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Anotamist. lupoke koso 3az7a49 i3 pisHmux rasy3seil Moxke 6yTu PO3B’S3aHO HIJIAXOM 3BEJEHHS IX
10 HeJTIHIMHAX PIBHAHB y BiAmoBigHMX npocTopax. Lli piBHAHHS 3a3BH9ail po3B’A3YIOTHCS iTeparifiHuMu
Meromamu. PosrisayTo Tpukpokosi itepamniiiai MmeToau Tuny Kypdarosa g po3s’a3yBaHHS HeTIHIHHAX
OTIEPATOPHUX DPIBHAHD, BUKOPUCTOBYIOYH AIIPOKCHMAIIi0 moximaol dpernre omepaTopa HeMHITHOTO PiB-
HSHHS TIOIUTEHUMY pisHUIIMU. [IpoBeieHo aHai3 JOKAIHLHOT Ta HABIOKAJIBHOI 301KHOCTI, BUKOPHUC-
TOBYIOYH JIUTII€ YMOBH JIJIsl OTIEPATOPIB, Ta 3’ICOBAHO YMOBH Ta MIBUIKICTD 3012KHOCTI 1ux MeToiB. Kpim
TOrO, 3HaMAEHO 00JIACTD €AMHOCTI pO3B’sa3Ky. Pe3ymbrarm unmcenpHUX €KCIIEPUMEHTIB IiITBEPIKYOTH
TeopeTudHi pe3yabratu. HoBa imess Moxe OyTw BUKOPHMCTAaHA B IHMINX ITeparfifiHMX MeTOmAX, IO
noTpebyIoTh 3HAXOMKEHH 00€PHEHOT0 OIepaTopa A0 IIOAIIEHNX PI3HUIL EePIIOro IOPIIKY.

ABSTRACT. A plethora of applications from diverse disciplines can be solved if reduced to nonlin-
ear equations in suitable abstract spaces. Such equations are solved mostly iteratively. That is why,
three-step iterative methods of the Kurchatov-type for solving nonlinear operator equations are investi-
gated using approximation by the Fréchet derivative of an operator of a nonlinear equation by divided
differences. We study the local and the semi-local convergence using conditions only on the operators
on the methods. The conditions and speed of convergence of these methods are determined. Moreover,
the domain of uniqueness is found for the solution. The results of numerical experiments validate the
theoretical results. The new idea can be used on other iterative methods utilizing inverses of divided
differences of order one.

1 INTRODUCTION

Let C1 and C5 stand for Banach spaces and €) be a convex and nonempty subset of C;. A
plethora of applications from different areas can be solved if reduced to a nonlinear equation of the
form

Q(z) =0, (L.1)

where @) : © — (5 is a continuous operator. This reduction takes place using Mathematical
Modelling [1,2]. Then, a solution denoted by s* € € is to be found that answers the application.
The solution may be a number or a vector or a matrix or a function. This task is very challenging in
general. Obviously, the solution s* is desired in closed form. However, in practice, this is achievable
only in rare cases. That is why researchers mostly develop iterative methods convergent to s*
under some conditions on the initial data. Newton’s method is an effective method for solving the
equation (1.2). However, it requires an analytical definition of the operator @'. If the operator
@ is nondifferentiable, difference methods can be used. The simplest difference method is the
Secant method [1,2]. Many works are devoted to the study of this method. It uses the first-order

Key words: Banach spaces, Fréchet derivative, divided difference, Kurchatov’s method, local and semi-local conver-
gence.
© Argyros Ioannis K., Shakhno S., Regmi S., Havdiak M., 2024



4 Argyros Ioannis K., Shakhno S., Regmi S., Havdiak M.

divided difference instead of the Fréchet derivative. The order of convergence of the Secant method
is 1+72\/5 The quadratic order of convergence has a linear interpolation method first proposed
by V.A.Kurchatov [3] in the one-dimensional case. In Banach spaces, the Kurchatov method
was first investigated by S.M.Shakhno [4,5]. The works of [.K.Argyros, H.Ren, J.A.Ezquerro,
M.A Herndndez [6-8] are devoted to the study of this method. Two-step variants of the Kurchatov
method were studied by I.LK. Argyros, S. George, H. Kumar, P.K. Parida, and S.M. Shakhno [9-11].
Wang et al. [12,13]| and Cordero et al. [14,15] presented some Kurchatov-type methods with memory
by using Kurchatov’s divided difference operator. Some multi-step methods are explored in Ahmad
et. al., Behl et. al. [16,17].

Three-step methods of the Kurchatov-type were proposed by X.Wang, Jin, Y.; Zhao, Y and
X.Chen [12,13]. The convergence is developed for two three-step Kurchatov-like methods defined
by

0,Y-1 €8, Yn=Tpn — [21'71 — Yn—1,Yn—1; Q]_IQ(ITL)7
Zn = Tp — [ymxn; Q]_IQ(xn)) (12)
Tn+1l = Zn — [Z/n, Zn; Q]_IQ(’ZTL)
and
Tp,2—1 € Q7 Yn = Tn — [2$n — Zn—1,%n—1; Q]71Q<xn)a
Zn = Tp — [ymxn; Q]ilQ(xn)v (13)
Tp+l = Zn — [y’ru Zn; Q]ilQ(zn)a
where [, Q] : C1 x Cy — L(C1,C3) is divided difference of order one, and L£(C1,Cs) stands for
the space of continuous operator from C into Cs. There exist restriction with results using Taylor

series to show convergence of iterative methods which constitute the motivation for this paper.
Motivation

(i) The local convergence order 4.56, and 5, is provided for method (1.2) and method (1.3),
respectively in [13] for C; = Cy = R? (i is a natural number) using Taylor series, and conditions
which are reaching up to the sixth derivative of the operator @ not in these methods. Let us
consider a simple function

01 logt? 4 0ot® + 3t*, if t#£0,

0, if t=0.
Moreover, restrict the function ) on the inteval Q = [—%,2] and suppose that the real
parametrs d;, k = 1,2,3 satisfy §; # 0 and d2 + 03 = 0. Then, s* = 1 € Q solves the
equation Q(t) = 0. However, the function Q®)(¢) is not continuous at t = 0 € Q. Thus,
the results in [13] cannot assure that lim,,_,o 2, = s* for either method. But these methods
converge, if e.g. xg = 1.2. This is an indication that the conditions in [13] can be replaced by
weaker ones.

(ii) There are no estimates on the norms ||s* — x,||, say upper bounds that can tell us in advance
the number of iterates to be carried out to arrive at an error tolerance € > 0.

(iii) No results are discussing the isolution of the solution s*.
(iv) The results in [13] are restricted on R%.

(v) The more interesting semilocal analysis of convergence for both methods is not studied in
previous works.
The restrictions (i) — (v) are dealt with positively in this paper. In particular,
Novelty

(i) The new sufficient conditions involve only the operator on these methods.
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(ii)” The number of iterates to reach error tolerance € > 0 is known in advance, since a priori error
estimates are given in this paper.

(iii)” Isolation of the solution is also discussed.
(iv)” The new results hold for Banach space-valued operators.

(v)’ The semi-local analysis of convergence relies on majorizing sequences.

Both the local as well as semi-local analyses are given under conditions on generalized continuity
for the divided difference [, -; Q] [2,6,7,9,11]. The same approach is applicable to similar methods
utilizing Taylor series and inverses of linear operators [1,3-5,8,10,12,14-20].

We provide the local as well as the semi-local convergence analysis for these methods under
generalized conditions. The local convergence is given in Section 2. The semi-local convergence
is presented in Section 3, followed by the examples and the concluding remarks in Section 4 and
Section 5, respectively.

2 LOCAL CONVERGENCE ANALYSIS

The symbols V(s*, ), V[s*,d] are used to denote the open and close ball, respectively in C;
with center s* and radius 6 > 0. Let also A stand for the interval [0,400). Consider functions
wo @ Ag x Ag = Ry and w : Ag x Ag — Ry for Ay C A. These functions are assumed to be
continuous and nondecreasing. The local convergence conditions relating the real functions wg and
w to the operators on both methods (1.2) and (1.3) provided that there exist s* € {2 solving the
equation Q(z) = 0.

Suppose:

(H1) There exists a minimal positive solution denoted by po of the equation

WQ(3t,t) —1=0.

Set Ag = [0, po.
(Hsy) There exists a function w with domain Ay x Ay and values in Ry such that for
g1: A0 = Ry g2 : Ag — Ry and g3 : Ag — R4 designed by

w(2t,t)
gi(t) = T wo(3t.4)’

1 —wo(g1(t)t,t)

and w((g1(t) + g2(t))t, g2(t)t) ga(t)

1 —wo(g1(¢)t, g2(t)t) 7
the equations gx(t) —1 =0, k = 1,2, 3 have minimal positive solutions. These solutions are denoted
by 7, respectively.

Set

g3(t) =

r=min{ry} and A;=][0,7). (2.1)

These definitions imply that for each t € Ay
0 < wp(3t,t) < 1, (2.2)
0 <wp(g1(t)t,t) <1, (2.3)

0 < wo(g1(t)t, g2(t)t) < 1 (2.4)
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and
0 <gr(t) <1 (2.5)

The parameter 7 is shown to be a radius of convergence for the method (1.2), see Theorem 2.1. The
parameter r and the functions wg and w are associated to the divided difference on the method
(1.2), and the method (1.3).
(H3) There exists an invertible operator L € L(C4, Ca).
(Ha) |27 (2,5 Q] — D)|| < wolllz — s*], |y — 5*]}) for each 2, € ©
Set Q1 =QNV(s* 00).
(Hs) |L7 Y[z, y; Q] — [z, 8% Q|| < w(||lz — z]|, ||y — s*||) for each z,y,2 € Q1 and w : Ag X Ag — R.
and
(Hg) V[s*,7] C 2, where 7 = 3r.

r > 0 is determined later based on which method is used.

Hence, we arrived at:

Theorem 2.1. Suppose that the conditions (Hy)—(Hg) hold, and xo,y—1 € V(s*,r) — {s*}.
Then, the sequence {x,} provided by the method (1.2) exists, stays in the ball V(s*,r) and is
convergent to s* so that

lyn — "l < g1 (M)llzn — ™| < 2 — ™| <, (2.6)
[2n — 8™ < g2(r)l|an — ™| < [|zn — 87| (2.7)

and
[Zn+1 — 87| < gs(r)[|zn — || < [lzn — 7. (2.8)

Proof. The choice of zg and y_1 € V(s*,r) — {s*}, (2.1), (2.2), and (H3) - (Hs) imply that
1220 —y—1 — s™|| < 2fjwo — s+ ly-1 — s <2r +7 =3r =7

and
IL7H([220 — y—1,y-1: Q] = L)|| < wo(2]lxo — 8™ + lly—1 — 5", ly-1 — s*[) < L.
Then, the Banach Lemma on invertible operators assures the existence of the inverse for the
linear operator [2x9 — y—1,y—1; Q] [1,2,6,7,9,11,18] and

1
wo(2llwo — ¥ + ly—1 = s*[I, lly—1 — s*[1)°

1220 —y—1,y-1; Q) ' L|| < T (2.9)

Thus, the iterate yo exists by the first substep of the method (1.2) if n = 0. We can also write
Yo — x* = mo — 2 — [220 — Y—1,y-1; Q] ' Q(x0) (2.10)
=220 —y-1,y-1; Q) (1220 — y—1,y-1; Q] — [x0, s*; Q)) (w0 — %).
The application of (Hs), (2.7) (for £k = 1), (2.9) in (2.10) and give

w(llzo = y-1ll; lly—1 = s*Dllwo — 57|
1 —wo(2llzo = s*[| + lly-1 = 5*I[, ly—1 = s*)

lyo — 2| < By := (2.11)

< gi(r)llzo = 8| < [lwo = 57| <,

since [|zo — y—1]| < [|zo — s*|| + |ly=1 — || < r 4+ r = 2r. Hence, the item (2.6) holds if n = 0 and
the iterate yo € V(s*,r). It also follows from (2.1), (2.3), (H4) and (2.11) that



Extended Kurchatov-Type Methods for Solving Nonlinear Equations 7

1L ([yo, 0; Q] = L) || < wo(llyo — s*[I, [l — s™[|) < 1.
Thus, the operator [yo, zo; Q] is invertible, and
1

wo(llyo — s*|I, lzo — s*[1)°

1[0, 0; Q7' LIl < (2.12)

Moreover, the iterate zp exists by the second substep of the method (1.2), and we can write
20— 8* =20 — 8 — [yo, 10; Q] 1 Q(x0) (2.13)
= [yo, 70; Q] ([0, z0; Q] — [0, 5*; Q) (wo — 5%).
The application of (Hs), and the usage of (2.1), (2.5), (2.12) in (2.13) give in turn

1Yo — o[, [lzo = s™[]) [0 — &7
1 —wo(llyo = s*[|, lzo — s*[1)

20 — 2] < n® =

< ga(r)llzo — 57| < [lwo — 7).
So, the item (2.7) holds if n = 0, and the iterate zg € V(s*,7). Then, the application of (2.1), (2.4),
and (Hs) give
1L ([yo, 205 Q) = L) < wo(llyo — 5™, [lz0 — 2*[I) < 1.
Hence, the linear operator [yo, z0; @] is invertible, and
1

—wo(llyo — s*[I, [lz0 — s*[1)”

1Yo, 205 Q)" L| < . (2.14)

Furthermore, the iterate x; exists, and we can write
x1 — s* = 29 — 5* — [yo, 20; Q] ' F(20) (2.15)
= 30, 20; Q1" ([0, 205 Q) — [20, 5% Q]) (20 — 5%).
Using (2.1), (2.5) (for k = 3), (2.14), in (2.15) we get in turn that

w(llyo — 2oll, 120 — s™[)llz0 — ™|

. 3)
Iz — s*|| < B = . :
0 1 —wo([lyo — s*[|, |20 — s*||)

< g3(r)llzo — 57| < [lwo — 7.

Thus, the item (2.8) holds and the iterate 1 € V(s*,r). The calculations can be repeated provided
x0,Yo,x1 are switched by Tpm, Ym, Tm+1 (m a nature number). This way the induction for items
(2.6) — (2.8) is completed, and the iterates zy,, Ym, Tm+1 € V(s*, 7). Then, from the estimation

lrmer = 8% < cllam — 5™ < " FHlwo — 57 <,

where ¢ = g3(||xo — s*||) € [0,1), we conclude that lim z,, = s*. O
m—0o0

Next, the local analysis of convergence for the method (1.3) follows analogously.

Theorem 2.2.  Suppose that the conditions (Hy) — (Hg) hold, and xo,y_1 € V(s*,r) —
{s*}. Then, the sequence {x,} given by the method (1.3) exists, stays in the ball V(s*,r), and is
convergent to s* such that the items (2.6)-(2.8) hold.

Proof. We follow the proof of Theorem 2.1. But we have instead the estimates

w(l[#m = Zm-1ll; [2m—1 = s*[D[|#m — s™]|

—wo(ler — 51 + [z — °[ [mot — 1)

lgm — 27| < -

< g(r)lzm — s < llzm — 57,
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wllym = mll, |zm — s [[am — 57|
L= wo(llym — z*|[, [lem — s*[1)

lzm — 8™l <

< go(Mllam — || < lzm — 7|
and

w(Hzm B ymH, ||Zm B S*H)Hzm - 3*”
1= wo([[ym — s*[|, [[zm — s*[|)

[Zmy1 — 7] <

< g3(r)llem — 8" < llwm — 57|

g
The uniqueness of the solution is determined in the next result.
Proposition 2.1. (a) The conditions (Hs) and (Hy) hold in the ball V (s*, ) for some ¢ > 0.
and
(b) There exists p1 > o such that
wo(O, Ql) < 1.

Set Qo = QN V|[s*, 01].
Then, the equation Q(x) = 0 is uniquely solvable by s* in the domain Qs.
Proof. Assume the existence of the divided difference [s*,v; Q] for v # s*. Then, it follows by
(a)-(b) that
IL7H([s%,v; Q) = L)II < wo(0, ||s* — v]]) < wo(0,01) < 1.
Thus, the Banach Lemma asserts [s*,v;Q]™! € £(Cy,Cy). Consequently, v = s* follows from the

identity
s* —v=[s"0;Q] Q") — Q) = [s*,v;Q)1(0).

Remark 2.1. A possible choice for o = r.

3 SEMI-LOCAL CONVERGENCE
The functions vy and v correspond to wyp, w of the previous section and have the same properties.
Moreover, the conditions relating them to the methods (1.2) and (1.3) are:
(S1) There exists a minimum positive solution denoted by pa of the equation vy(3t,t) — 1 = 0. Set
A1 =10, p2)-
(S2) There exists function v : A1 x A; — Ry which is continuous as well as non-decreasing.
Define sequences for b_1, ag,bg > 0 with ag < b_1:

U(bn - bn—l’ bn—l - an)(bn - an)
1 —vo(bn — ag, an — ao) ’

cp = by, +

Tn = (1 + UO(Cn — ap, an — aO))(Cn - an)
+(1 4+ vo(2(an — ao) + (bn—1 — ao),bn—1 — ap))(by, — an),

Tn
1+ v(b, — ag,cn —ag)’

Ap+1 = Cp +

Ont1 = (1 +vo(ant1 — @0, an — ag))(ant1 — an)

+(1 +vo(2(an — ao) + bp—1 — a0, bu—1 — ao))(bn — an)

and
5n+1

1-— U0(2(an+1 - CL(]) +bp — ag, by, — CL()).

bn+1 = ap4+1 +
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These sequences are shown to be majoriting for the method (1.2) in the Theorem 3.1. But first,
a convergence condition is required.
(S3) There exists 7 € [0, p2) such that for each n =0,1,2,....

vo(bn, — ag, an — ag) < 1,
vo(2(an+1 — ao) + by — ag, by, —ap) < 1

and a, < T.
It follows by this condition and the definition of the scalar sequences that

angbngcnganﬂ—lST

and there exists a € [0, 7] such that

lim a, = a.
n—-+o0o

The functions vp and v relate to the operators on the method (1.2).

(S4) There exists an invertible operator L € L£(C1, Cs).

(95) IL7H([2, 53 Q) — L)l < vo(llw — @oll, [ly — ol|) for each z,y € ©, and some zg € Q.
It follows by this condition and the definition of po that for y_1 € Q3 = V(xo, p)

1220 — y—1 — 20| = [|z0 — y-1l| < p,

S0
1L~ (1220 — y-1,9-13 Q] = L) < vo(llwo =y, ly—1 — woll) < 1.

Thus, the linear operator [2xg — y—_1,y—_1; @] is invertible, and we can take

bo > [|[270 — y—1,y-1; Q) Q(x0)]|

and ||y_1 — xo|| < b_1 — ap, provided that b_1 < ag < by.
Set Q4 = V(Cﬁo,pg) N €.
(Se) L7 ([, 53 Q] = [2,5; QDI < v([lz — [, |y — gl|) for each =, y, 7,9, € Q. and
(S7) V(x0,3a) C Q.
Next, the semi-local analysis of convergence for the method (1.2) follows.
Theorem 3.1. Suppose that the conditions (S1) — —(S7) hold. Then, the sequence {x,} given
by the method (1.2) exists, stays in V[xg,a| and is convergent to a solution s* € V[xg,a] so that

[Yn — nll < by — an, (3.2)
[2n = ynll < cn — bn, (3.3)
[#n41 = 2n < @ny1 — cn (3.4)

and
Is* — zn|| < a— ap.

Proof. Ttems (3.2)-(3.4) are shown using induction.

It follows by the initial conditions that (3.2) holds if n = 0. The rest of the proof exchanges the
functions wo, w, s* and conditions (H) by vg, v, zg, s* and conditions (5), respectively.

The motivation for the scalar sequences is

Zm — Ym = ([Q«Tm — Ym—1,Ym—1; Q]il - [ymu Tm; Q]il)Q(‘rm)
~ Yy T3 Q1 H(2%m — Ym—1, Ym—15 Q] — [Yms T Q) (Y — Tm),
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since
Ym — Tm = [2Tm — Ym—1, Ym—1; Q' Q(xm),

U(H2xm — Ym—1 — ym”a Hym—l - xm)”ym - xm”
1= wo(llym = zoll, [zm — zol|)

0(bn — G+t — b1, b1 — ) (B — 1)
1= wo([[bm — aoll, l|lam — aol|)

1zm = ymll <

= = m_bma
[2m — 2ol < [[2m — Y|l + [[ym — ol

<cm—bm+bn—ay)=cy—ag<a,

Q(Zm) = Q(zm) - Q(xm) - [me —Ym—1,Ym—1; Q](ym - xm)
= [Zmyxm; Q] (Zm - 1‘m) - [me — Ym—1,Ym—1; Q] (ym - SUm)a
1Z1Q(zm) | < (1 4+ volllzm — 2ol lltm — 0]} 2m — o
+(L+vo([122m — Ym—1 — 2olls 1ym-1 — 2ol |[Ym — zm|
< (14 volem — ag, am — ao))(Cm — am)
+(1 +vo(2(am — ao) + bm—1 — a0, br—1 — a0)) (b — am) = Ym,
ITm+1 — Zm = _[Zm7$m§ Q]71<Q(Zm) = Q(w) + Q(xm))a

Ym
m — A0, Am — aO)

me—{-l - Zm” < 1_ U()(b = Gm+1 — Cm,

lTms1 — woll < [|Zme1 — 2mll + [[2m — 2ol| < @mi1 — cm + e — a0 = amy1 < a,
Q(zm+1) = Q(@m+1) — Q(@m) = 22m = Ym—1,Ym—-15 Ql(Ym — Tm),
IL7'Q(@m+1)|| < (1 + vo(am+1 — a0, am — a0))(@m+1 — am)
+(1 + vo(2(am — ag) + bmt1 — a0)) (b — am) = Omt1-
Consequently, we obtain

5m+1
(2(am+1 — ao) + bm — ao, bm — ao)

[Ym+1 — Tma ]| < 1—uo = bmi1 — Ami1

and

[Ym+1 = zoll < [ymi1 = Zmarll + [[mer — o

<bmi1 = @Gmy1 + Gyt — ag = g1 < a.

The induction is complete. It follows that the sequence {x,,} is Cauchy establishing the existence
of its limit. By letting m — 400 in (3.2) we obtain @(s*) = 0. Then, from the estimate
|Tm+i — Tml|l < @Gmti — am, and by letting ¢ — 400, we complete the proof. O

Method (1.3)

The majorizing sequences are slightly different from the ones used in the method (1.2)

U(bn — an + Cn—1 — An,Cpn—1 — an)(bn - an)
1— UO(bn — Qp, Qp — aO)

cn =by, +

9

Yn = (1 + UO(Cn — ap,an — ap — UD(bn — Qp,an — aO))(Cn - an)
+(1 + UO(Q(an - CL()) +Cpn-1—ap,Cn—-1 — aO)(bn - an)y
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Yn
1 —v(by, — ag,cn —ap)’

apt+1 = Cn + (3.5)

Ont1 = (1 +vo(ant1 — ao, an — ao))(@n+1 — an)
‘|‘(1 + U0(2(aﬂ - CL[)) +cp-1 —ag,Cn—1 — aO))(bn - an)

and

5n+1
1 —vo(2(an — ag) + bp—1 — ag, by — ag)

bpy1 = apg1 +
The corresponding assumptions are also made:

11220 — 2—1, 2213 Q] ' Q(w0)|| < by — ag

and

|z—1 — zo|| < c—1 —ao

provided that ag < by and ag < c_1.

Then, the corresponding semi-local analysis of convergence for the method (1.3) is analogous to
the one given for method (1.2) in Theorem 3.1.

Theorem 3.2. Suppose that the conditions (S1) — (S7) hold but with (3.5), replacing 3.1 and
for ||z—1 — xo|| < c—1 — agp replacing ||y—1 — xo|| < b_1 — ag. Then, the conclusions of Theorem 3.1
hold for the method (1.3).

Proof. Simply exchange (1.2), (3.1), by (1.3), (3.3), respectively. O

Note that the limit of the sequence (3.3) is not necessarily the same with the one given by (3.1),
however we use the same symbol.

The uniqueness of a solution of the equation (1.1) is given in the next result.

Proposition 3.1. Suppose: there exists a solution § € V(xo, p4) of the equation Q(x) = 0 for
some py > 0; The condition (Sy) holds; The condition (S5) holds in the ball V (zg, ps) and there
exists ps > py such that vy(ps, ps) < 1. Set Qy = V[zg, ps] N Q. Then the equation Q(z) = 0 is
uniquely solvable by § in the set €y.

Proof. Let & € Q4 with Q(Z) = 0 and T # 5. Then, the divided difference [z, 5; Q] is well defined.
It then follows that
1L~ ([, 5 Q] = L)|| < wo(l|Z — o], |5 — ol])

< vo(pa, ps) < 1.

Therefore, the linear operator [Z, 5; Q] is invertible. So, § = & follows from the identity
T—s5= {i‘v S; Q]il(Q(i) - Q(E)) = ['fa S; Q]il(o - 0) =0.
O

Remark 3.1.

(i) Possible choices for the linear operator L can be L = I or L = Q'(s*) (local case) or L = Q'(x)
or L = [2x9—y_1,y—1; Q| (semi-local case) provided that these operators are invertible. Other
choices are possible as long as the conditions (H) (local case) or the conditions (S) semi-local
case hold.

(ii) The point a can be replaced by ps2 in the condition (S7).

(iii) Under all the conditions (S1) — (S7), take s = s* and py = a in Proposition.
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4 NUMERICAL EXPERIMENTS

In this section, the considered methods are tested on a wide range of matrices to give an idea
about the different situations that optimization algorithms have to face when coping with these
kinds of problems. Details about the test functions can be found in [19].

Example 4.1. Let us consider the cases:
1. Freudenstein & Roth

n =2,
fi(z) = =134+ 21 4+ ((6 — x2)x2 — 2)22,
fo(z) = =294+ z1 + ((x2 + 1)z2 — 14) 29,
xo = (0.5, —-2).
2. Powell badly scaled
n =2,
fi(z) = 101z 29 — 1,
fo(z) = exp(—z1) + exp(—z2) — 1.0001,
zo = (0,1).

3. Broyden tridiagonal problem

n =23,

fl(l') = (3 — 2%1)%1 — 2x9 + 1,
fg(:ﬂ) = (3 — 21‘2):132 — X1 — 2$3 -+ 1,
fg(m') = (3 — 21’3)%3 —x9 + 1,

Zo = (07070)

4. Discrete boundary value problem

n =3,

h = 0.25,

fi(z) =221 + h2(xl+;+h>3 — X,

fa(z) = 229 + h2(902+12+2h)3 —x1 — T3,
f3(x) =223 + hQW — T2,

20 = (0.25,0.5,0.75).
5. A trigonometric - exponential system
fe(@) = 32} + 20441 — 5,
+sin (xg — p41) sin (2 + 2p41), of k=1,
fe(z) = 323 + 2241 — 5+ sin (2 — Tpy1) sin (2 + 2pp1),
+ 4z — xp_rexp(xp_1 —xp) — 3, if 1<k<n,

fr(z) =4z, — zp—1exp(xp_1 — ) — 3, k=n.
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6. Five-diagonal system

fi(x) = 4(x1 — 23) + x2 — 275,

fo(z) = 8za(x5 — x1) — 2(1 — x9) + 4(x9 — x3) + x3 — 27,

f3(x) = 8x3(x3 — xo) — 2(1 — a3) + 4(x3 — 23) + x5 — 1,

fa(x) = 8z (% — 3) — 2(1 — 24) + 4(zy — 22) + 23 — 19,

f5(x) = 8as(x? — 24) — 2(1 — 25) + 2% — 23

7. Extended power singular function

fr(x) =z + 102441, mod (k,4) =1,
fe(@) = V5(zps1 — wrya),  mod (k,4) =2,
(@) = (zp—1 — 21)?, mod (k,4) = 3,
fel() = V10(zg—s — x)?,  mod (k,4) = 0.

Table 4.1. The number of iterations to obtain an approximation to the solutions
of the test problems using both common and three-step methods

Problem Method
(1.2) (1.3) (4.3) (44) 41) 4.2

Freudenstein & Roth 25 8 19 41 29 14
Powell badly scaled 6 5 16 13 10 -
Broyden tridiagonal problem 2 2 6 4 3 2
Discrete boundary value problem 2 2 5 4 3 2
A trigonometric - exponential system

n=2, x9=(2,0) 4 3 7 6 5 4
A trigonometric - exponential system

n=3, z=(55,5) 4 4 10 9 7 5
A trigonometric - exponential system

n=>5  z9=(-9,-9-9-9-9) |7 30 15 - 15 13
Five-diagonal system

n=>5 xy=(-5,5-55-5) 16 - - - 19 -
Five-diagonal system

n=>5 x=(3,3,3,3,3) 4 4 - - 11 -
Extended power singular function 5 5 9 8 20 13

We use the condition ||Q(z,)|| < e, where ¢ = 1078, for stopping the computational process.
The obtained results are confronted with those from the Secant method, expressed as:

T+l = Tn — [mn—luxn;Q]ilQ(xn% n = 071727"' (41)
and the Kurchatov method, defined by:

Tp41 = Tn — [xnfla 2Ty — Tp_1; Q]_IQ(J:n)’ n=0,1,2,... (42)
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Here, z_1, 2o represents the given initial approximations.
Furthermore, to expand the comparison, we introduce two additional Kurchatov-like methods
with additional processing steps:

Ap = [Tn-1,220 — 25-1; Q)
Yn = Tn — A1 Q(x), (4.3)
Tl = Yn — A Q(yn), n=0,1,2,...
and
Ay = [zp-1, 28, — 2015 Q)
Yn = Tp — A';IQ(mn)a
By = [0, 2yn — 203 Q)
Tyl =yn — B 1Q(yn), n=0,1,2,...

Here A, is divided difference of operator ) for points x,_1 and 2z, — x,_1. Values xg, z_1 are
initial approximations.

Table 4.1 shows the number of iterations for finding the solution of the described functions by
developed and well-known methods.

Example 4.2. We will compare the results of the methods for the subsequent problem

(4.4)

322y +y? — 1+ |z —1| =0,
et +ayd — 14 |yl =0.

The solution of this problem is s* ~ (0.89465537,0.32782652), Q(s*) = 0. A bar chart was
generated to illustrate the variation in results based on different initial approximations.

Problem (4.5)
40

35
30
25
20
15

10

5 (I
> wnel 1wl il il il I

(1.0, 0.1) (3.0, 1.0) (2.0, 1.0) (4.0, 1.0) (4.0, -0.5)(4.0, -1.5) (4,-2.0) (10,-2) (10,-5) (9,5.5) (0.5,4.0) (0.5,0.5)
H Method (1.2) Method (1.3) Method (4.1) Method (4.2)

Fig. 4.1. This figure displays results for both standard and newly
developed methods across different initial approximations

Example 4.3. To extend our investigation, we add a Three-Hump Camel function [20] to
assess the methods’ performance across a range of tolerance levels

6
x
f(z) =222 — 1.0527 + gl + 2129 + 23.

All methods successfully converged to the exact solution for the given problem. The proposed
methods demonstrated superior efficiency by requiring fewer iterations, indicating their effectiveness
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Three-Hump Camel Function Iteration Efficiency

B method (1.2)
B method (1.3)
EE method (4.3)
method (4.4)
mm method (4.1)
method (4.2)

20 30 40
iterations

Fig. 4.2. This figure shows the tolerance history of Kurchatov-like methods
for the three-hump camel function

in solving similar problems. However, it’s noteworthy that while the proposed methods outperform
others, the margin of difference in iteration counts was relatively modest and the solution depends
on the features of the function.

5 CONCLUSIONS

Local and semi-local convergence analysis for two three-step Kurchatov-type methods is provided
under the generalized Lipschitz conditions for only divided differences of order one. Regions of
convergence and uniqueness of the solution are established. The results of the numerical experiment
are given. There is no substantial advantage of one method over the others. The proposed methods
demonstrate the ability to effectively discover solutions with a smaller number of required iterations
or locate solutions within larger systems. The developed technique does not rely on the studied
methods. That is why it can also be used on other methods that contain inverses of divided
differences or inverses of linear operators in general. The future work involves the application of
this process on other iterative methods [1,3-5,8,10,12,14-20|.
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