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In the search for all zeros of smooth functions
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Àíîòàöiÿ. Ìè ðîçãëÿäà¹ìî áàãàòîçíà÷íó çàäà÷ó çíàõîäæåííÿ óñiõ ðîçâ'ÿçêiâ ðiâíÿííÿ
f(x) = 0 ó ïðîñòîði ôóíêöié f : [0, 1] → R òàêèõ, ùî ïîõiäíà f (r) ç r ∈ {0, 1, 2, . . .} iñíó¹
i ¹ íåïåðåðâíîþ çà Ãüîëüäåðîì ç ïîêàçíèêîì ϱ ∈ (0, 1]. Äîñòóïíi àëãîðèòìè âèêîðèñòîâóþòü
iíôîðìàöiþ ïðî çíà÷åííÿ f òà/àáî ¨¨ ïîõiäíèõ ó àäàïòèâíî âèáðàíèõ n òî÷êàõ i ïîõèáêà ìiæ
iñòèííèì ðîçâ'ÿçêîì Z(f) i íàáëèæåíèì ðîçâ'ÿçêîì Zn(f) âèìiðþ¹òüñÿ âiäñòàííþ Õàóñäîðôà
dH

(
Z(f), Zn(f)

)
.

Ìè ïîêàçó¹ìî, ùî íåçâàæàþ÷è íà òå, ùî íàéãiðøà ïîõèáêà áóäü-ÿêîãî àëãîðèòìó ¹ íåñêií÷åí-
íà, ìîæíà ïîáóäóâàòè íåàäàïòèâíi íàáëèæåííÿ Z∗

n òàê, ùî ïîõèáêà dH
(
Z(f), Z∗

n(f)
)
çáiãà¹òüñÿ äî

íóëÿ ïðè n → +∞. Îäíàê çáiæíiñòü ìîæå áóòè ÿê çàâãîäíî ïîâiëüíîþ. Çîêðåìà, äëÿ äîâiëüíî¨
ïîñëiäîâíîñòi íàáëèæåíü {Zn}n≥1, ÿêi âèêîðèñòîâóþòü àäàïòèâíî âèáðàíi n çíà÷åííÿ ôóíêöi¨
òà/àáî ¨¨ ïîõiäíi, òà äëÿ äîâiëüíî¨ äîäàòíüî¨ ïîñëiäîâíîñòi {τn}n≥1, ùî çáiãà¹òüñÿ äî íóëÿ, ó
íàøîìó ïðîñòîði iñíóþòü òàêi ôóíêöi¨ f , ùî supn≥1 τ−1

n dH
(
Z(f), Zn(f)

)
= +∞.

Ìè ïðèïóñêà¹ìî, ùî òà ñàìà íèæíÿ ìåæà ìà¹ ìiñöå, ÿêùî ìè íàäà¹ìî iíôîðìàöiþ ïðî
çíà÷åííÿ n äîâiëüíèõ òà àäàïòèâíî âèáðàíèõ ëiíiéíèõ ôóíêöiîíàëiâ íà f.

Abstract. We consider the multi-valued problem of �nding all solutions of the equation f(x) = 0
in the space of functions f : [0, 1] → R such that the derivative f (r) with r ∈ {0, 1, 2, . . .} exists and
is H�older continuous with exponent ϱ ∈ (0, 1]. Available algorithms use information about values of f
and/or its derivatives at adaptively selected n points, and the error between the true solution Z(f) and
approximate solution Zn(f) is measured by the Hausdor� distance dH

(
Z(f), Zn(f)

)
.

We show that, despite the fact that the worst case error of any algorithm is in�nite, it is possible
to construct nonadaptive approximations Z∗

n such that the error dH
(
Z(f), Z∗

n(f)
)
converges to zero

as n → +∞. However, the convergence can be arbitrarily slow. Speci�cally, for arbitrary sequence of
approximations {Zn}n≥1 that use n adaptively chosen function values and/or its derivatives, and for
arbitrary positive sequence {τn}n≥1 converging to zero there are functions f in our space such that
supn≥1 τ−1

n dH
(
Z(f), Zn(f)

)
= +∞.

We conjecture that the same lower bound holds if we allow information about values of n arbitrary
and adaptively selected linear functionals at f.

1 Preliminaries

Let

D := [0, 1].

For γ = r + ϱ, where r ∈ {0, 1, 2, . . .} and 0 < ϱ ≤ 1, let Hγ be the linear space of functions
f : D → R such that f ∈ Cr(D) and f (r) is H�older continuous with exponent ϱ, i.e.,

[f ]γ := sup
0≤x<y≤1

|f (r)(x)− f (r)(y)|
|x− y|ϱ

< +∞.

(Note that [f ]γ is a seminorm in Hγ .) For f ∈ Hγ , denote by Z(f) the set of all zeros of f,

Z(f) :=
{
z ∈ D

∣∣ f(z) = 0
}
.
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We formally treat Z as a multi-valued mapping acting from Hγ to the power set of D, i.e., Z :
Hγ → 2D. Our problem is to recover Z(f) based on (exact) evaluations of f and/or its derivatives,

Nnf =
(
f (s1)(x1), f

(s2)(x2), . . . , f
(sn)(xn)

)
,

where the points xi and the degrees si of the derivatives are selected adaptively. That is, for
i = 1, 2, . . . , n we have

xi = αi

(
f (s1)(x1), . . . , f

(si−1)(xi−1)
)

and si = βi
(
f (s1)(x1), . . . , f

(si−1)(xi−1)
)
,

for arbitrary functions αi : Ri−1 → [0, 1] and βi : Ri−1 → {0, 1, . . . , r}. Then the nth approximation
of Z(f) is given as

Zn(f) := Φn(Nnf), (1.1)

where

Φn : Rn → 2D

is an arbitrary multi-valued mapping. The error of approximating Z(f) by Zn(f) equals

dH
(
Z(f), Zn(f)

)
,

where dH is the Hausdor� distance of two sets in a metric space (X, d),

dH(W,Z) := max

{
sup
w∈W

inf
z∈Z

d(z, w), sup
z∈Z

inf
w∈W

d(w, z)

}
.

For our problem we obviously have X = D and d(x, y) = |x− y|. Here we use the convention that
dH(∅, ∅) = 0, and dH(W, ∅) = +∞ for a nonempty W.

In the space Hγ , we distinguish functions with exactly one zero,

Ĥγ :=
{
f ∈ Hγ

∣∣ #Z(f) = 1
}
.

Remark 1.1. Observe that if we know that an underlying function f has exactly one zero,
i.e., f ∈ Ĥγ , then we can restrict our considerations to single-valued approximations. Indeed,
denote by z(f) the only zero of f. For a given multi-valued approximation Zn, de�ne a single-valued
approximation Z ′

n as Z ′
n(f) = {zn(f)}, where zn(f) is any element of Zn(f). Then

dH
(
Zn(f), Z(f)

)
= dH

(
Zn(f), {z(f)}

)
≥ |zn(f)− z(f)| = dH

(
Z ′
n(f), Z(f)

)
.

We �rst show a negative result concerning a worst case setting. (See, e.g., [6�8] for a general
introduction to the worst case setting.) Recall that the worst case error of an approximation Zn

with respect to a class H ⊂ Hγ , is given as

ewor(H, Zn) := sup
f∈H

dH
(
Z(f), Zn(f)

)
.

For M > 0, we correspondingly de�ne the classes

Hγ(M) :=
{
f ∈ Hγ

∣∣ [f ]γ ≤M
}
,

Ĥγ(M) :=
{
f ∈ Ĥγ

∣∣ [f ]γ ≤M
}
.

Observe that for all 0 < ϱ1 ≤ ϱ2 ≤ 1 we have

Hr+ϱ1(M) ⊇ Hr+ϱ2(M) ⊇ Hr+1(M), (1.2)
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and we have analogous inequalities for Ĥr+ϱ(M).
Proposition 1.1. (cf. [5]). For any approximation Zn of the form (1.1) we have

ewor
(
Hγ(M), Zn

)
= +∞ and ewor

(
Ĥγ(M), Zn

)
≥ 1/2.

Proof. In view of (1.2), it su�ces to consider the case ϱ = 1. Let us �x a function

Ψ ∈ Cr(R) (1.3)

that is supported on (0, 1) and unimodal in this interval with the maximum at 1/2, and Ψ|[0,1] ∈
Hr+1(M). (This function will also be used later in the proof of Theorem 2.3.)

Consider the class Hr+1(M). Let δ = 1/(n + 1) and ϵ = Ψ(1/2)δr+1. Suppose that for given
(adaptive in general) information consisting of evaluations at n points we have f(xi) = ϵ and
f (s)(xi) = 0 for all 1 ≤ s ≤ n and i = 1, 2, . . . n. (It will be clear in a moment that such information
is possible for some functions f ∈ Hr+1(M).) We select an interval (a, a+ δ) that does not contain
any of the points xi and de�ne two functions: f1 is the constant function equal to ϵ, and

f2(x) = ϵ− ψa,δ(x) with ψa,δ(x) = Ψ

(
x− a

δ

)
δr+1.

We have that ∣∣∣f (r)2 (x)− f
(r)
2 (y)

∣∣∣ = δ

∣∣∣∣Ψ(r)

(
x− a

δ

)
−Ψ(r)

(
y − a

δ

)∣∣∣∣ ≤M |x− y|,

so that f1, f2 ∈ Hr+1(M). Moreover, these functions share the assumed information, i.e., f1(xi) =

ϵ = f2(xi) and f
(s)
1 (xi) = 0 = f

(s)
2 (xi) for 1 ≤ s ≤ r. But Z(f1) is the empty set, while Z(f2) =

{a + δ/2} ̸= ∅. This means that either dH(Z(f1), Zn(f1)) = +∞ or dH(Z(f2), Zn(f2)) = +∞, as
claimed.

For the class Ĥr+1(M), we proceed similarly. We let δ = h/(n+1) and ϵ = Ψ(1/2)δr+1 with some
0 < h < 1/2, and select two intervals, (a1, a1 + δ) ⊂ [0, h] and (a2, a2 + δ) ⊂ [1− h, 1], that do not
contain any of the points xi. Then the two functions f1(x) = ϵ− ψa1,δ(x) and f2(x) = ϵ− ψa2,δ(x)

share the same information, both are in Ĥr+1(M), and the distance between their zeros equals
(a2 + δ/2)− (a1 + δ/2) = a2 − a1 ≥ 1− 2h. This means that the error of approximation is at least
1/2− h. Since h can be arbitrarily small, the proposition follows. □

We add that the lower bound 1/2 for the class Ĥγ in Proposition 1.1 is achieved by the constant
approximation Zn(f) = {1/2} for all f.

Remark 1.2. Proposition 1.1 shows that smoothness only is not enough to get convergence to
the solution, and some additional assumptions on the function class are necessary. For instance,
it was shown in [3] that the bisection method is optimal in the worst case setting for the class of
continuous functions f having exactly one zero and satisfying f(0) ≤ 0 ≤ f(1), where the minimum
error equals 2−(n+1). Moreover, this result was proven under the assumption that evaluations of n
arbitrary and adaptively selected linear functionals at f are allowed.

2 Asymptotic setting

Because of the negative result of Proposition 1.1 concerning the worst case setting, we switch
to an asymptotic setting. That is, we are interested in the behavior of the errors dH

(
Z(f), Zn(f)

)
as n → +∞, where Zn(f) = Φn(Nnf) is as before an nth approximation to Z(f). In this case, we
assume that information is nested, which means that

Nn+1f =
(
Nnf, f

(sn)(xn)
)

(2.1)

with xn and sn selected adaptively depending on the value of Nnf.
We separately consider the upper and the lower bounds.
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2.1 Upper bound

We �rst construct approximations ZM
n for functions in the class Hϱ(M), i.e., for r = 0. Let

x∗1, x
∗
2, x

∗
3, x

∗
4, . . . (2.2)

be an in�nite sequence of pairwise di�erent points that are dense in D, such as, for instance,

0, 1, 1
2 ,

1
4 ,

3
4 ,

1
8 ,

3
8 ,

5
8 ,

7
8 ,

1
16 , . . . .

The approximations ZM
n (f) use evaluations of f at the n �rst points of that sequence, i.e.,

Nnf =
(
f(x∗1), f(x

∗
2), . . . , f(x

∗
n)
)
,

and are de�ned as follows. For given information yi = f(x∗i ), 1 ≤ i ≤ n, denote by fM− and fM+
respectively the lower envelope and upper envelope corresponding to this information, i.e.,

fM− (x) := max
1≤i≤n

{
f(x∗i )−M |x− x∗i |ϱ

}
, fM+ (x) := min

1≤i≤n

{
f(x∗i ) +M |x− x∗i |ϱ

}
.

Then
ZM
n (f) :=

{
x ∈ D

∣∣ fM− (x) ≤ 0 ≤ fM+ (x)
}
.

We stress that the approximations ZM
n use nonadaptive information.

We have that fM− ≤ f ≤ fM+ and therefore

Z(f) ⊆ ZM
n (f)

for all f ∈ Hϱ(M). Furthermore, the sets ZM
n (f) are compact and

ZM
n (f) ⊇ ZM

n+1(f).

Lemma 2.1. For all f ∈ Hϱ(M) we have

lim
n→+∞

dH
(
Z(f), ZM

n (f)
)
= 0.

Proof. If for some n is ZM
n (f) = ∅ then also Z(f) = ∅ and dH(Z(f), ZM

n (f)) = dH(∅, ∅) = 0.
Suppose that ZM

n (f) is nonempty for all n. Since ZM
n (f) is closed, the limiting set

ZM (f) :=

+∞⋂
n=1

ZM
n (f)

is nonempty. Due to Lemma 2.4 of the Appendix, it su�ces to show that ZM (f) = Z(f). Indeed,
suppose that z ∈ ZM (f)\Z(f).Without loss of generality we can assume that f(z) is positive. For
su�ciently small positive δ,

0 < δ <

(
f(z)

M

)1/ϱ

,

the function f is positive in [z − δ, z + δ]. Then, due to density of the sampling points (2.2) in D,
for all su�ciently large n, the lower envelopes fM− are also positive in that interval, which means
that z /∈ ZM (f). □

We now modify the approximations ZM
n (f) to obtain approximations Z∗

n(f) that converge to
Z(f) for all f ∈ Hγ with γ > 0. These are de�ned for n ≥ 2 as follows. Let

Mn(f) := max
1≤i<j≤n

|f(x∗i )− f(x∗j )|
|x∗i − x∗j |ϱ

if γ < 1,
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and

Mn(f) := max
2≤i≤n

|f(x∗i )− f(x∗i−1)|
|x∗i − x∗i−1|

if γ ≥ 1.

Then

Z∗
n(f) := Z2Mn(f)

n (f).

Theorem 2.2. For all f ∈ Hγ we have

lim
n→+∞

dH
(
Z(f), Z∗

n(f)
)
= 0.

Proof. Consider �rst the case of r = 0, i.e., γ = ϱ. By continuity of f, for all su�ciently large n
we have [f ]ϱ ≤ 2Mn(f) ≤ 2[f ]ϱ. This means that

Z(f) ⊆ Z
[f ]ϱ
n ⊆ Z∗

n(f) ⊆ Z
2[f ]ϱ
n

and

dH
(
Z(f), Z∗

n(f)
)
≤ dH

(
Z(f), Z

2[f ]ϱ
n

)
.

Since f ∈ Hϱ

(
2[f ]ϱ

)
, in view of Lemma 2.1 we conclude that dH

(
Z(f), Z∗

n(f)
)
goes to zero as

n→ +∞.
In the case of r ≥ 1 the theorem follows from that fact that Hγ is a subset of H1. □

2.2 Lower bound

To prove a lower bound in the asymptotic setting for a given sequence of approximations, one
has to construct functions for which the error converges to the solution `su�ciently slowly'. The �rst
result of this kind was presented in [9] where a kind of equivalence of the worst case and asymptotic
settings for solving linear problems was established. Those results were then generalized in various
directions, see, e.g., [1, 2, 10].

We now show a lower bound in the spirit of [9] for our problem of zeros �nding. Speci�cally,
we show that the nonadaptive approximations Z∗

n constructed in Section 2.1 are optimal in the
asymptotic setting, meaning that for any other approximations the convergence is arbitrarily slow.

Theorem 2.3. Let {Zn}n≥1 be an arbitrary sequence of approximations of the form (1.1) that
use nested information (2.1). Then for anyM > 0 and any positive real sequence {τn}n≥1 converging

to zero there exists f∗ ∈ Ĥγ(M) such that

sup
n≥1

τ−1
n dH

(
Z(f∗), Zn(f

∗)
)
= +∞. (2.3)

Proof. By (1.2) it su�ces to �nd f∗ ∈ Ĥr+1(M) satisfying (2.3). Moreover, in view of Remark
1.1, we can restrict our considerations to single-valued approximations only. Then we denote by zn
the single-valued mapping corresponding to Zn, i.e., Zn(f) = {zn(f)}.

Suppose that the approximations zn use (adaptive) information Nn. We shall construct an
in�nite sequences of indexes 0 = n0 < n1 < n2 < · · · , intervals

[0, 1] = [a0, b0] ⊇ [a1, b1] ⊇ [a2, b2] ⊇ · · · with 0 < bk − ak ≤ 2−k,

and functions

0 = f0 ≤ f1 ≤ f2 ≤ · · ·

that possess the following properties for all k ≥ 1:

(i) Nnk
(fk+1) = Nnk

(fk),
(ii) Z(fk) = [ak, bk], and this set has empty intersection with the closed ball B

(
znk

(fk),
√
τnk

)
.
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In the construction we use induction on k. The base case k = 0 is done. For the induction step,
suppose that we have constructed nk, [ak, bk] and fk satisfying (i) and (ii) for some k ≥ 0. Then
nk+1 is such that √

τnk+1 ≤ 1
6(bk − ak).

The function fk+1 is constructed by successively adding to fk �nitely many `bump' functions of
small support as follows. Using another induction, we �rst construct (locally for given k) func-
tions g0, g1, . . . , gnk+1−nk

. We let g0 = fk. For the induction step, let x1, x2, . . . , xnk+s be the
points at which values of gs or its derivatives are evaluated, and xnk+s+1 = αnk+s+1(Nnk+sgs).
If gs(xnk+s+1) > 0 then gs+1 = gs. Otherwise gs+1 is produced by adding to gs a `bump' function

ψxnk+s+1,δ(x) =
1

2
Ψ

(
x− xnk+s+1

δs

)
δr+1
s ,

where Ψ is as in (1.3) and δs is such that 0 < δs ≤ (bk − ak)/4
s and the closed ball B(xnk+s+1, δs)

does not contain any of the points xi for 1 ≤ i ≤ nk + s. (The last assumption assures that the
values of gs and gs+1 coincide at all such points.)

Denote g := gnk+1 − gnk
. Then [ak+1, bk+1] is de�ned as an arbitrary nontrivial interval

of length at most 2−(k+1) that is contained in Z(g) and has empty intersection with the ball
B
(
znk+1(f),

√
τnk+1

)
. Such an interval exists since the diameter of the ball is at most 1

3(bk−ak) and
Z(g) is a sum of �nitely many mutually disjoint closed intervals of total length at least 2

3(bk − ak).
The set Z(g)\(ak+1, bk+1) still consists of a sum of �nitely many and mutually disjoint intervals,

say [cj , dj ] for 1 ≤ j ≤ m. To complete the construction, we let

fk+1 = g +
m∑
j=1

φj ,

where

φj(x) =
1

2
Ψ

(
x− yj
hj

)
hr+1
j , 1 ≤ j ≤ m,

with yj = (cj + dj)/2 and hj such that each ball B(yj , hj) does not contain any of the points xi for
1 ≤ i ≤ nk+1, and their sum provides a covering of the set Z(g) \ [ak+1, bk+1] in such a way that
Z(fk+1) = [ak+1, bk+1].

We claim that the desired function f∗ is given as

f∗(x) = lim
k→+∞

fk(x).

To show this, we �rst note that f∗ is well de�ned as it is an in�nite sum of `bump' functions, but
for each x only at most two of these functions do not vanish at x. Since all the `bump' functions are
in Hr+1(M/2), we have that f∗ ∈ Hr+1(M). Furthermore, f∗ has the only zero at z(f∗) such that

{
z(f∗)

}
=

+∞⋂
k=0

[ak, bk],

and all the derivatives of f∗ up to rth also nullify at z(f∗). Hence f∗ ∈ Ĥr+1(M).
Now, by (i) we have Nnk

(f∗) = Nnk
(fnk

), and therefore Znk
(f∗) = Znk

(fk). Since z(f
∗) ∈

[ak, bk], using (ii) we obtain that for k ≥ 1

dH
(
Z(f∗), Znk

(f∗)
)
= |z(f∗)− znk

(f∗)| = |z(f∗)− znk
(fk)| ≥

√
τnk

.

This implies (2.3) and completes the proof. □
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Remark 2.1. The lower bound of Theorem 2.3 shows that smoothness only is not enough to get
satisfactory asymptotic convergence to the solution for all functions in the class. It is worthwhile to
mention the result of [4] where it was shown that, similarly to the worst case setting, the convergence
rate 2−(n+1) given by the bisection method cannot be essentially beaten in the asymptotic setting
for the class of continuous functions having exactly one zero and satisfying f(0) ≤ 0 ≤ f(x). This
was proven under the assumption that evaluations of n arbitrary and adaptively selected linear
functionals at f are allowed. We conjecture a similar result for our problem, that the lower bound
of Theorem 2.3 holds true even when information about values of n arbitrary and adaptively selected
linear functionals at f is allowed.

Appendix

Lemma 2.4. Let Zn for n ≥ 1 be nonempty compact sets in a normed space,

Z1 ⊇ Z2 ⊇ · · · ⊇ Zn ⊇ · · · .

Let Z =
⋂+∞

n=1 Zn. Then for any set W we have

lim
n→+∞

dH(W,Zn) = dH(W,Z).

Proof. We �rst show that

lim
n→+∞

dH(Z,Zn) = 0.

Indeed, if this limit equals ϵ > 0 then for all n we have dH(Z,Zn) ≥ ϵ. Equivalently, there are xn ∈ Zn

such that ∥xn − z∥ ≥ ϵ for all z ∈ Z. Let x∗ be an accumulation point of the sequence {xn}n≥1 (it
exists due to compactness of Z1), and x

∗ = limk→+∞ xnk
. Then, by continuity, ∥x∗ − z∥ ≥ ϵ for all

z ∈ Z, so that x∗ /∈ Z. On the other hand, since xn ∈ Zj for all n ≥ j, we have that x∗ is a member
of all the sets Zn, and consequently x∗ ∈ Z.

Now the lemma follows from the inequalities

dH(W,Zn)− dH(Z,Zn) ≤ dH(W,Z) ≤ dH(Z,Zn) + dH(W,Zn)

by letting n→ +∞. □
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