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Àíîòàöiÿ. Øèðîêå êîëî çàäà÷ iç ðiçíèõ ãàëóçåé ìîæå áóòè ðîçâ'ÿçàíî øëÿõîì çâåäåííÿ ¨õ

äî íåëiíiéíèõ ðiâíÿíü ó âiäïîâiäíèõ ïðîñòîðàõ. Öi ðiâíÿííÿ çàçâè÷àé ðîçâ'ÿçóþòüñÿ iòåðàöiéíèìè

ìåòîäàìè. Ðîçãëÿíóòî òðèêðîêîâi iòåðàöiéíi ìåòîäè òèïó Êóð÷àòîâà äëÿ ðîçâ'ÿçóâàííÿ íåëiíiéíèõ

îïåðàòîðíèõ ðiâíÿíü, âèêîðèñòîâóþ÷è àïðîêñèìàöiþ ïîõiäíî¨ Ôðåøå îïåðàòîðà íåëiíiéíîãî ðiâ-

íÿííÿ ïîäiëåíèìè ðiçíèöÿìè. Ïðîâåäåíî àíàëiç ëîêàëüíî¨ òà íàïiâëîêàëüíî¨ çáiæíîñòi, âèêîðèñ-

òîâóþ÷è ëèøå óìîâè äëÿ îïåðàòîðiâ, òà ç'ÿñîâàíî óìîâè òà øâèäêiñòü çáiæíîñòi öèõ ìåòîäiâ. Êðiì

òîãî, çíàéäåíî îáëàñòü ¹äèíîñòi ðîçâ'ÿçêó. Ðåçóëüòàòè ÷èñåëüíèõ åêñïåðèìåíòiâ ïiäòâåðäæóþòü

òåîðåòè÷íi ðåçóëüòàòè. Íîâà iäåÿ ìîæå áóòè âèêîðèñòàíà â iíøèõ iòåðàöiéíèõ ìåòîäàõ, ùî

ïîòðåáóþòü çíàõîäæåííÿ îáåðíåíîãî îïåðàòîðà äî ïîäiëåíèõ ðiçíèöü ïåðøîãî ïîðÿäêó.

Abstract. A plethora of applications from diverse disciplines can be solved if reduced to nonlin-

ear equations in suitable abstract spaces. Such equations are solved mostly iteratively. That is why,

three-step iterative methods of the Kurchatov-type for solving nonlinear operator equations are investi-

gated using approximation by the Fr�echet derivative of an operator of a nonlinear equation by divided

di�erences. We study the local and the semi-local convergence using conditions only on the operators

on the methods. The conditions and speed of convergence of these methods are determined. Moreover,

the domain of uniqueness is found for the solution. The results of numerical experiments validate the

theoretical results. The new idea can be used on other iterative methods utilizing inverses of divided

di�erences of order one.

1 Introduction

Let C1 and C2 stand for Banach spaces and Ω be a convex and nonempty subset of C1. A
plethora of applications from di�erent areas can be solved if reduced to a nonlinear equation of the
form

Q(x) = 0, (1.1)

where Q : Ω → C2 is a continuous operator. This reduction takes place using Mathematical
Modelling [1, 2]. Then, a solution denoted by s∗ ∈ Ω is to be found that answers the application.
The solution may be a number or a vector or a matrix or a function. This task is very challenging in
general. Obviously, the solution s∗ is desired in closed form. However, in practice, this is achievable
only in rare cases. That is why researchers mostly develop iterative methods convergent to s∗

under some conditions on the initial data. Newton's method is an e�ective method for solving the
equation (1.2). However, it requires an analytical de�nition of the operator Q′. If the operator
Q is nondi�erentiable, di�erence methods can be used. The simplest di�erence method is the
Secant method [1, 2]. Many works are devoted to the study of this method. It uses the �rst-order
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divided di�erence instead of the Fr�echet derivative. The order of convergence of the Secant method

is 1+
√
5

2 . The quadratic order of convergence has a linear interpolation method �rst proposed
by V.A.Kurchatov [3] in the one-dimensional case. In Banach spaces, the Kurchatov method
was �rst investigated by S.M. Shakhno [4, 5]. The works of I.K.Argyros, H.Ren, J.A.Ezquerro,
M.A.Hern�andez [6�8] are devoted to the study of this method. Two-step variants of the Kurchatov
method were studied by I.K.Argyros, S.George, H.Kumar, P.K.Parida, and S.M. Shakhno [9�11].
Wang et al. [12,13] and Cordero et al. [14,15] presented some Kurchatov-type methods with memory
by using Kurchatov's divided di�erence operator. Some multi-step methods are explored in Ahmad
et. al., Behl et. al. [16, 17].

Three-step methods of the Kurchatov-type were proposed by X.Wang, Jin, Y.; Zhao, Y and
X.Chen [12, 13]. The convergence is developed for two three-step Kurchatov-like methods de�ned
by

x0, y−1 ∈ Ω, yn = xn − [2xn − yn−1, yn−1;Q]−1Q(xn),

zn = xn − [yn, xn;Q]−1Q(xn),

xn+1 = zn − [yn, zn;Q]−1Q(zn)

(1.2)

and
x0, z−1 ∈ Ω, yn = xn − [2xn − zn−1, zn−1;Q]−1Q(xn),

zn = xn − [yn, xn;Q]−1Q(xn),

xn+1 = zn − [yn, zn;Q]−1Q(zn),

(1.3)

where [·, ·;Q] : C1 × C2 → L(C1, C2) is divided di�erence of order one, and L(C1, C2) stands for
the space of continuous operator from C1 into C2. There exist restriction with results using Taylor
series to show convergence of iterative methods which constitute the motivation for this paper.

Motivation

(i) The local convergence order 4.56, and 5, is provided for method (1.2) and method (1.3),
respectively in [13] for C1 = C2 = Ri (i is a natural number) using Taylor series, and conditions
which are reaching up to the sixth derivative of the operator Q not in these methods. Let us
consider a simple function

Q(t) =

δ1 log t
2 + δ2t

5 + δ3t
4, if t ̸= 0,

0, if t = 0.

Moreover, restrict the function Q on the inteval Ω = [−3
2 , 2] and suppose that the real

parametrs δk, k = 1, 2, 3 satisfy δ1 ̸= 0 and δ2 + δ3 = 0. Then, s∗ = 1 ∈ Ω solves the
equation Q(t) = 0. However, the function Q(3)(t) is not continuous at t = 0 ∈ Ω. Thus,
the results in [13] cannot assure that limn→∞ xn = s∗ for either method. But these methods
converge, if e.g. x0 = 1.2. This is an indication that the conditions in [13] can be replaced by
weaker ones.

(ii) There are no estimates on the norms ∥s∗ − xn∥, say upper bounds that can tell us in advance
the number of iterates to be carried out to arrive at an error tolerance ε > 0.

(iii) No results are discussing the isolution of the solution s∗.

(iv) The results in [13] are restricted on Ri.

(v) The more interesting semilocal analysis of convergence for both methods is not studied in
previous works.

The restrictions (i) � (v) are dealt with positively in this paper. In particular,
Novelty

(i)' The new su�cient conditions involve only the operator on these methods.
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(ii)' The number of iterates to reach error tolerance ε > 0 is known in advance, since a priori error
estimates are given in this paper.

(iii)' Isolation of the solution is also discussed.

(iv)' The new results hold for Banach space-valued operators.

(v)' The semi-local analysis of convergence relies on majorizing sequences.

Both the local as well as semi-local analyses are given under conditions on generalized continuity
for the divided di�erence [·, ·;Q] [2, 6, 7, 9, 11]. The same approach is applicable to similar methods
utilizing Taylor series and inverses of linear operators [1, 3�5,8, 10,12,14�20].

We provide the local as well as the semi-local convergence analysis for these methods under
generalized conditions. The local convergence is given in Section 2. The semi-local convergence
is presented in Section 3, followed by the examples and the concluding remarks in Section 4 and
Section 5, respectively.

2 Local convergence analysis

The symbols V (s∗, δ), V [s∗, δ] are used to denote the open and close ball, respectively in C1

with center s∗ and radius δ > 0. Let also A stand for the interval [0,+∞). Consider functions
ω0 : A0 × A0 → R+ and ω : A0 × A0 → R+ for A0 ⊂ A. These functions are assumed to be
continuous and nondecreasing. The local convergence conditions relating the real functions ω0 and
ω to the operators on both methods (1.2) and (1.3) provided that there exist s∗ ∈ Ω solving the
equation Q(x) = 0.

Suppose:
(H1) There exists a minimal positive solution denoted by ρ0 of the equation

ω0(3t, t)− 1 = 0.

Set A0 = [0, ρ0].
(H2) There exists a function w with domain A0 × A0 and values in R+ such that for
g1 : A0 → R+, g2 : A0 → R+ and g3 : A0 → R+ designed by

g1(t) =
w(2t, t)

1− w0(3t, t)
,

g2(t) =
w((1 + g1(t))t, t)

1− w0(g1(t)t, t)

and

g3(t) =
w((g1(t) + g2(t))t, g2(t)t)g2(t)

1− w0(g1(t)t, g2(t)t)
,

the equations gk(t)−1 = 0, k = 1, 2, 3 have minimal positive solutions. These solutions are denoted
by rk, respectively.

Set

r = min{rk} and A1 = [0, r). (2.1)

These de�nitions imply that for each t ∈ A1

0 ≤ w0(3t, t) < 1, (2.2)

0 ≤ w0(g1(t)t, t) < 1, (2.3)

0 ≤ w0(g1(t)t, g2(t)t) < 1 (2.4)
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and

0 ≤ gk(t) < 1. (2.5)

The parameter r is shown to be a radius of convergence for the method (1.2), see Theorem 2.1. The
parameter r and the functions w0 and w are associated to the divided di�erence on the method
(1.2), and the method (1.3).
(H3) There exists an invertible operator L ∈ L(C1, C2).
(H4) ∥L−1([x, y;Q]− L)∥ ≤ ω0(∥x− s∗∥, ∥y − s∗∥) for each x, y ∈ Ω.
Set Ω1 = Ω ∩ V (s∗, ϱ0).
(H5) ∥L−1([x, y;Q]− [z, s∗;Q])∥ ≤ ω(∥x− z∥, ∥y − s∗∥) for each x, y, z ∈ Ω1 and ω : A0 ×A0 → R.
and
(H6) V [s∗, r̄] ⊂ Ω, where r̄ = 3r.

r > 0 is determined later based on which method is used.
Hence, we arrived at:
Theorem 2.1. Suppose that the conditions (H1)�(H6) hold, and x0, y−1 ∈ V (s∗, r) − {s∗}.

Then, the sequence {xn} provided by the method (1.2) exists, stays in the ball V (s∗, r) and is

convergent to s∗ so that

∥yn − s∗∥ ≤ g1(r)∥xn − s∗∥ ≤ ∥xn − s∗∥ < r, (2.6)

∥zn − s∗∥ ≤ g2(r)∥xn − s∗∥ ≤ ∥xn − s∗∥ (2.7)

and

∥xn+1 − s∗∥ ≤ g3(r)∥xn − s∗∥ ≤ ∥xn − s∗∥. (2.8)

Proof. The choice of x0 and y−1 ∈ V (s∗, r)− {s∗}, (2.1), (2.2), and (H3) - (H5) imply that

∥2x0 − y−1 − s∗∥ ≤ 2∥x0 − s∗∥+ ∥y−1 − s∗∥ ≤ 2r + r = 3r = r̄

and
∥L−1([2x0 − y−1, y−1;Q]− L)∥ ≤ w0(2∥x0 − s∗∥+ ∥y−1 − s∗∥, ∥y−1 − s∗∥) < 1.

Then, the Banach Lemma on invertible operators assures the existence of the inverse for the
linear operator [2x0 − y−1, y−1;Q] [1, 2, 6, 7, 9, 11,18] and

∥[2x0 − y−1, y−1;Q]−1L∥ ≤ 1

1− w0(2∥x0 − s∗∥+ ∥y−1 − s∗∥, ∥y−1 − s∗∥)
. (2.9)

Thus, the iterate y0 exists by the �rst substep of the method (1.2) if n = 0. We can also write

y0 − x∗ = x0 − x∗ − [2x0 − y−1, y−1;Q]−1Q(x0) (2.10)

= [2x0 − y−1, y−1;Q]−1([2x0 − y−1, y−1;Q]− [x0, s
∗;Q])(x0 − s∗).

The application of (H5), (2.7) (for k = 1), (2.9) in (2.10) and give

∥y0 − x∗∥ ≤ h
(1)
0 :=

w(∥x0 − y−1∥, ∥y−1 − s∗∥)∥x0 − s∗∥
1− w0(2∥x0 − s∗∥+ ∥y−1 − s∗∥, ∥y−1 − s∗∥)

(2.11)

≤ g1(r)∥x0 − s∗∥ ≤ ∥x0 − s∗∥ < r,

since ∥x0 − y−1∥ ≤ ∥x0 − s∗∥ + ∥y−1 − s∗∥ ≤ r + r = 2r. Hence, the item (2.6) holds if n = 0 and
the iterate y0 ∈ V (s∗, r). It also follows from (2.1), (2.3), (H4) and (2.11) that
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∥L−1([y0, x0;Q]− L)∥ ≤ w0(∥y0 − s∗∥, ∥x0 − s∗∥) < 1.

Thus, the operator [y0, x0;Q] is invertible, and

∥[y0, x0;Q]−1L∥ ≤ 1

1− w0(∥y0 − s∗∥, ∥x0 − s∗∥)
. (2.12)

Moreover, the iterate z0 exists by the second substep of the method (1.2), and we can write

z0 − s∗ = x0 − s∗ − [y0, x0;Q]−1Q(x0) (2.13)

= [y0, x0;Q]−1([y0, x0;Q]− [x0, s
∗;Q])(x0 − s∗).

The application of (H5), and the usage of (2.1), (2.5), (2.12) in (2.13) give in turn

∥z0 − x∗∥ ≤ h
(2)
0 :=

w(∥y0 − x0∥, ∥x0 − s∗∥)∥x0 − s∗∥
1− w0(∥y0 − s∗∥, ∥x0 − s∗∥)

≤ g2(r)∥x0 − s∗∥ ≤ ∥x0 − s∗∥.

So, the item (2.7) holds if n = 0, and the iterate z0 ∈ V (s∗, r). Then, the application of (2.1), (2.4),
and (H5) give

∥L−1([y0, z0;Q]− L)∥ ≤ w0(∥y0 − s∗∥, ∥z0 − x∗∥) < 1.

Hence, the linear operator [y0, z0;Q] is invertible, and

∥[y0, z0;Q]−1L∥ ≤ 1

1− w0(∥y0 − s∗∥, ∥z0 − s∗∥)
. (2.14)

Furthermore, the iterate x1 exists, and we can write

x1 − s∗ = z0 − s∗ − [y0, z0;Q]−1F (z0) (2.15)

= [y0, z0;Q]−1([y0, z0;Q]− [z0, s
∗;Q])(z0 − s∗).

Using (2.1), (2.5) (for k = 3), (2.14), in (2.15) we get in turn that

∥x1 − s∗∥ ≤ h
(3)
0 :=

w(∥y0 − z0∥, ∥z0 − s∗∥)∥z0 − s∗∥
1− w0(∥y0 − s∗∥, ∥z0 − s∗∥)

≤ g3(r)∥x0 − s∗∥ ≤ ∥x0 − s∗∥.

Thus, the item (2.8) holds and the iterate x1 ∈ V (s∗, r). The calculations can be repeated provided
x0, y0, x1 are switched by xm, ym, xm+1 (m a nature number). This way the induction for items
(2.6) � (2.8) is completed, and the iterates xm, ym, xm+1 ∈ V (s∗, r). Then, from the estimation

∥xm+1 − s∗∥ ≤ c∥xm − s∗∥ ≤ cm+1∥x0 − s∗∥ < r,

where c = g3(∥x0 − s∗∥) ∈ [0, 1), we conclude that lim
m→∞

xm = s∗. □
Next, the local analysis of convergence for the method (1.3) follows analogously.
Theorem 2.2. Suppose that the conditions (H1) − (H6) hold, and x0, y−1 ∈ V (s∗, r) −

{s∗}. Then, the sequence {xn} given by the method (1.3) exists, stays in the ball V (s∗, r), and is

convergent to s∗ such that the items (2.6)-(2.8) hold.

Proof. We follow the proof of Theorem 2.1. But we have instead the estimates

∥ym − x∗∥ ≤ w(∥xm − zm−1∥, ∥zm−1 − s∗∥)∥xm − s∗∥
1− w0(2∥xm − s∗∥+ ∥zm−1 − s∗∥, ∥zm−1 − s∗∥)

≤ g1(r)∥xm − s∗∥ ≤ ∥xm − s∗∥,
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∥zm − s∗∥ ≤ w(∥ym − xm∥, ∥xm − s∗∥)∥xm − s∗∥
1− w0(∥ym − x∗∥, ∥xm − s∗∥)

≤ g2(r)∥xm − s∗∥ ≤ ∥xm − s∗∥

and

∥xm+1 − s∗∥ ≤ w(∥zm − ym∥, ∥zm − s∗∥)∥zm − s∗∥
1− w0(∥ym − s∗∥, ∥zm − s∗∥)

≤ g3(r)∥xm − s∗∥ ≤ ∥xm − s∗∥.

□
The uniqueness of the solution is determined in the next result.
Proposition 2.1. (a) The conditions (H3) and (H4) hold in the ball V (s∗, ϱ) for some ϱ > 0.

and

(b) There exists ϱ1 > ϱ such that

ω0(0, ϱ1) < 1.

Set Ω2 = Ω ∩ V [s∗, ϱ1].
Then, the equation Q(x) = 0 is uniquely solvable by s∗ in the domain Ω2.

Proof. Assume the existence of the divided di�erence [s∗, v;Q] for v ̸= s∗. Then, it follows by
(a)-(b) that

∥L−1([s∗, v;Q]− L)∥ ≤ ω0(0, ∥s∗ − v∥) ≤ ω0(0, ϱ1) < 1.

Thus, the Banach Lemma asserts [s∗, v;Q]−1 ∈ L(C1, C2). Consequently, v = s∗ follows from the
identity

s∗ − v = [s∗, v;Q]−1(Q(s∗)−Q(v)) = [s∗, v;Q]−1(0).

□
Remark 2.1. A possible choice for ϱ = r.

3 Semi-local convergence

The functions υ0 and υ correspond to ω0, ω of the previous section and have the same properties.
Moreover, the conditions relating them to the methods (1.2) and (1.3) are:
(S1) There exists a minimum positive solution denoted by ρ2 of the equation v0(3t, t)− 1 = 0. Set
A1 = [0, ρ2).
(S2) There exists function v : A1 ×A1 → R+ which is continuous as well as non-decreasing.

De�ne sequences for b−1, a0, b0 ≥ 0 with a0 ≤ b−1:

cn = bn +
υ(bn − bn−1, bn−1 − an)(bn − an)

1− υ0(bn − a0, an − a0)
,

γn = (1 + υ0(cn − a0, an − a0))(cn − an)

+(1 + υ0(2(an − a0) + (bn−1 − a0), bn−1 − a0))(bn − an),
(3.1)

an+1 = cn +
γn

1 + υ(bn − a0, cn − a0)
,

δn+1 = (1 + υ0(an+1 − a0, an − a0))(an+1 − an)

+(1 + υ0(2(an − a0) + bn−1 − a0, bn−1 − a0))(bn − an)

and

bn+1 = an+1 +
δn+1

1− υ0(2(an+1 − a0) + bn − a0, bn − a0)
.
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These sequences are shown to be majoriting for the method (1.2) in the Theorem 3.1. But �rst,
a convergence condition is required.
(S3) There exists τ ∈ [0, ρ2) such that for each n = 0, 1, 2, ....

v0(bn − a0, an − a0) < 1,

v0(2(an+1 − a0) + bn − a0, bn − a0) < 1

and an < τ.
It follows by this condition and the de�nition of the scalar sequences that

an ≤ bn ≤ cn ≤ an+1 ≤ τ

and there exists a ∈ [0, τ ] such that
lim

n→+∞
an = a.

The functions v0 and v relate to the operators on the method (1.2).
(S4) There exists an invertible operator L ∈ L(C1, C2).
(S5) ∥L−1([x, y;Q]− L)∥ ≤ v0(∥x− x0∥, ∥y − x0∥) for each x, y ∈ Ω, and some x0 ∈ Ω.

It follows by this condition and the de�nition of ρ2 that for y−1 ∈ Ω3 = V (x0, ρ)

∥2x0 − y−1 − x0∥ = ∥x0 − y−1∥ < ρ,

so
∥L−1([2x0 − y−1, y−1;Q]− L)∥ ≤ v0(∥x0 − y−1∥, ∥y−1 − x0∥) < 1.

Thus, the linear operator [2x0 − y−1, y−1;Q] is invertible, and we can take

b0 ≥ ∥[2x0 − y−1, y−1;Q]−1Q(x0)∥

and ∥y−1 − x0∥ ≤ b−1 − a0, provided that b−1 ≤ a0 ≤ b0.
Set Ω4 = V (x0, ρ2) ∩ Ω.

(S6) ∥L−1([x, y;Q]− [x̄, ȳ;Q])∥ ≤ v(∥x− x̄∥, ∥y − ȳ∥) for each x, y, x̄, ȳ,∈ Ω4. and
(S7) V (x0, 3a) ⊂ Ω.

Next, the semi-local analysis of convergence for the method (1.2) follows.
Theorem 3.1. Suppose that the conditions (S1)−−(S7) hold. Then, the sequence {xn} given

by the method (1.2) exists, stays in V [x0, a] and is convergent to a solution s∗ ∈ V [x0, a] so that

∥yn − xn∥ ≤ bn − an, (3.2)

∥zn − yn∥ ≤ cn − bn, (3.3)

∥xn+1 − zn∥ ≤ an+1 − cn (3.4)

and

∥s∗ − xn∥ ≤ a− an.

Proof. Items (3.2)�(3.4) are shown using induction.
It follows by the initial conditions that (3.2) holds if n = 0. The rest of the proof exchanges the

functions w0, w, s
∗ and conditions (H) by v0, v, x0, s

∗ and conditions (S), respectively.
The motivation for the scalar sequences is

zm − ym = ([2xm − ym−1, ym−1;Q]−1 − [ym, xm;Q]−1)Q(xm)

−[ym, xm;Q]−1([2xm − ym−1, ym−1;Q]− [ym, xm;Q])(ym − xm),
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since

ym − xm = [2xm − ym−1, ym−1;Q]−1Q(xm),

∥zm − ym∥ ≤ υ(∥2xm − ym−1 − ym∥, ∥ym−1 − xm)∥ym − xm∥
1− υ0(∥ym − x0∥, ∥xm − x0∥)

≤ υ(bm − am + am − bm−1, bm−1 − am)(bm − am)

1− υ0(∥bm − a0∥, ∥am − a0∥)
= cm − bm,

∥zm − x0∥ ≤ ∥zm − ym∥+ ∥ym − x0∥

≤ cm − bm + bm − a0 = cm − a0 < a,

Q(zm) = Q(zm)−Q(xm)− [2xm − ym−1, ym−1;Q](ym − xm)

= [zm, xm;Q](zm − xm)− [2xm − ym−1, ym−1;Q](ym − xm),

∥L−1Q(zm)∥ ≤ (1 + υ0(∥zm − x0∥, ∥xm − x0∥))∥zm − xm∥
+(1 + υ0(∥2xm − ym−1 − x0∥, ∥ym−1 − x0∥))∥ym − xm∥

≤ (1 + υ0(cm − a0, am − a0))(cm − am)

+(1 + υ0(2(am − a0) + bm−1 − a0, bm−1 − a0))(bm − am) = γm,

xm+1 − zm = −[zm, xm;Q]−1(Q(zm)−Q(xm) +Q(xm)),

∥xm+1 − zm∥ ≤ γm
1− υ0(bm − a0, am − a0)

= am+1 − cm,

∥xm+1 − x0∥ ≤ ∥xm+1 − zm∥+ ∥zm − x0∥ ≤ am+1 − cm + cm − a0 = am+1 < a,

Q(zm+1) = Q(xm+1)−Q(xm)− [2xm − ym−1, ym−1;Q](ym − xm),

∥L−1Q(xm+1)∥ ≤ (1 + υ0(am+1 − a0, am − a0))(am+1 − am)

+(1 + υ0(2(am − a0) + bm+1 − a0))(bm − am) = δm+1.

Consequently, we obtain

∥ym+1 − xm+1∥ ≤ δm+1

1− υ0(2(am+1 − a0) + bm − a0, bm − a0)
= bm+1 − am+1

and

∥ym+1 − x0∥ ≤ ∥ym+1 − xm+1∥+ ∥xm+1 − x0∥

≤ bm+1 − am+1 + am+1 − a0 = bm+1 < a.

The induction is complete. It follows that the sequence {xm} is Cauchy establishing the existence
of its limit. By letting m → +∞ in (3.2) we obtain Q(s∗) = 0. Then, from the estimate
∥xm+i − xm∥ ≤ am+i − am, and by letting i → +∞, we complete the proof. □

Method (1.3)

The majorizing sequences are slightly di�erent from the ones used in the method (1.2)

cn = bn +
υ(bn − an + cn−1 − an, cn−1 − an)(bn − an)

1− υ0(bn − an, an − a0)
,

γ̄n = (1 + υ0(cn − a0, an − a0 − υ0(bn − an, an − a0))(cn − an)

+(1 + υ0(2(an − a0) + cn−1 − a0, cn−1 − a0)(bn − an),
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an+1 = cn +
γ̄n

1− υ(bn − a0, cn − a0)
, (3.5)

δ̄n+1 = (1 + υ0(an+1 − a0, an − a0))(an+1 − an)

+(1 + υ0(2(an − a0) + cn−1 − a0, cn−1 − a0))(bn − an)

and

bn+1 = an+1 +
δ̄n+1

1− υ0(2(an − a0) + bn−1 − a0, bn − a0)
.

The corresponding assumptions are also made:

∥[2x0 − z−1, z−1;Q]−1Q(x0)∥ ≤ b0 − a0

and

∥z−1 − x0∥ ≤ c−1 − a0

provided that a0 ≤ b0 and a0 ≤ c−1.

Then, the corresponding semi-local analysis of convergence for the method (1.3) is analogous to
the one given for method (1.2) in Theorem 3.1.

Theorem 3.2. Suppose that the conditions (S1)− (S7) hold but with (3.5), replacing 3.1 and

for ∥z−1 − x0∥ ≤ c−1 − a0 replacing ∥y−1 − x0∥ ≤ b−1 − a0. Then, the conclusions of Theorem 3.1

hold for the method (1.3).

Proof. Simply exchange (1.2), (3.1), by (1.3), (3.3), respectively. □
Note that the limit of the sequence (3.3) is not necessarily the same with the one given by (3.1),

however we use the same symbol.

The uniqueness of a solution of the equation (1.1) is given in the next result.

Proposition 3.1. Suppose: there exists a solution s̄ ∈ V (x0, ρ4) of the equation Q(x) = 0 for

some ρ4 > 0; The condition (S4) holds; The condition (S5) holds in the ball V (x0, ρ4) and there

exists ρ5 ≥ ρ4 such that v0(ρ4, ρ5) < 1. Set Ω4 = V [x0, ρ5] ∩ Ω. Then the equation Q(x) = 0 is

uniquely solvable by s̄ in the set Ω4.

Proof. Let x̄ ∈ Ω4 with Q(x̄) = 0 and x̄ ̸= s̄. Then, the divided di�erence [x̄, s̄;Q] is well de�ned.
It then follows that

∥L−1([x̄, s̄;Q]− L)∥ ≤ v0(∥x̄− x0∥, ∥s̄− x0∥)

≤ v0(ρ4, ρ5) < 1.

Therefore, the linear operator [x̄, s̄;Q] is invertible. So, s̄ = x̄ follows from the identity

x̄− s̄ = [x̄, s̄;Q]−1(Q(x̄)−Q(s̄)) = [x̄, s̄;Q]−1(0− 0) = 0.

□
Remark 3.1.

(i) Possible choices for the linear operator L can be L = I or L = Q′(s∗) (local case) or L = Q′(x0)
or L = [2x0−y−1, y−1;Q] (semi-local case) provided that these operators are invertible. Other

choices are possible as long as the conditions (H) (local case) or the conditions (S) semi-local

case hold.

(ii) The point a can be replaced by ρ2 in the condition (S7).

(iii) Under all the conditions (S1)− (S7), take s̄ = s∗ and ρ4 = a in Proposition.
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4 Numerical experiments

In this section, the considered methods are tested on a wide range of matrices to give an idea
about the di�erent situations that optimization algorithms have to face when coping with these
kinds of problems. Details about the test functions can be found in [19].

Example 4.1. Let us consider the cases:
1. Freudenstein & Roth

n = 2,

f1(x) = −13 + x1 + ((5− x2)x2 − 2)x2,

f2(x) = −29 + x1 + ((x2 + 1)x2 − 14)x2,

x0 = (0.5,−2).

2. Powell badly scaled

n = 2,

f1(x) = 104x1x2 − 1,

f2(x) = exp(−x1) + exp(−x2)− 1.0001,

x0 = (0, 1).

3. Broyden tridiagonal problem

n = 3,

f1(x) = (3− 2x1)x1 − 2x2 + 1,

f2(x) = (3− 2x2)x2 − x1 − 2x3 + 1,

f3(x) = (3− 2x3)x3 − x2 + 1,

x0 = (0, 0, 0).

4. Discrete boundary value problem

n = 3,

h = 0.25,

f1(x) = 2x1 + h2
(x1 + 1 + h)3

2
− x2,

f2(x) = 2x2 + h2
(x2 + 1 + 2h)3

2
− x1 − x3,

f3(x) = 2x3 + h2
(x3 + 1 + 3h)3

2
− x2,

x0 = (0.25, 0.5, 0.75).

5. A trigonometric - exponential system

fk(x) = 3x3k + 2xk+1 − 5,

+ sin (xk − xk+1) sin (xk + xk+1), if k = 1,

fk(x) = 3x3k + 2xk+1 − 5 + sin (xk − xk+1) sin (xk + xk+1),

+ 4xk − xk−1 exp(xk−1 − xk)− 3, if 1 < k < n,

fk(x) = 4xk − xk−1 exp(xk−1 − xk)− 3, k = n.
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6. Five-diagonal system

f1(x) = 4(x1 − x22) + x2 − x23,

f2(x) = 8x2(x
2
2 − x1)− 2(1− x2) + 4(x2 − x23) + x3 − x24,

f3(x) = 8x3(x
2
3 − x2)− 2(1− x3) + 4(x3 − x24) + x22 − x1,

f4(x) = 8x4(x
2
4 − x3)− 2(1− x4) + 4(x4 − x25) + x23 − x2,

f5(x) = 8x5(x
2
5 − x4)− 2(1− x5) + x24 − x3.

7. Extended power singular function

fk(x) = xk + 10xk+1, mod (k, 4) = 1,

fk(x) =
√
5(xk+1 − xk+2), mod (k, 4) = 2,

fk(x) = (xk−1 − 2xk)
2, mod (k, 4) = 3,

fk((x) =
√
10(xk−3 − xk)

2, mod (k, 4) = 0.

Table 4.1. The number of iterations to obtain an approximation to the solutions

of the test problems using both common and three-step methods

Problem
Method

(1.2) (1.3) (4.3) (4.4) (4.1) (4.2)

Freudenstein & Roth 25 8 19 41 29 14

Powell badly scaled 6 5 16 13 10 -

Broyden tridiagonal problem 2 2 6 4 3 2

Discrete boundary value problem 2 2 5 4 3 2

A trigonometric - exponential system
n = 2, x0 = (2, 0) 4 3 7 6 5 4

A trigonometric - exponential system
n = 3, x0 = (5, 5, 5) 4 4 10 9 7 5

A trigonometric - exponential system
n = 5, x0 = (−9,−9,−9,−9,−9) 7 30 15 - 15 13

Five-diagonal system
n = 5, x0 = (−5, 5,−5, 5,−5) 16 - - - 19 -

Five-diagonal system
n = 5, x0 = (3, 3, 3, 3, 3) 4 4 - - 11 -

Extended power singular function 5 5 9 8 20 13

We use the condition ∥Q(xn)∥ ≤ ε, where ε = 10−8, for stopping the computational process.
The obtained results are confronted with those from the Secant method, expressed as:

xn+1 = xn − [xn−1, xn;Q]−1Q(xn), n = 0, 1, 2, ... (4.1)

and the Kurchatov method, de�ned by:

xn+1 = xn − [xn−1, 2xn − xn−1;Q]−1Q(xn), n = 0, 1, 2, .... (4.2)
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Here, x−1, x0 represents the given initial approximations.
Furthermore, to expand the comparison, we introduce two additional Kurchatov-like methods

with additional processing steps:

An = [xn−1, 2xn − xn−1;Q],

yn = xn −A−1
n Q(xn),

xn+1 = yn −A−1
n Q(yn), n = 0, 1, 2, ...

(4.3)

and
An = [xn−1, 2xn − xn−1;Q],

yn = xn −A−1
n Q(xn),

Bn = [xn, 2yn − xn;Q],

xn+1 = yn −B−1
n Q(yn), n = 0, 1, 2, ...

(4.4)

Here An is divided di�erence of operator Q for points xn−1 and 2xn − xn−1. Values x0, x−1 are
initial approximations.

Table 4.1 shows the number of iterations for �nding the solution of the described functions by
developed and well-known methods.

Example 4.2. We will compare the results of the methods for the subsequent problem

3x2y + y2 − 1 + |x− 1| = 0,

x4 + xy3 − 1 + |y| = 0.

The solution of this problem is s∗ ≈ (0.89465537, 0.32782652), Q(s∗) = 0. A bar chart was
generated to illustrate the variation in results based on di�erent initial approximations.

Fig. 4.1. This �gure displays results for both standard and newly
developed methods across di�erent initial approximations

Example 4.3. To extend our investigation, we add a Three-Hump Camel function [20] to
assess the methods' performance across a range of tolerance levels

f(x) = 2x21 − 1.05x41 +
x61
6

+ x1x2 + x22.

All methods successfully converged to the exact solution for the given problem. The proposed
methods demonstrated superior e�ciency by requiring fewer iterations, indicating their e�ectiveness
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Fig. 4.2. This �gure shows the tolerance history of Kurchatov-like methods
for the three-hump camel function

in solving similar problems. However, it's noteworthy that while the proposed methods outperform
others, the margin of di�erence in iteration counts was relatively modest and the solution depends
on the features of the function.

5 Conclusions

Local and semi-local convergence analysis for two three-step Kurchatov-type methods is provided
under the generalized Lipschitz conditions for only divided di�erences of order one. Regions of
convergence and uniqueness of the solution are established. The results of the numerical experiment
are given. There is no substantial advantage of one method over the others. The proposed methods
demonstrate the ability to e�ectively discover solutions with a smaller number of required iterations
or locate solutions within larger systems. The developed technique does not rely on the studied
methods. That is why it can also be used on other methods that contain inverses of divided
di�erences or inverses of linear operators in general. The future work involves the application of
this process on other iterative methods [1, 3�5,8, 10, 12,14�20].
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