β − β̃
αM,N

M,N,zν∥HK
≤ C log

1
2
1

δ
ϕ(α)

= O

(
ϕ

(
θ−1
φ

(
1√
N

+
1√
M

))
log

1
2
1

δ

)
.

(4.15)

Theorem is proved. □
Remark 4.1. Previously, the approximation of the Radon-Nikodym derivative was considered

in [6,17] in the domain adaptation scenario, but without dealing with big data. The error estimate
from [6, 17] coincides (by the order) with the known error estimate for problems considered under
the standard machine learning settings. We can ensure the same order of accuracy (see (4.15)) by
applying the Nystr�om subsampling for class of problems dealing with big data.

5 Main Result

In this section to estimate learning rate of the approximant to the target function f∗ = fq,
we apply again the approach based on the Reproducing Kernel Hilbert Space concept and also the
algorithm which is a combination of the two-times iterated Tikhonov regularization and the Nystr�om
subsampling. Herewith, we assume that the exact values of the Radon-Nikodym derivative β = dρT

dρS
are unknown. Due to this assumption, we need to deal with the matrix

BM,N = diag(β
λM,N

M,N (x1), β
λM,N

M,N (x2), . . . , β
λM,N

M,N (xn))
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instead of the matrix B. Then the approximate solution (2.8) has the form

fλ
zν ,M,N = gλ(PzνS

∗
XS

BM,NSXS
Pzν )PzνS

∗
XS

BM,Ny.

Note (see [6]) that for any function f ∈ HK it holds

∥S∗
XS

BSXS
f − S∗

XS
BM,NSXS

f∥HK
≤ κ30∥β − β̃

αM,N

M,N,zν∥HK
∥f∥HK

,

where κ0 > 0 is some constant.

Theorem 5.1. Assume that fq ∈ F1/2 satis�es the source condition (2.4) and the approximant

fλ
zν ,M,N is of the form (2.8), then for

λ = θ−1

(
log

1
2
1

δ

(
m− 1

2 + n− 1
2 + ϕ

(
θ−1
φ (M− 1

2 +N− 1
2 )
)))

,

∆T,zν ≤ ϕ

(
θ−1

(
log

1
2
1

δ

(
m− 1

2 + n− 1
2 + ϕ

(
θ−1
φ (M− 1

2 +N− 1
2 )
))))

,

(5.1)

where θ(t) = tϕ(t), with probability 1− δ it holds

∥fq − fλ
z,zν∥L2,ρT

= O
(√

θ−1

(
log

1
2
1

δ

(
m− 1

2 + n− 1
2 + ϕ

(
θ−1
φ (M− 1

2 +N− 1
2 )
)))

× ϕ

(
θ−1

(
log

1
2
1

δ

(
m− 1

2 + n− 1
2 + ϕ

(
θ−1
φ (M− 1

2 +N− 1
2 )
)))))

,

(5.2)

∥fq − fλ
z,zν∥HK

= O

(
ϕ

(
θ−1

(
log

1
2
1

δ

(
m− 1

2 + n− 1
2 + ϕ

(
θ−1
φ (M− 1

2 +N− 1
2 )
)))))

.

Sketch of Proof. To estimate ∥fq − fλ
zν ,M,N∥HK

we use the decomposition

fq − fλ
zν ,M,N = fq − gλ(PzνS

∗
XS

BM,NSXS
Pzν )PzνS

∗
XS

BM,Ny

= σ1 + σ2 + σ3 + σ4,

where

σ1 := fq − gλ(PzνS
∗
XS

BSXS
Pzν )PzνS

∗
XS

BSXS
Pzνfq,

σ2 := gλ(PzνS
∗
XS

BSXS
Pzν )PzνS

∗
XS

BSXS
Pzνfq

− gλ(PzνS
∗
XS

BM,NSXS
Pzν )PzνS

∗
XS

BM,NSXS
Pzνfq,

σ3 := gλ(PzνS
∗
XS

BM,NSXS
Pzν )PzνS

∗
XS

BM,NSXS
Pzνfq

− gλ(PzνS
∗
XS

BM,NSXS
Pzν )PzνS

∗
XS

BM,NSXS
fq,

σ4 := gλ(PzνS
∗
XS

BM,NSXS
Pzν )PzνS

∗
XS

BM,NSXS
fq

− gλ(PzνS
∗
XS

BM,NSXS
Pzν )PzνS

∗
XS

BM,Ny.
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First, we estimate the norm of σ2. It is easy to see that

∥σ2∥HK
≤ λr

r−1∑
j=0

λ−j−1∥PzνS
∗
XS

BSXS
Pzν − PzνS

∗
XS

BM,NSXS
Pzν∥HK

λ−r+j∥fq∥HK

≤ 1

λ
∥S∗

XS
BSXS

− S∗
XS

BM,NSXS
∥HK

∥fq∥HK
≤ 1

λ
κ30∥β − β̃

αM,N

M,N,zν∥HK
∥fq∥HK

≤ C

λ
∥β − β̃

αM,N

M,N,zν∥HK
.

Further, applying technique performed in Theorem 3 [16] it is easy to obtain desired estimates. We
omit full proof of Theorem since it repeats the reasoning from Theorem 3. In such a way, we give
a general idea of the proof of Theorem.

Remark 5.1. Let us analyze the error estimate (5.2). Put

m = O(n), m− 1
2 = O

(
ϕ
(
θ−1
φ

(
M− 1

2 +N− 1
2

)))
.

Then the condition (5.1) can be rewritten as

λ = θ−1(log
1
2
1

δ
m− 1

2 ), ∆T,zν ≤ ϕ

(
θ−1

(
log

1
2
1

δ
m− 1

2

))
. (5.3)

Note that for ϕ ∈ F1/2 the quali�cation 2 covers the function ϕ(t)
√
t, then ϕ(t) is covered by the

quali�cation 3
2 and

m− 3
10 ≤ Cϕ(Θ−1(m− 1

2 )).

Therefore, if

∆T,zν ≤ Cm− 3
10 , (5.4)

then the second assumption (5.3) holds for any ϕ ∈ F1/2.

On the other hand, as it has been shown in [15] under the assumption

sup
x

∥L− s
2

T Kx∥HK
≤ C, 0 < s ≤ 1,

with probability 1− δ it holds

∆T,zν ≤ C log
1

δ
|zν |−β ,

where β ∈
[

1
2(1−s) − ε, 1

2(1−s)

)
, and ε is an arbitrary small positive number.

In view of (5.4), this means that for |zν | = O
(
|z|

3
10β

)
the assumptions (5.1) of the Theorem 5.1

are satis�ed, and the best distribution independent convergence rate is achieved within the Nystr�om
subsampling. It is clear that for β > 3

10 the computational complexity of the designed Nystr�om
approximant fλ

z,zν is subquadratic in the number of observations m. In this case the combination
of the Nystr�om subsampling and the two-times iterative Tikhonov regularization (2.6) allows us
to achieve the best distribution independent learning rate with the subquadratic computational

complexity under a rather mild condition then Kx ∈ Range(L
1
12

+ξ

T ), where ξ is an arbitrary small

positive number.
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6 Conclusions

The present study is focused on the implementation of the regularized Nystr�om subsampling
to unsupervised domain adaptation problems in the big data settings. To overcome the di�erence
between the source and the target probabilities distributions, which is typical for domain adapta-
tion, the covariate shift assumption is imposed. Within the framework of the Reproducing Kernel
Hilbert Space concept, an algorithm is constructed. This algorithm is a combination of the Nystr�om
subsampling and the two-steps iterated Tikhonov regularization. Herewith, we assume that values
of the Radon-Nikodym derivative are unknown. We prove that the proposed approach not only
guarantees the same learning rate as algorithms based on the whole sample size, but also allows to
achieve subquadratic computational complexity in the number of observations.

Acknowledgments

The authors acknowledge partial �nancial support due to the project �Mathematical modeling of
complex dynamical systems and processes caused by the state security� (Reg. No. 0123U100853).

References

1. Bakushinski, A.B.: A general method of constructing regularizing algorithms for a linear ill-
posed equation in Hilbert space. USSR Comput.Math. and Math.Phys. 7, 279-287 (1967)

2. Bauer, F., Pereverzev, S., Rosasco, L.: On regularization algorithms in learning theory. J. of
Complexity. 23, 52-72 (2007)

3. Chen,H.: The convergence rate of a regularized ranking algorithm. J. of Approximation Theory.
164, 1513-1519 (2012)

4. Cheng,W., Ting,H., Siyang, J.: Pairwise learning problems with regularization networks and
Nystr�om subsampling approach. Neural Networks. 157, 176-192 (2023)

5. Huang, J., Gretton,A., Borgwardt,K., Sch�olkopf, B., Smola,A.: Correcting Sample Selection
Bias by Unlabeled Data. Advances in Neural Information Processing Systems. 19, 601-608
(2006)

6. Gizewski, E.R., Mayer, L., Moser, B.A., Nguyen,D.H., Pereverzyev-Jr, S., Pereverzyev, S.V.,
Shepeleva,N., Zellinger,W.: On a regularization of unsupervised domain adaptation in RKHS.
Applied and Computational Harmonic Analysis. 57, 201-227 (2022)

7. Kanamori, T., Hido, S., Sugiyama,M.: A least-squares approach to direct importance estima-
tion. Journal of Machine Learning Research. 10, 1391-1445 (2009)

8. Kriukova,G., Tkachenko, P., Pereverzyev, S.: On the convergence rate and some application of
a regularized ranking algorithm. J. of Complexity. 33, 14-29 (2016)

9. Kriukova,G., Pereverzyev-Jr., S., Tkachenko, P.: Nystr�om type subsampling analyzed as a re-
gularized projection. Inverse Problems. 33 (7):074001. (2017)

10. Lin, S.-B., Guo,X., Zhou,D.-X.: Distributed Learning with Regularized Least Squares. Journal
of Machine Learning Research. 18, 1-31 (2017)

11. Lu, S., Pereverzev, S.V.: Regularization Theory. Selected Topics Inverse and Ill-posed problems.
Series 58. Walter de Gruyter GmbH., Berlin/Boston (2013)

12. Lu, S., Mathe, P., Pereverzyev-Jr., S.: Analysis of regularized Nystr�om subsampling for regres-
sion function of low smoothness. Analysis and Application. 17 (6), 931-946 (2019)

13. Mathe, P. Pereverzev, S.V.: Geometry of linear ill-posed problems in variable Hilbert scales.
Inverse Problems. 19, 789-803 (2003)

14. Mathe, P., Pereverzev, S.V.: Discretization strategy for ill-posed problems in variable Hilbert
scales. Inverse Problems. 19 (6), 1263-1277 (2003)



On learning rates for regularized Nystr�om subsampling in unsupervised domain adaptation 71

15. Myleiko,G.L., Pereverzyev-Jr., S., Solodky, S.G.: Regularized Nystr�om subsampling in regres-
sion and ranking problems under general smoothness assumptions. Analysis and Applications.
17, 453-475 (2019)

16. Myleiko,G.L., Pereverzyev-Jr., S., Solodky, S.G.: Regularized Nystr�om subsampling in regres-
sion and ranking problems under general smoothness assumptions. Preprint Series of Applied
Mathematics Group, Preprint No. 40. University of Inssbruck, Austria. (2017)

17. Pereverzyev, S.: An Introduction to Arti�cial Intelligence Based on Reproducing Kernel Hilbert
Spaces. Birkh�auser Cham (2022)

18. Plato, R., Vainikko,G.M.: On the regularization of projection methods for solving ill-posed
problems. Numer. Math. 57, 63-79 (1990)

19. Rudi, A., Comoriano,R., Rosasco, L.: Less is more: Nystr�om computational regularization.
C.Cortes, N., Lawrence,D., Lee,M., Sugiyama,R. and Garnett, R. (eds.) Curran Associates,
Inc. 1648-1656 (2015)

20. Shimodaria, H.: Improving Predictive Inference under covariate shift by weighting the log-
likelihood function. Journal of Statistical Planning and Inference. 90, 227-244 (2000)

21. Smale, S., Zhou,D.-X.: Learning theory estimates via integral operators and their approxima-
tions. Constructive Approximation. 26, 153-172 (2007)

22. Sugiyama,M., M�uller,K.-R.: Input-dependent estimation of generalization error under covari-
ate shift K.-R. M�uller. Statistics & Decisions. 23, 249-279 (2005)

23. Vito, E.D., Rosasco, L., Caponnetto,A., Giovannini, U.D., Odone, F.: Learning from examples
as an inverse problem. Journal of Machine Learning Research. 6, 883-904 (2005)

Received 17.10.2023
Revised 07.11.2023


