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ON LEARNING RATES FOR REGULARIZED NYSTROM
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Aunotanist. Perynapusosana nigsubipka Hucrphoma € momysisipHuM 11i1x0/10M 10 TpobJsieM HaBYaH-
Hs, IKi MAIOTHh CIOPaBYy 3 HAJBEJTUKHAM OOCATOM BXITHMX MaHWX. Takuil aJTOPUTM MU BUKOPHUCTOBYEMO
B KOHTEKCTL 3a/1a4 JOMEHHOI ajamTarii 6e3 yuwmTesns 3a yMOBH KoBapiamifimoro 3cyBy. B pamkax
KOHIIenTIii rip6epTOBOr0 IPOCTOPY 3 MOPOAKYIOYNM SIIPOM HOOYIOBAHO AJITOPUTM, IKUH € KOMOIHAITIE0
ninubipku Huctphroma Ta [IBOKPOKOBOI 1TEpPOBAHOI THXOHOBCHKOI perysspm3arii. 3alpoloHOBAaHUM
MiX1/ TI03BOJISIE HE TLIHKK CYTTEBO CKOPOTUTHU OOCAT 33/IiTHIX O0YNCAIOBATBHIX PECYPCIB, aje /10 TOTO
K 30eperTu Taki caMi MIBUAKOCTL HABYAHHS K y CTAHJIAPTHOMY MAIIMHHOMY HAaBYAHHI.

ABsTRACT. The regularized Nystréom subsampling is a popular approach for learning problems that
deals with big data. We employ such technique in the context of the unsupervised domain adaptation
problems with covariate shift assumption. Within the framework of the Reproducing Kernel Hilbert
Space concept, an algorithm is constructed that is a combination of the Nystrém subsampling and
the two-steps iterated Tikhonov regularization. This approach allows significantly reduce the amount
of computing resources involved and at the same time maintains the same learning rates as for the
standard machine learning algorithms.

1 INTRODUCTION

In statistical learning theory, regularized kernel methods are the most theoretically studied al-
gorithms provided acceptable results for the problems when the number of data is not too large.
But most these methods require computing a kernel matrix which leads to at least quadratic com-
putational cost in the sample size, which means that larger data sets are typically out of reach.
Nystrém subsampling is an effective approach to analyze big data, which serves as standard tool
for reducing computational complexity in machine learning problems where massive data sets are
involved. The present study is focused on the use of the regularized Nystrém subsampling in the
context of unsupervised domain adaptation problems dealing with big data.

Recall, in the supervised learning, it is commonly assumed that the training data comes from
the same distribution as that of the test data. However, many real world applications, for example,
in natural language processing or computer vision, do not meet this assumption. This obstacle can
be overcome by embedding domain adaptation. Domain adaptation is sub-discipline of machine
learning which aims to improve the performance of a learning model on the target domain by
borrowing knowledge from a well- established source domain and also by reducing the difference
between domain distributions or the domain shift. To be more precise, domain adaptation scenario
arises when one studies relationship between the explanatory (input) variable 2 € X € R? and the
response (output) variable under the assumption that they are governed by different probability
distributions with respect to measures p(x,y) and ¢(z,y) on X x Y. This, generally, means that
an input x € X does not determine uniquely the output y € Y, but rather some conditional
probability p(y|z) of y given x, which is assumed to be unknown. The inputs z € X is also
assume to be random and governed by marginal probabilities pg(x) in the source domain (S) and
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pr(x) in the target domain (7"). Thus, the learning task can be seen as a minimization of the
expected risk of the prediction y from x with respect to the one measure, say, ¢(x,y) by using a
training data sample z = {(z;,vy;), v; € X, y; € Y, i =1,2,...,n}, |z| = n, drawn independently
and identically (i.i.d.) over the another measure p(z,y). In domain adaptation settings, p(x,y) and
q(z,y) are usually called the source and the target probabilities, respectively. Generally, the problem
of domain adaptation with two different distributions is unsolvable, since p(x,y) and ¢(z,y) can
be arbitrarily far apart. To guarantee a solvability of the problem, the covariate shift assumption
should be imposed (see [5,20]). Namely, we assume that pg(z) # pr(z), while the conditional
probability p(y|x) remains unchanged for both source and target probabilities. This means that the
joint probabilities p(z,y) and ¢(z,y) can be factorized as follows

p(x,y) = plylz)ps(x), q(x,y) = ply|z)pr(z).

It should be noted that sample selection bias and missing data are two causes for the covariate
shift. Most of the knowing domain adaptation techniques aim to solve this class of domain gap, which
typically appear in many applications such as classification , handwriting recognition , segmentation
and regression for multimedia data, for example if the background, shape deformation, or quality
are different across domains. Domain adaptation aims to mitigate this and has successfully been
applied for object recognition, Al planning, reinforcement learning and natural language processing
(e.g., the adaptation from document on the one language to another language).

In the present study, we restrict ourselves to learning with the least square loss where the
expected risk of the prediction y from x by means of a function f: X — Y is defined in the target
domain as follows

RAﬂﬁiéﬂ}ﬂ@—yFWWWL

which is minimized by so-called regression function

ﬂmznmzﬂp@wm. (L1)

But in the unsupervised domain adaptation settings neither R,(f), nor fq(x) can be com-
puted, since the information about underlying probability ¢(z,y) is only given as a set X L=
(x},79,...,7,), |X'| = m, of unlabeled examples x; of inputs drawn iid. from the target
marginal probability measure pp(z). Thus, the goal is to use this information together with a
training data set z to approximate the ideal minimizer f, by an empirical estimator f, in the sense
of excess risk

Ry(f2) = Rq(fq) = | fa — qu%lW’

where Lj ,, is the space of square-integrable functions f: X — R with respect to the marginal
probability measure pr. Following [6], we employ the idea that the unsupervised domain adaptation
problems approximate the same regression function given by (1.1) as in the standard supervised
learning. Therefore, the supervised learning algorithms based on regularization techniques in a
reproducing kernel Hilbert space (RKHS) can be profitably used in the context of unsupervised
domain adaptation. Here we refer to [5,6,17,20] and to references therein.

The paper is organized as follows. In the next section, we give the strict problem settings and
define the Nystrom subsampling method. In Section 3, we obtain error estimates for the regularized
Nystrom subsampling under the assumption that the values of the Radon-Nikodym derivate at the
unlabeled target inputs are known. In Section 4, we prove a theorem which demonstrate how the
Radon-Nikodym derivate can be approximately reconstructed from unlabeled examples of inputs
drawn according to source and target probabilities. For this end, we employ the combination of
Nystrom subsampling and the two-steps iterated Tikhonov regularization in RKHS. In the last
section, we estimate learning rates of regularized Nystrém subsampling in the case of the unknown
values of the Radon-Nikodym derivate and provide analysis related to computational cost of the
proposed method in the context of unsupervised domain adaptation problems.
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2 PROBLEM SETTING

From now on, we assume that the regression function f* = f,;, minimizing the expected risk
Ry(f), belongs to a specified Hilbert space with reproducing kernel Hg. Let Jp : Hk < Lo ,, and
Js : Hk <+ Lg ,4 be the inclusion operators. Recall that the information about the source and
the target marginal measures are only provided in the form of samples Xg = {1, z2,...,z,} and
X = {x},25,...,2,,}, drawn independently and identically (ii.d.) from ps and pr, respectively.
In the sequel, we define two sample operators

Sxrf = (f(&)), f(@y), -+, f(z,,)) € R™,
Sxof = (f(x1), f(z2),- -, flan)) € R™,

acting from Hyk to R™ and R™, where the norms in later spaces are m~!-times and n~!-times the
standard Euclidian norms, such that the adjoint operators Sy : R™ — Hk and Sk : R" — Hk

are given as
m

1 /
Sxpu() = — > KC zuy,  w=(ur,ug,...,um) €R™,
j=1
1 n
Sk v(-) = - Z K(,zi)vi, v=(v1,v2,...,0,) € R™
=1

Since we have no direct access to both the target probability measure pr and the space Lg ;. in
which we are going to approximate the regression function f* = f;, then an assumption should be
put on the relation between the source probability ps and the target probability pr. As in [5], we
assume that there is a function 5: X — Ry such that

dpr(x) = B()dps(a).

Then S(z) is considered as the Radon-Nikodym derivative g% of the target measure with respect

to the source one. We also assume that we only have access to the values (x;) of the Radon-

Nikodym derivative §(z) = 32283 at the points x;, i = 1,2,...,n, drawn i.i.d. from pg(x) and we

consider a diagonal n x n matrix B = diag(8(z1), 8(x2), ..., 8(xy)). Moreover, we assume that 5(z)
is uniformly bounded on X, such that 0 < g(x) < by for some by > 0 and any =z € X.

The subsequent analysis is based on two additional assumptions which are common and not
restrictive. We assume that K: X x X — R is a continuous and bounded kernel that for any x € X
it holds

K( = (K(,2)K(, 2))¥? = K 1/2
IKC, )l = (K 2)KE )y, = (K2, 2)]7 < ro < o0

In addition, we assume that for any input x € X corresponding output y € ¥ C R is bounded
ly| < yo with yo > 0.

Further, we are going to approximate a solution of the equation arising from the minimization
of the excess risk

Rq(f) = Re(fa) = IIf = fall 1, o7 (2.1)

In RKHS Hk the above mentioned minimization problem (2.1) can be rewritten by means of the
inclusion operator Jy: Hk < L2 ,, as a variational problem

17 f = fall2,pr — min,

and it leads to the finite-dimensional normal equation

Ly f = Jrfq, (2.2)
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where Ly = J5Jr. Note that Eq. (2.2) is ill-posed because the involved operator Ly is compact
and its inverse can not be bounded in Hk. Thus, this equation should be analyzed by the methods
of the Regularization theory.

In the Regularization theory, there is a continuous strictly increasing function ¢: [0,l]] - R, >
| L7 || 24—, such that ¢(0) = 0, and allows to present f; by the means of the so-called source
conditions

fa= ‘P(LT),“qa Hq € Hk. (2.3)

The function ¢ is usually called the index function of the source condition. This function specifies
the smoothness properties of f; and characterizes the convergence rate of the regularization method.
Let’s consider the class J /5 of operator monotone index functions ¢: [0,/] = R such that

o(t) <avt, tel0,T]. (2.4)

Note that F; /5 contains functions ¢: [0,1] = R0 such that cot < ¢(t) < e1v/t, t€[0,T).
Recall, that a function ¢ is operator monotone if for any non-negative self-adjoint operators
A, B: Hk — Hg with spectra in [0,] it holds

lp(A) = (B)l[#x -1 < c3p (A = Bllrg—1u) -

It is known (see [1]) that the most regularization schemes can also be indexed by parameterized
function gy: [0,{] = R, A > 0. The only requirements are that there are positive constants 7,7, ¥
such that

> |-

7
sup |1 —tga(t)] <70, sup VHga(t)| < —=, sup [ga(t)] <
0<t<I 0<t<I Va© o oc<

Further important property of the regularization method indexed by g, is its qualification that
is the maximum positive number p for which

(2.5)

sup tP|1 —tga(t)] < 1A,
0<t<l

where v, does not depend on A. For example, the standard Tikhonov method has the qualification
p=1.

In our research, we apply the two-times iterated Tikhonov regularization, the index function of
which has a form

1 A2

2
aa(t) = ; N A+ )7 = g(l - m) A #0. (2.6)

It should be noted that the standard Tikhonov method provides optimal order of accuracy for the
index functions of the form ¢(t) =t*, 0 < a < % For domain adaptation problems the solutions
with indicated above smoothness were employed in [6,7,22]. Regarding the considered functions
©(t) (2.3), (2.4) for the standard Tikhonov method the saturation effect will be observed. To achieve
optimal accuracy for (2.3), (2.4) one needs to employ the regularization with qualification p > 2.
In such situation, the two-times iterated Tikhonov regularization with p = 2 is the most applicable.
In addition, the index functions ¢(t) = t*, a > 1, is out of our study for now. The solutions with
such high smoothness call for the implementation of regularization with higher qualification (p > 3).
The implementation of such method requires the modified techniques and will be considered in our
further research.

The following definition [11,13] shows a relation between the qualification and the source con-
dition.



62 Myleiko H., Solodky S.

Definition 2.1. We say that the qualification p covers the index function ¢ if the function
t — t?/p(t) is non-decreasing for t € (0,1].

Proposition 2.1. [11, Proposition 2.7] Let the regularization method is indexed by gy(t) and
has the qualification p. If this qualification covers the index function @, then

sup |1 —tgx(t)]e(t) < (M),
0<t<l

where v, = max{~o, Y}

It is known (see, e.g., [2,8]) that for full use of the smoothness of the unknown function f; it is
necessary that the qualification of the method g, implemented in the learning task covers not only
the index function ¢(t), but also the product ¢(t)v/t.

Remark 2.1. It is well-known that various regularization scheme can be profitably used in
the standard supervised learning context. For instance, in [21], the Tikhonov regularization was
analyzed as a supervised learning algorithm in RKHS, and the best-known learning rates were
obtained for this scheme. Then in [2] it has been shown that the same type of results are true
for a large class of supervised learning algorithms which are essentially all the linear regularization
schemes. In [6] the authors extend the analysis of [2] to the setting of domain adaptation with
covariate shift. Below we show how the technique from [6] based on iterated Tikhonov regularization
can be extended to the domain adaptation with covariate shift under the big data settings.

One of the most studied approaches to the approximation of the minimizer f* = f; of the target
expected risk R4(f) by using the data z = {(x;, y;) }I"_;, sampled from the source measure p(z,y), is
importance weighted regularized least squares (IWRLS) (see, e.g., [5,7,22]). Usually, the standard
Tikhonov regularization known as Kernel Ridge Regression (KRR) in machine learning is employed
in the context of this method. It is known that the low qualification is a disadvantage of such
regularization. In other words, as we mentioned above, it leads to saturation in the case of highly
smooth solutions. To avoid this in [6] the authors applied iterative Tikhonov regularization, with
the index function (2.6). Herewith, the IWRLS-approximant was performed as follows

f2 = 9(SxsBSxs) Sk BY, (2.7)

where Sk BSx, is a self-adjoint, non-negative, and compact operator in RKHS Hk.
Note that the approximant (2.7) results from applying the regularization scheme to a finite-
dimensional equation
Sk BSxsf = Sx,BY,
which is the discretized version of (2.2). According to [6,23] a perturbation of (2.2) caused by the

discretization (2.8) can be estimated with probability at least 1 — ¢ as follows

* 1 _1 _1
| L7 — Sk BSxsllmg—mx < r1log? —(m™2 +n"2),

| = )=

8% BSxsfy = Sks BUlle < ralog? <(m™2 +n72),
where k1, ko > 0 are some constants.

It is known (cf. [19]) that KRR has at least quadratic computational cost O(|z|?) in the number
of observations |z| and this is the cost of computing the kernel matrix Ki,| = |z|Sx,BSY,, |z| =n,
of values of the kernel K(z;, ;). Therefore in the big data setting where |z| is large enough, it is
reasonable to avoid the computation of the minimizer f;' (2.7). The Nystrém subsampling overcome
extra large computational costs by replacing K, by a smaller low-rank matrix obtained by a random
subsample of columns K|,. An important analysis made in [19] shows that the Nystrém subsampling
can be considered as a combination of the regularization gy and a projection scheme on the subset
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HE ={f:f()= > dK(,z), d;eR}.
zi: (Ti,y:)€2Y
To be more precise, according to the Nystrom subsampling, the approximation of functions not
carried out through (2.7), and

forw = gx (P Sk BSxsPav) Pov Sk, BY, (2.8)

where Py : Hk — HEZ , |Pav||nc—#x = 1 is the orthogonal projection operator with the range HZ% .
Note (see [19]), to compute (2.8) it is not necessary to construct P, explicitly.

According to [6,23] a perturbation of (2.2) caused by the discretization (2.8) can be estimated
with probability at least 1 — § as follows

1

* 1 _1 _1
| L7 — Sx( BSxsllmg—mx < r1log? —(m™2 +n"2),

(m™2 +n72),

S S

* * — 1
1S% ¢ BSxsfq — Sk Bl < k2log?

where k1, ko > 0 are some constants.
Later on, we will need the following auxiliary statements (see [14])

HPZMP(LT)PZ” - SO(PZVLTPZV)||HK—>HK

(2.9)
1/2

< 2 (I = Poo) B ) -

(I — Po) (L)l < CILE (I — P 32 (2.10)

Here and in the sequel, we adopt the convention that C' denotes a generic positive coefficient,
which can vary from inequality to inequality and may only depend on basic parameters such as
pS, PT, K0, Bo, Yo and others which may appear below.

Note that within the framework of the Nystrém subsampling the value A7, = ||L1T/ 2([ -
P,v)||1c—ny has a probabilistic nature and depends on the way z” is subsampled. Such dependence
is considered in [9,15,18,19].

3 ERROR ESTIMATE OF THE REGULARIZED NYSTROM SUBSAMPLING

In this section, we estimate an approximation accuracy of the minimizer f, of the target expected
risk Rq(f) by using the data z = {(z;,y;)}},, sampled from the source measure p(z,y).
Theorem 3.1. Let f, satisfies the source condition (2.4) with ¢ € JFy/, and the approximate

solution Z/\’Z"V" is of the form (2.8), then for

1

A=Amn=0""(m"2+n"2) and Apz < ¢ (9-1(m—% + n_§)>

with probability 1 — § it holds

Am,n _ _1 _1 _ _1 _1 3
I = 525 e =0 (Vo1 m 3 a2 (572 0mE 7)) oy

| =
N————

1, 1 _1 11
I = 25 e =0 (1 (07 04 7)) hogh 5 )
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To prove this Theorem we will need the following statement.
Lemma 3.2. For ¢ € Fyo it holds

lo(Lr) — @ (P Sics BS o Pav) e o7t
< Clog% %(AT,ZV + (m_% + n_%) )
Proof. We start with a decomposition
o(Lr) = ¢ (P Sk BSxs Par ) = Poip(Lr) (I = Pyw) + (I = Py ) p(Lr)
+Pﬂwﬂ@ﬂgu—@GQJ@PW)+¢GQd@Pw)—¢<RWS%BSKJ@).
Then by (2.9) and (2.10) we get

1
lo(Lr) = ¢ (Por S5 BSxsPav ) Il < CILE(T = Pov)

’HKHHK

N

1
< € (I3 ~ Pl + 0 (10 = S5, BS s i) )

By Proposition 2.1 and (2.4) with probability 1 — ¢ we have
le(Lr) — ¢ (P Sk BSxs Pav) I3tk
1
< Clog% 5<AT,ZV + (mfé + nfé) )

Lemma is proved. 0

Sketch of proof. The proof of Theorem is similar to Theorem 3 [16] for ranking and regression
problems. Applying the techniques from [16] along with Lemma 3.2 one can get the statement of
the theorem. We omit the proof of Theorem since it is fairly technical and lengthy.

Remark 3.1. Note that under the conditions of Theorem 3.1 Nystrém subsampling has the
same learning rate as the one guaranteed by Theorem 1 [6] for algorithm based on the whole sample
z. Moreover, the application of the Nystrém subsampling as some projection scheme for machine
learning problems under the big data settings, such as regression and ranking, was considered
earlier in the works [8,15,19]. In particular, in [8,15] was established that such an approach allows
to achieve the above mentioned learning rate with subquadratic cost. In addition, the effectiveness
of this approach was proven in the works [3,4,9,10,12].

4 APPROXIMATION OF THE RADON-NIKODYM DERIVATE IN RKHS
In this section, we approximate the Radon-Nikodym derivative § = % which solves the integral

equation

J56 = /X K(z,2)B(x )dps(x) = /X K(z,2)dpr(x') = J31, (4.1)

where 1 is the constant function that takes value 1 everywhere. Following [6] and [7], we assume
that B(x) € Hk. Without loss of generality, we assume that 1 € Hk. Then the equation (4.1) can
be reduce to

JEJsB = JeJrl. (4.2)
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Since, in practice, the amount of the unlabeled inputs is usually much greater than that of labeled
ones, we assume that the sizes M and N ofi.i.d. samples (xll, x;, . ,x/M) and (x1, 9, ...,xN) drawn
respectively from pr and pg are much larger than m and n considered earlier. Then we define two
sample operators

’

Suaf = (f(21), f(xz), - flay)) € RY,
Snsf = (f(z1, f(za),- , flan)) € RY,
and a finite-dimensional problem

SN,s9N,sB8 = SyrSu,rl, (4.3)

which is an empirical version of the equation (4.2). Here, similar to the above notations the operators
SNt RY — Hg and Shur: RM — Hy are given as

N
SNSU " zv’m U_(Ulav27"'>UN>6R )

1
N

[

N
M
Shru(:) ZK L T)Uj, = (u1,ug,...,upy) € RM,
j:l
Further, we implement the approach from the previous section. To obtain the Radon-Nikodym

derivative from (4.3) we again apply the combination of the Nystrom subsampling and the two-

steps iterated Tikhonov regularization. Thus, the approximation to § = fil% we will seek as

;}MNNZV = ga(P2v S5 SN,$P2 ) Pav Sy pSairPav 1. (4.4)

We assume that 8 = dp T gatisfies the source condition

B =o(Ls)us, (45)

where Lg = J;Js, up € Hk, ¢ € .7:1/2.
According to [6,23]| with probability 1 — ¢ it holds

1
|S3v5:Sn.58 = SirrSuarilime < OV + M~Y/?)log? -, (4.6)
1

. Clog2 &
HLS - SN,SSN7SHHK_>HK < ﬁ? (47)

C’log% i
Ly — < 0 4.8
I = (45)

1
To simplify the subsequent presentation, let’s denote Ag v := ||LE(I — Py )|l 1 —Hy -

Theorem 4.1. Assume that 8 = de satisfies the source condition (4.5) with ¢ € Fy /5 and the
approximant ﬁM’N v given by (4.4), then for

1 1 1
OzIOéMJv:QLp ﬁ+7M

ASZD<¢< (\ﬁ \/L>> Ary <o (62! \/1N+§w>> (4.9)
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18— Bt e —O< ( < )> o8
M,N K \/> r

1
5)
Proof. First, consider the decomposition

B = BrlNaw = B = 9a(Par Sy s9n,5Paw)Par SiySar rPor 1

D=

(4.10)
= W1 + W2 + W3 + Wy,

where

w1 = B — ga(Pzr Sy sSN,5P2v )Par Sy s SN, 5Pz B;

wo = ga(Pu SN sSN,5P2v )Por Sy sSN,sPuv 8

- ga(szSN SSN SPzV)PzV SN SSN Sﬁa

w3 = ga(Pzr SN §SN, 5Pz )Par Sy s SN 58
— 9a(Pzv Sy sSN,5P2v )Pav Sy S 115
Wy = ga(quSNﬁSN,Squ) 2 Sy TSM7T1

— 9a(Pw SN sSN,5P 20 )Pov Sy rSarPar 1.

We are going to estimate the norm of each w;, i = 1,4. By Lemma 3.2 and (2.5) it is easy to show
that

lwrlle < Clogh § (w(a) + Mg+ (N71)). (4.11)
Further, we estimate the norm of we. Applying the polar decomposition and (2.5) we get
1
w2l < [|9a(Par Sk sSN,5Par) (Par Sh sSN,5Par ) ? |1 -tk

X 1 C
X || (Sn.sSn,5) 2 (I = Pyr) B3, < Ta

1/2
LT = Par)llatrrn ) 10T = Pa)ep(Lis)pas .

(Y2 = (S5,553.9) 20706

Now, by means of (4.7), (2.10) and the fact that v/# is the monotone function with confidence 1 —§
we get

C * 1/2 1/2
leellzae < —= (ILs = S5 Snslli g + 1L = Pa)llcrmue)

\/&
(4.12)

N[

1/2 C 11 1
<Y = Perlaona < <= ogt ((W)

Let’s estimate the third term in the right-hand side of (4.10). By (2.5) and (4.6) with confidence
1—0 we get

+ AS,z") AS,zl’-

1
lwsllzg < § log? %(\%ﬁ + ﬁ) (4.13)

It remains to estimate the last term in the right-hand side of (4.10). First, we rewrite wy as follows

w1 = ga(Pyw S sSN,5Pu ) Por [(SMTSMI — Ly)+ Lo(I — qu)} (I — Pyl



On learning rates for regularized Nystrém subsampling in unsupervised domain adaptation 67

Since, Hg is generated by the operator Lt and 1 € Hg, there is always p; € Hg such that
1=Lrus.
In view of this and the relations (2.5) and (4.8)
C . 1
lotliza < = (1L = Stz Sarrlinesme + 1L = Pa)lrc-rmue)
¢ .
< (I = Py ) Lrpaa e < = (ILx = Sipr S llsasr
1 L (4.14)
LA = Pao) e ) ILEU = Pl
C 11 1
< —log2 = | ——= + App | Ap .
_aog25<\ﬁ+ Tz> T,z
Summing up (4.11), (4.12), (4.13) and (4.14), we finally obtain

16— Bl < Clog? <[ (9(a) + Mg+ (N73))

() )

a \/N \/M a \/M T,ZV T,ZV‘

The regularization parameter « is chosen according with (4.9), namely

N Y
and consequently ﬁ—l—ﬁ <a= ﬁ <a, \/% < aand \/LN—F\/% < pla) = \/% < p(a), ﬁ <
o(a). Hence, by Ag,» < ¢(a) and Ar v < ¢(«) with confidence 1 — § we have
a 11
16— B s < Clog? Se(a)
(4.15)

“olo 1 (G )

Theorem is proved. 0

Remark 4.1. Previously, the approximation of the Radon-Nikodym derivative was considered
in [6,17] in the domain adaptation scenario, but without dealing with big data. The error estimate
from [6,17] coincides (by the order) with the known error estimate for problems considered under
the standard machine learning settings. We can ensure the same order of accuracy (see (4.15)) by
applying the Nystrém subsampling for class of problems dealing with big data.

5 MAIN RESULT

In this section to estimate learning rate of the approximant to the target function f* = f,,
we apply again the approach based on the Reproducing Kernel Hilbert Space concept and also the
algorithm which is a combination of the two-times iterated Tikhonov regularization and the Nystrom
subsampling. Herewith, we assume that the exact values of the Radon-Nikodym derivative 8 = dpr

T dps
are unknown. Due to this assumption, we need to deal with the matrix

. A A A
Bun = diag(Byr'y (@1), Byrn (22), - By (20)
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instead of the matrix B. Then the approximate solution (2.8) has the form
fZ/\”,M,N = gx(Pz» Sk Br,NSx3Pav )Par Sk Bu,NT-
Note (see [6]) that for any function f € Hg it holds
1S%s BSxs.f — Sk BunSxsfllre < w3ll8 = Bar e 12| f e,

where kg > 0 is some constant.
Theorem 5.1. Assume that f, € Fi; satisfies the source condition (2.4) and the approximant
fz’\l,,MN is of the form (2.8), then for

A=6"1 (logé % (m 24n"2 49 <0;1(M 2 —|—N_2))>> ,

. (5.1)

1 1 1 -1 _ — =

A <<p<9 <10g2 5 (m 2 +n2 —{—gp(@w (M™2 4+ N 2))))),
where 0(t) = tp(t), with probability 1 — ¢ it holds
1fg = foae lLasor

B 11 _1 1 1,41 1

~0fyfr (st ot et rtar v b)) ”

X @ <91 <logé % (m*% +nTE 4 (9;1(]\/—/7% +N;)>>>> >,

A
”fq - fz,z" ”HK

B 1 11 _1 _1 a1 _
—O(cp(@ <log26<m 2+n 2+g0(0‘p (M™2+ N

SIS
N
N——

N———
N———
N————

Sketch of Proof. To estimate || f; — fz)\v,M,NHHK we use the decomposition

fo—Fovaun = fo— 92(Pov Sk Bri,n SxsPav)Pov Sk BuNT
=01+ 02 + 03+ 04,
where
0'71 = fq - gA(PzVS;(SBSXSPZV)PZVS§(SBSXSPszq7
o9 1= QA(PZVS;(SBSXSPZV)Pz“S}k(SBSXSPszq
— gA(Por Sx By NSxs P2 )Par Sk By, N SxsPar fy
03 1= g/\(PzVS;(SBM,NSXSPzV)PZVS;(SBM,NSXSPZVJC(]
— ga(Por Sx By NSxs Pz )Par Sk BN Sxs fys
71 := g\ (P Sx Bu,NSxsPr )P Sk BN Sx s fg

— gx (Pz" S;}SBM,NSXSPZV )Pz” S;(S BM,N@-
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First, we estimate the norm of 75. It is easy to see that

r—1
H52HHK <A Z )\_]_IHPZVS;(SBSXSPZV - PzVS}sBM,NSXstV||HK)‘_T+J||f(J||’HK
j=0
1 * * 1 3 ROM,N
< {I19%s BSxs — Sxs BunSxsrucllfallaue < 1018 = Bar w7l fallru
C o,
< 18 - Bt e

Further, applying technique performed in Theorem 3 [16] it is easy to obtain desired estimates. We
omit full proof of Theorem since it repeats the reasoning from Theorem 3. In such a way, we give
a general idea of the proof of Theorem.

Remark 5.1. Let us analyze the error estimate (5.2). Put

m = 0(n), m"z =0 (cp (0;1 (M_% + N_%>>> .
Then the condition (5.1) can be rewritten as

1
A=0""(logz =m~2), Apm <¢ <91 <1og% 5m%>) . (5.3)

| =

Note that for ¢ € F /o the qualification 2 covers the function @(t)V/t, then ¢(t) is covered by the
qualification % and

Sles

5 < Cp(O ' (m7)).

m 1

Therefore, if
Aqgr < Cm™ 10, (5.4)

then the second assumption (5.3) holds for any ¢ € Fy 5.
On the other hand, as it has been shown in [15] under the assumption

sup || L2 Kella <C, 0<s<1,
xT

with probability 1 — § it holds
1
A7 < Clog g]z”|_5,

where 3 € [2(11_5) —&, 2(11_5)), and € is an arbitrary small positive number.

3
In view of (5.4), this means that for |z"| = O (|Z|W) the assumptions (5.1) of the Theorem 5.1

are satisfied, and the best distribution independent convergence rate is achieved within the Nystrém
subsampling. It is clear that for § > 13—0 the computational complexity of the designed Nystréom
approximant fz):Zy is subquadratic in the number of observations m. In this case the combination
of the Nystrom subsampling and the two-times iterative Tikhonov regularization (2.6) allows us

to achieve the best distribution independent learning rate with the subquadratic computational

1
complexity under a rather mild condition then K, € Range(L;? +£), where & is an arbitrary small

positive number.
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6 CONCLUSIONS

The present study is focused on the implementation of the regularized Nystrom subsampling
to unsupervised domain adaptation problems in the big data settings. To overcome the difference
between the source and the target probabilities distributions, which is typical for domain adapta-
tion, the covariate shift assumption is imposed. Within the framework of the Reproducing Kernel
Hilbert Space concept, an algorithm is constructed. This algorithm is a combination of the Nystrém
subsampling and the two-steps iterated Tikhonov regularization. Herewith, we assume that values
of the Radon-Nikodym derivative are unknown. We prove that the proposed approach not only
guarantees the same learning rate as algorithms based on the whole sample size, but also allows to
achieve subquadratic computational complexity in the number of observations.
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