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IN THE SEARCH FOR ALL ZEROS OF SMOOTH FUNCTIONS
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AHoTALIA. Mu po3ragmaeMo 6a2amosnayny 3alady 3HAXOIYKEHHS Ycix DO3B’s3KiB DiBHAHHS
f(z) = 0y mpocropi bymxniii f : [0,1] — R rakmx, mo moximma f" 3 r € {0,1,2,...} icaye
i € nenepepsHoio 3a ['bosibsiepom 3 nokasuukom ¢ € (0,1]. JocrTynHi anropurMu BHUKOPUCTOBYIOTDH
indopmanito npo 3HauenHs f ra/abo 1T HOXIJHWX y AJaNTUBHO BUOPAHHUX N TOYKaxX 1 moxubka Mix
icruaruM pose’sskom Z(f) 1 mabmmxenum poss’sakoMm Zn(f) Bumiproerbcs Bincramuio Xaycmopda
dn (Z(f), Zn(}))-

Mwu mokazyemo, 10 He3BAKAYY Ha Te, M0 HGU2ipuie noTubke O6YIb-IKOTO aJITOPUTMY € HECKIHIeH-
Ha, MOXKHa MOOYAyBaTH HeaJAIITHBHI HAOIMZKEHHs Z, TAaK, MO TOXUOKa d (Z (f), Zn(f )) 36iraeTbca 10
Hysast ipu 1 — +00. OzHak 36ixkHICTH MOXKe GyTH siK 3aBrOJIHO HOBLIBHOK. 30KpeMa, Jjisd A0BLIbHOT
nocsinoBHOCTI HabsuxeHb {Zy}n>1, fKl BUKOPUCTOBYIOTH aJANTHBHO BUOpaHi 1 3HadeHHs (DYyHKIHT
ta/abo 11 moximHi, Ta I MOBUIBHOI NOAATHBOI MOCHIOBHOCTL {7y }n>1, M0 30iraeThbcsa 70 Hyms, y
HaNIOMy IIpocTopi icHy0Th Taki dynkuii f, mo sup, s, 7, ‘du (Z(f), Zn(f)) = +oo.

Mu npunyckaemMo, 1Mo Ta caMa HIXKHS MekKa Mae Micre, {KMO0 MM HATAEMO iHQMOPMAINI PO
3HAYEHHS N JOBLILHUX Ta AJaNTUBHO BUOPAHMX JIHIHHUX (DYHKIIOHAJIB Ha f.

ABSTRACT. We consider the multi-valued problem of finding all solutions of the equation f(z) =0
in the space of functions f : [0,1] — R such that the derivative ) with r € {0,1,2,...} exists and
is Holder continuous with exponent o € (0, 1]. Available algorithms use information about values of f
and/or its derivatives at adaptively selected n points, and the error between the true solution Z(f) and
approximate solution Z,(f) is measured by the Hausdorff distance du (Z(f), Zn(f)).

We show that, despite the fact that the worst case error of any algorithm is infinite, it is possible
to construct nonadaptive approximations Z,, such that the error du (Z(f), Z;(f)) converges to zero
as n — +oo. However, the convergence can be arbitrarily slow. Specifically, for arbitrary sequence of
approximations {Zn}n21 that use n adaptively chosen function values and/or its derivatives, and for
arbitrary positive sequence {7,}n>1 converging to zero there are functions f in our space such that
Sup,>1 7o A (Z(f), Za(f)) = +o0.

We conjecture that the same lower bound holds if we allow information about values of n arbitrary
and adaptively selected linear functionals at f.

1 PRELIMINARIES
Let
D :=10,1].

For v = r + o, where r € {0,1,2,...} and 0 < ¢ < 1, let H, be the linear space of functions
f:D — R such that f € C"(D) and £ is H6lder continuous with exponent g, i.e.,

") () — )
e s VO = 10W)

0<z<y<1 |z —yl®

< +00.

(Note that [f], is a seminorm in H,.) For f € H,, denote by Z(f) the set of all zeros of f,

Z(f)={z€D| f(z)=0}.
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We formally treat Z as a multi-valued mapping acting from H, to the power set of D, i.e., Z :
H., — 2P. Our problem is to recover Z(f) based on (exact) evaluations of f and/or its derivatives,

Nof = (fE (21), F52) (22),. .., ) (2)),

where the points z; and the degrees s; of the derivatives are selected adaptively. That is, for
1 =1,2,...,n we have

v = o (fE) (21),. ., fE (@) and s = Bi(fC) (@), .., FE) (2im),

for arbitrary functions o; : R“=1 —[0,1] and 3; : R”~! — {0, 1,...,7}. Then the nth approximation
of Z(f) is given as
Zn(f) = (I)n(an)a (1.1)

where
P, : R" — 2P

is an arbitrary multi-valued mapping. The error of approximating Z(f) by Z,(f) equals

du(Z(f), Zn(1)),

where dy is the Hausdorff distance of two sets in a metric space (X, d),

dg(W, Z) := max{ sup inf d(z,w), sup inf d(w,z)}.
weW 2€Z zez weW

For our problem we obviously have X = D and d(x,y) = |x — y|. Here we use the convention that
d(0,0) =0, and dg (W, 0) = +oo for a nonempty W.
In the space H,, we distinguish functions with exactly one zero,

0y = {f e H,| #2(f) = 1}.

Remark 1.1. Observe that if we know that an underlying function f has exactly one zero,
ie, f € Hy, then we can restrict our considerations to single-valued approximations. Indeed,
denote by z(f) the only zero of f. For a given multi-valued approximation Z,, define a single-valued
approximation Z), as Z,(f) = {zn(f)}, where z,(f) is any element of Z,(f). Then

We first show a negative result concerning a worst case setting. (See, e.g., [6-8] for a general
introduction to the worst case setting.) Recall that the worst case error of an approximation Z,
with respect to a class H C H,, is given as

e (H, Zn) = sup dig (Z(f), Zu(f)-
feH

For M > 0, we correspondingly define the classes

Hy(M) = {feH,]|[f], <M},
Hy(M) = {f € Hv} [fly < M}
Observe that for all 0 < g1 < g2 <1 we have

Hrtor (M) 2 My (M) 2 Hry1 (M), (1.2)
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and we have analogous inequalities for ﬁr+g(M ).
Proposition 1.1. (cf. [5]). For any approximation Z, of the form (1.1) we have

eV (Ho(M), Zy) = o0 and eV (H (M), Z,) > 1/2.
Proof. In view of (1.2), it suffices to consider the case p = 1. Let us fix a function
U e C"(R) (1.3)

that is supported on (0,1) and unimodal in this interval with the maximum at 1/2, and Wi €
Hr+1(M). (This function will also be used later in the proof of Theorem 2.3.)

Consider the class Hy11(M). Let § = 1/(n+ 1) and € = ¥(1/2)6"*L. Suppose that for given
(adaptive in general) information consisting of evaluations at n points we have f(z;) = € and
fO(z;)=0forall 1 <s<mnandi=12,...n. (It will be clear in a moment that such information
is possible for some functions f € H,41(M).) We select an interval (a,a + 0) that does not contain
any of the points x; and define two functions: f; is the constant function equal to €, and

fol@) = € — Yas(z) with as(z) = @(T)é”“.

We have that

K - 806 =aw0 (554) - w0 (15 < arle -

so that f1, fo € Hyy1(M). Moreover, these functions share the assumed information, i.e., fi(x;) =
e = fa(z;) and fl(s)(a:i) =0= fQS)(aci) for 1 < s < r. But Z(f1) is the empty set, while Z(f2) =
{a+ §/2} # 0. This means that either dg(Z(f1), Zn(f1)) = 400 or du(Z(f2), Zn(f2)) = +0o0, as
claimed.

For the class H,.1(M), we proceed similarly. Welet § = h/(n+1) and € = ¥(1/2)6" ! with some
0 < h < 1/2, and select two intervals, (ai,a; +J) C [0, h] and (a2,a2 + 6) C [1 — h, 1], that do not
contain any of the points z;. Then the two functions fi(z) = € — g, s(x) and fo(x) = € — Vg4, 5(2)
share the same information, both are in ”}QTH(M), and the distance between their zeros equals
(ag 4+ 6/2) — (a1 +6/2) = aa — a1 > 1 — 2h. This means that the error of approximation is at least
1/2 — h. Since h can be arbitrarily small, the proposition follows. ]

We add that the lower bound 1/2 for the class 7-77 in Proposition 1.1 is achieved by the constant
approximation Z,(f) = {1/2} for all f.

Remark 1.2. Proposition 1.1 shows that smoothness only is not enough to get convergence to
the solution, and some additional assumptions on the function class are necessary. For instance,
it was shown in [3] that the bisection method is optimal in the worst case setting for the class of
continuous functions f having exactly one zero and satisfying f(0) <0 < f(1), where the minimum
error equals 2-"t1) . Moreover, this result was proven under the assumption that evaluations of n
arbitrary and adaptively selected linear functionals at f are allowed.

2  ASYMPTOTIC SETTING

Because of the negative result of Proposition 1.1 concerning the worst case setting, we switch
to an asymptotic setting. That is, we are interested in the behavior of the errors dy (Z(f), Zn(f))
as n — 400, where Z,(f) = ®,(N,f) is as before an nth approximation to Z(f). In this case, we
assume that information is nested, which means that

Nn—i—lf = (an7 f(sn)(xn)) (2'1)

with z, and s, selected adaptively depending on the value of N, f.
We separately consider the upper and the lower bounds.
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2.1 UPPER BOUND
We first construct approximations Z2! for functions in the class H,(M), i.e., for r = 0. Let
Xy, Ty, Ty Ty, - (2.2)
be an infinite sequence of pairwise different points that are dense in D, such as, for instance,

0111313571
)

The approximations ZM(f) use evaluations of f at the n first points of that sequence, i.e.,

Nof = (f(21), f(23),.-, f(})),

and are defined as follows. For given information y; = f(z}), 1 < i < n, denote by M and ffrw
respectively the lower envelope and upper envelope corresponding to this information, i.e.,

P ) = max {f(af) — Mz -1y, f2 @) = min {£af) + Ml - 2]},

1<i<n

Then
2y (f)i={zeD| M) <0< f}H(2)}.

We stress that the approximations Z,{LW use nonadaptive information.
We have that fM < f < f and therefore

Z(f) € ZM(f)

for all f € H,(M). Furthermore, the sets ZM (f) are compact and

ZM(5) 2 ZM (f).

Lemma 2.1. For all f € H,(M) we have

lim dp(Z(f), 2y (f)) = 0.

n—-+0o00

Proof. If for some n is ZM(f) = () then also Z(f) = 0 and dg(Z(f), ZM(f)) = du(0,0) = 0.
Suppose that ZM(f) is nonempty for all n. Since ZM(f) is closed, the limiting set

+oo
ZM(f) = () 22 (f)
n=1

is nonempty. Due to Lemma 2.4 of the Appendix, it suffices to show that ZM(f) = Z(f). Indeed,
suppose that z € ZM(f)\ Z(f). Without loss of generality we can assume that f(z) is positive. For

sufficiently small positive 9,
F(z)\"
)
0<o< ( M)

the function f is positive in [z — J, z + J]. Then, due to density of the sampling points (2.2) in D,
for all sufficiently large n, the lower envelopes fM are also positive in that interval, which means
that z ¢ ZM(f). O
We now modify the approximations ZM(f) to obtain approximations Z(f) that converge to
Z(f) for all f € Hy with v > 0. These are defined for n > 2 as follows. Let
M, (f) := max M if v<1,

1<i<j<n  |af — :v;-\@
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|f(@}) = f@i_y)l

i i—1 .

. >
M, (f) = Joax o ] it y>1.

Then
ZA(f) = 22D ().

Theorem 2.2. For all f € H, we have

Jim du (2(1), Z5(f)) = 0
Proof. Consider first the case of r =0, i.e., v = p. By continuity of f, for all sufficiently large n
we have [f], < 2M,,(f) < 2[f],. This means that

Z(f) < Z¥' ¢ zx () c z2Ve

and
i (Z(F), Z:(F)) < du(2(f), 227)e).

Since [ € Hg(2[f]g), in view of Lemma 2.1 we conclude that dH(Z(f),Z,’fb(f)) goes to zero as
n — +00.
In the case of 7 > 1 the theorem follows from that fact that H, is a subset of Hj. O

2.2 LOWER BOUND

To prove a lower bound in the asymptotic setting for a given sequence of approximations, one
has to construct functions for which the error converges to the solution ‘sufficiently slowly’. The first
result of this kind was presented in [9] where a kind of equivalence of the worst case and asymptotic
settings for solving linear problems was established. Those results were then generalized in various
directions, see, e.g., [1,2,10].

We now show a lower bound in the spirit of [9] for our problem of zeros finding. Specifically,
we show that the nonadaptive approximations Z; constructed in Section 2.1 are optimal in the
asymptotic setting, meaning that for any other approximations the convergence is arbitrarily slow.

Theorem 2.3. Let {Z,},>1 be an arbitrary sequence of approximations of the form (1.1) that
use nested information (2.1). Then for any M > 0 and any positive real sequence {7, }n,>1 converging
to zero there exists f* € 7?[7(M) such that

sup 7',?1 dH(Z(f*),Zn(f*)) = +o0. (2.3)

n>1

Proof. By (1.2) it suffices to find f* € fITH(M) satisfying (2.3). Moreover, in view of Remark
1.1, we can restrict our considerations to single-valued approximations only. Then we denote by 2,
the single-valued mapping corresponding to Zy, i.e., Z,(f) = {za(f)}

Suppose that the approximations z, use (adaptive) information N,. We shall construct an
infinite sequences of indexes 0 = ng < np < ne < - -+, intervals

[0,1] = [ao, bo] 2 [a1,b1] D [ag, bo] 2 -++  with 0 < by —ap <27,

and functions
0=fo<h<h<

that possess the following properties for all £ > 1:

(i) Nnk(fk+1) = Nn, (fk)
(i) Z(fr) = [ak,bx], and this set has empty intersection with the closed ball B(zn, (fx), \/Tny)-
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In the construction we use induction on k. The base case k = 0 is done. For the induction step,
suppose that we have constructed ny, [ax,br] and fi satisfying (i) and (ii) for some k& > 0. Then
Nng+1 is such that

VTl < &bk — ag).

The function fri1 is constructed by successively adding to fi finitely many ‘bump’ functions of
small support as follows. Using another induction, we first construct (locally for given k) func-
tions go, g1, -+, Gngy1—ny- We let go = fi. For the induction step, let x1,x2,...,Zn, +s be the
points at which values of gs or its derivatives are evaluated, and @, ys+1 = Onyts+1(Nny+s9s)-
If gs(zn,+s+1) > 0 then gs41 = gs. Otherwise gs41 is produced by adding to gs a ‘bump’ function

¢xnk+s+1,5(x) = ;\Ij<x_$(v{fs+l>5§+1,
where U is as in (1.3) and d, is such that 0 < d; < (by — ag)/4° and the closed ball B(xy, +s4+1,0s)
does not contain any of the points z; for 1 < ¢ < ng + s. (The last assumption assures that the
values of g5 and gs4+1 coincide at all such points.)

Denote g := gn,+1 — gn,- Then [akt1,bgtr1] is defined as an arbitrary nontrivial interval
of length at most 2~(*+1) that is contained in Z(g) and has empty intersection with the ball
B(zn,+1(f)s /Tap+1)- Such an interval exists since the diameter of the ball is at most (b —a) and
Z(g) is a sum of finitely many mutually disjoint closed intervals of total length at least g(bk —ag).

The set Z(g) \ (ax+1,bx+1) still consists of a sum of finitely many and mutually disjoint intervals,
say [cj,d;] for 1 < j < m. To complete the construction, we let

m
fk-‘rl :g+290j7

Jj=1

where

1 _ .
J

with y; = (¢j +d;)/2 and h; such that each ball B(y;, hj) does not contain any of the points z; for
1 <i < ngiq, and their sum provides a covering of the set Z(g) \ [ax+1,bk+1] in such a way that

Z(fr+1) = [ak+1, bt ]-
We claim that the desired function f* is given as

ff(x)= lim fi(z).

k—4o00

To show this, we first note that f* is well defined as it is an infinite sum of ‘bump’ functions, but
for each x only at most two of these functions do not vanish at x. Since all the ‘bump’ functions are
in Hy41(M/2), we have that f* € H,41(M). Furthermore, f* has the only zero at z(f*) such that

+00
{z(/)} = ﬂ [k, br],
k=0
and all the derivatives of f* up to rth also nullify at z(f*). Hence f* € ﬁ ( ).

Now, by (i) we have N,, (f*) = Ny, (fn,), and therefore Z,, (f*) = Z,, (fr). Since z(f*) €
[ak, bg], using (ii) we obtain that for k > 1

A (Z(f*), Zn, (f7)) = 12(f*) = 20 (f)] = [2(F7) = 20, ()] = /Ty

This implies (2.3) and completes the proof. O
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Remark 2.1. The lower bound of Theorem 2.3 shows that smoothness only is not enough to get
satisfactory asymptotic convergence to the solution for all functions in the class. It is worthwhile to
mention the result of [4] where it was shown that, similarly to the worst case setting, the convergence
rate 2~ (1) given by the bisection method cannot be essentially beaten in the asymptotic setting
for the class of continuous functions having exactly one zero and satisfying f(0) <0 < f(x). This
was proven under the assumption that evaluations of n arbitrary and adaptively selected linear
functionals at f are allowed. We conjecture a similar result for our problem, that the lower bound
of Theorem 2.3 holds true even when information about values of n arbitrary and adaptively selected
linear functionals at f is allowed.

APPENDIX

Lemma 2.4. Let Z, for n > 1 be nonempty compact sets in a normed space,
N 27322 Zp 2.
Let Z = (/2 Z,. Then for any set W we have

ngrfoo dH(VV, Zn) = dH(VV, Z).
Proof. We first show that
lim dy(Z,7Z,)=0.

n—-+00

Indeed, if this limit equals € > 0 then for all n we have di(Z, Z,,) > €. Equivalently, there are z,, € Z,
such that ||z, — z|| > € for all z € Z. Let z* be an accumulation point of the sequence {zp}n>1 (it
exists due to compactness of Z1), and 2* = limy_, 4 o 2y, . Then, by continuity, ||z* — z|| > € for all
z € Z, so that 2* ¢ Z. On the other hand, since z,, € Z; for all n > j, we have that 2* is a member
of all the sets Z,, and consequently z* € Z.

Now the lemma follows from the inequalities

dg(W, Zy) —du(Z,Z,) < du(W,2) < dg(Z, Z,) + dg(W, Z,)

by letting n — 4o00. 0
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