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Àíîòàöiÿ. Ðîçãëÿäà¹òüñÿ ÷èñåëüíå ðîçâ'ÿçóâàííÿ çàäà÷i ðåêîíñòðóêöi¨ âíóòðiøíüî¨ ìåæi

äâîçâ'ÿçíî¨ îáëàñòi çà âiäîìèìè äàíèìè Êîøi íà çîâíiøíié ÷àñòèíi îáëàñòi, äëÿ ðiâíÿííÿ òåïëîïðî-

âiäíîñòi òà õâèëüîâîãî ðiâíÿííÿ. Îáåðíåíà çàäà÷à çâîäèòüñÿ äî ìiíiìiçàöi¨ íåëiíiéîãî ôóíêöiîíàëó.

Äëÿ ìiíiìiçàöi¨ âèêîðèñòîâó¹òüñÿ äiéñíîçíà÷íèé ãåíåòè÷íèé àëãîðèòì. Çàïðîïîíîâàíî îöiíêó

iíäèâiäó, äëÿ îá÷èñëåííÿ ÿêî¨ ïîòðiáíî ðîçâ'ÿçàòè íåñòàöiîíàðíó çàäà÷ó Äiðiõëå. Äëÿ öi¹¨ çàäà÷i,

ñïî÷àòêó âèêîíó¹òüñÿ ÷àñòêîâà äèñêðåòèçàöiÿ çà ÷àñîâîþ çìiííîþ, âèêîðèñòîâóþ÷è ìåòîä Ðîòå,

à äàëi äî îòðèìàíî¨ ïîñëiäîâíîñòi ñòàöiîíàðíèõ íåîäíîðiäíèõ ðåêóðåíòíèõ çàäà÷ çàñòîñîâó¹òüñÿ

ìåòîä ôóíäàìåíòàëüíèõ ðîçâ'ÿçêiâ. Çàïðîïîíîâàíèé ïiäõiä ëåãêî ïîøèðèòè íà âèïàäîê âèùèõ

ðîçìiðíîñòåé, òîìó ðîçãëÿäàþòüñÿ äâîâèìiðíi òà òðèâèìiðíi îáëàñòi. Àëãîðèòì àïðîáîâàíî íà

äåêiëüêîõ ïðèêëàäàõ äëÿ îáîõ ðiâíÿíü òà ñòiéêiñòü ìåòîäó ïiäòâåðäæåíà äëÿ âõiäíèõ äàíèõ iç

øóìîì.

Abstract. Numerical solution of the problem of reconstruction of the inner boundary of the

double-connected domain from the given Cauchy data on the outer part of the domain, for the heat and

wave equations is considered. The inverse problem is reformulated as a minimization of the nonlinear

functional. A real-valued genetic algorithm is used for the minimization. A �tness function of the

individual is proposed, for the calculation of which it is necessary to solve the non-stationary Dirichlet

problem. For this problem, �rst a semi discretization by the time variable is performed using the Rothe's

method, and then the method of fundamental solutions is applied to the obtained recurrent sequence

of stationary inhomogeneous problems. The proposed approach is easy to extend to the case of higher

dimensions, therefore two dimensional and three dimensional domains are considered. The algorithm

is tested on several examples for both equations and the stability of the method is con�rmed for the

noised input data.

1 Introduction

Nondestructive techniques allow the inspection of an object's interior without causing damage.
One such method is thermal or ultrasound medical imaging, which leads to inverse boundary value
problems for the heat or wave equations, see [8, 14, 26] and references therein. In this context we
are going to reconstruct the internal boundary of a medium from the Cauchy data given on the
accessible part of the boundary.

More precisely, let D be a double-connected domain in IRd, d = 2, 3, with the smooth boundary
Γ consisting of two disjoint curves (or surfaces for d = 3) Γ1 and Γ2, both of class C2, such that
Γ = Γ1 ∪ Γ2, Γ1 ∩ Γ2 = ∅, Γ1 is interior boundary and Γ2 is exterior boundary. Firstly, let's
consider the following forward (direct) initial boundary value problem for the heat equation. Find
the bounded function u that satis�es

1

c

∂u

∂t
= ∆u in D × [0, T ],

u = f2 on Γ2 × [0, T ],

u = 0 on Γ1 × [0, T ],

u(·, 0) = 0 in D,

(1.1)

Key words: non-linear inverse problem, wave equation, heat equation, boundary reconstruction, genetic algorithms,

method of fundamental solutions.
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where f2 is a given su�ciently smooth function, c > 0 is a constant of the heat di�usivity, ∆ denotes
the Laplace operator and T > 0 is the �nal time. It is well known that there exists unique classical
or week solutions, see [17,23].

Similarly, we formulate the forward problem for the wave equation. Find the bounded function
u such that 

1

C2

∂2u

∂t2
= ∆u in D × [0, T ],

u = f2 on Γ2 × [0, T ],

u = 0 on Γ1 × [0, T ],

u(·, 0) = ∂u

∂t
(·, 0) = 0 in D,

(1.2)

where C > 0 is a given speed of sound. We refer to [24] on the well-posedness of the problem.

For both problems, the inverse problem is to determine the interior boundary Γ1 from the
additional measurement

∂u

∂ν
= g2 on Γ2 × [0, T ], (1.3)

where g2 is a given smooth function and ν is the outward unit normal to the boundary Γ. The
unknown interior boundary Γ1 is uniquely identi�ed by the Cauchy data (f2, g2) on the Γ2, when
f2 ̸= 0, see [12]. But the stability can't be guaranteed, see for example [22], therefore the regu-
larization method is needed. In summary, we consider nonlinear ill-posed inverse problems for the
heat equation (1.1), (1.3) and for the wave equation (1.2), (1.3).

In [11, 12] the inverse problem for the heat equation is interpreted as a nonlinear operator
equation, that is solved by Newton's method, at each iteration the time-dependent direct problems
are solved by the boundary integral equations method (BIEM). In [13] the inverse problem for the
wave equation is reduced to the non-linear boundary integral equation, which is numerically solved
using Newton's method and the BIEM. For both problems, impressive results have been obtained
for two dimensional domains. The case of three dimensional domains is less studied due to the
complex numerical algorithm of BIEM. There are several studies on three dimensional stationary
problems, for instance the case for the Laplace equation, see [9, 18]. For recent research of the
inverse problem for the heat equation in three dimensional, using the Newton's method and the
method of fundamental solutions (MFS) with the time discretization, see [5].

This work is inspired by the research proposed in [19, 20], where the boundary reconstruction
problems for the Laplace and Helmholtz equations are considered for two dimensional domains. As
in the standard MFS, each solution of the problem is approximated by a linear combination of the
fundamental solutions of the governing equation. Using the boundary conditions, the inverse prob-
lems are reduced to the minimization of the least-squares penalized functionals, with the subsequent
application of the MatLab optimization solver.

We also interpret nonstationary problems as minimization problems, but instead apply a real-
coded genetic algorithm (GA) for the numerical solution. GA is a stochastic optimization technique
based on the laws of nature, see [25], which is often used when there is no classical numerical
method or the existing method is very complex. In the GA potential solutions to the problems are
represented as individuals in a population. For the selection purpose, a �tness function is computed
for the each individual, which in our case requires the numerical solution of the corresponding direct
problem. A two-step numerical method is used for the numerical solution of the direct problem: �rst,
using the Rothe's method, the direct problem is reduced to a sequence of inhomogeneous problems
for the modi�ed Helmholtz equation, which is solved in the second step using the MFS, see [3,4,6].
MFS is a popular tool for the numerical solving of direct and inverse problems, especially for the
elliptic equations, see [16,21], because it generates accurate results and requires less computational
cost than BIEM.
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The article has following structure: in section 2 we reduce the inverse problems to minimization
problems and apply the GA. Computation of the �tness function, which requires the numerical
solution of the direct problems is given in the section 3. For the direct problems, semi-discretization
by the time and application of the MFS in the case of the sequence of stationary problems is
developed also in the section 3. In the section 4, we present numerical results for both the heat and
wave equations, as well as for two and three dimensional domains, which show the applicability of
the proposed approach.

2 Application of the GA

There are several studies on the application of GA to inverse problems, for example, [7, 15],
where GA with BIEM is used to numerically solve boundary reconstruction problem for the Laplace
equation. The idea is to extend the methodology to the case of non-stationary problems.

For both inverse problems, suppose that the unknown interior boundary Γ1 is a star-like curve
(or star-like surface for d = 3) with respect to origin and has the following parametrization

Γ1 =

{
γr(s) = r(s)ω(s), s ∈ [0, 2π], d = 2,

γr(θ, φ) = r(θ, φ)ω(θ, φ), θ ∈ [0, π], φ ∈ [0, 2π], d = 3,
(2.1)

where {
ω(s) = (cos s, sin s), d = 2,

ω(θ, φ) = (sin θ cosφ, sin θ sinφ, cos θ), d = 3
(2.2)

and r is the unknown radial function. Let's approximate r by the elements from a �nite-dimensional
subspace

r ≈
K∑
k=0

rkrk, (2.3)

where K ∈ IN ∪ {0}, rk ∈ IR coe�cients to be determined and rk are basis functions. In two
dimensional domains we use trigonometric polynomials basis rk

{1, cos s, sin s, cos(2s), sin(2s), cos(3s), sin(3s), . . .}

and in three dimensional domains we use real-valued spherical harmonics{
Y R
0,0(θ, φ), Y

R
1,−1(θ, φ), Y

R
1,0(θ, φ), Y

R
1,1(θ, φ), Y

R
2,−2(θ, φ), Y

R
2,−1(θ, φ), Y

R
2,0(θ, φ), . . .

}
,

where the real-valued spherical harmonics have the following representation

Y R
k,l(θ, φ) = clkP

|l|
k (cos θ)


cos(|l|φ), l < 0,

1, l = 0,

sin(|l|φ), l > 0

with coe�cients clk = (−1)
|l|−l
2

√
2k + 1

4π

(k − |l|)!
(k + |l|)!

, and P
|l|
k are associated Legendre functions of de-

gree k and order |l|, see [1].
To �nd the coe�cients rk, we use the GA. The individual r is a vector of length K + 1 with

elements r = (r0, . . . , rK). The individual's �tness function is constructed from the additional
Neumann condition (1.3)

E(r) =

∥∥∥∥∥∂u(r)∂ν
− g2

∥∥∥∥∥
2

L2(Γ2)

+ λ ∥r∥22 , (2.4)
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where u(r) is the numerical solution of the direct problem for the heat (1.1) or wave (1.2) equations,
when the inner boundary Γ1 is given by the radial function r (2.3) with coe�cients from the vector
r. Since the inverse problems are ill-posed, we need to include the regularization term λ ∥r∥22,
where λ > 0 is the regularization parameter. A numerical computing of (2.4) will be provided in
the section 3.

The GA consists of the following steps:

1. Generate the initial population of individuals.

2. Evaluate the �tness function (2.4) for each individual in the population. If the stopping
criteria is met, go to step 5, otherwise go to step 3.

3. From the current population, select individuals for reproduction based on their �tness.

4. Apply crossover and mutation operators to obtain new o�spring. New o�spring and elite
individuals replace the current population. Go to step 2.

5. Select the best individual in the last population and use it as the desired vector r for approx-
imation of the inner boundary Γ1 in (2.3).

Let's consider these steps in more detail. The initial population is �lled with individuals representing
circles (or spheres for d = 3) of random radius: for each individual, we randomly generate the
element r0 ∈ [Rmin, Rmax] and set all others rj = 0, j > 0, where Rmin and Rmax are the minimum
and maximum initial radii. The number of individuals in the population is �xed and con�gured by
the parameter popsize > 0.

In the second step, all individuals of the population are evaluated. The best pel% individuals
are copied unchanged to the new population; it's called elitism. This ensures that the quality of
individuals in the population does not deteriorate. Other (100− pel)% individuals are o�spring. To
create o�spring, we select two parents using linear ranking [25] and apply crossover and mutation
operators to the parents. This process continues until all (100− pel)% children have been created.
The new population replaces the current population and the iteration process continues.

In the linear ranking selection method, the population is sorted based on �tness values. The
individual with the lowest �tness gets the highest rank 1, the second lowest gets rank 2, and so on,
the last individual gets the rank popsize. For each individual, we generate the probabilities

pi = q − (ranki − 1)
2(popsizeq − 1)

popsize(popsize − 1)
,

with the selection pressure parameter q ∈
[

1

popsize
,

2

popsize

]
and ranki � the rank of the i-th indi-

vidual. It's easy to see that

popsize∑
i=1

pi = 1. After calculating the selection probabilities, individuals

are selected using the roulette wheel selection method [25]. In general, linear ranking prevents the
selection process from being dominated by individuals with extremely low �tness, helps maintain
diversity in the population, and prevents premature convergence.

The crossover operator combines the genetic information of two parents. First, we check if the
crossover will be applied, this is done based on the probability pc%, if so, we apply a uniform
crossover, namely

rc1 = αrp1 + (1− α)rp2,

rc2 = (1− α)rp1 + αrp2,

where rpℓ , ℓ = 1, 2 are two parents, rcℓ, ℓ = 1, 2 generated two children and α ∈ (0, 1) is a random
value.

The mutation operator introduces random changes to the individual. For this case, we also
check whether the operator applies, based on the probability pm%. Then, we randomly select from
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1 till 3 elements in the individual r and add random changes according to

rmi = Sm(Br
i −Ar

i )ri,

where ri is the randomly selected element in r, rmi � mutated element, Sm is a scaling constant and
Ar

i , B
r
i � minimum and maximum admissible values for ri.

As a stopping rule, we use the maximum number of iterations itmax and the maximum number
of iterations itnc of not improving of the best solution.

3 Numerical calculation of the fitness function

In this section, we describe the numerical computing of the �tness function (2.4). The inner
boundary Γ1 is given by the (2.1) and the coe�cients rk of the radial function (2.3) are taken from
the individual r. For the numerical solution of the initial boundary value problems (1.1) or (1.2)
we will use the two-step numerical method, proposed in [3, 4, 6]. Let's brie�y recall the main steps
of the algorithm.

For both problems (1.1) and (1.2), the solution u is approximated by the sequence

un ≈ u(·, tn), tn = (n+ 1)h, h =
T

N + 1
, n = −1, 0, . . . , N, N ∈ IN ∪ {0}, (3.1)

where the elements un satisfy the sequence of elliptic problems with inhomogeneous right-hand side
∆un − µ2un =

n−1∑
m=0

βn−mum in D,

un = fℓ,n on Γℓ, ℓ = 1, 2,

(3.2)

where f2,n = f2(tn), f1,n = 0, n = 0, . . . , N , u−1 = 0, and for the heat equation: βn = (−1)n
4

ch
,

n = 1, . . . , N , µ2 =
2

ch
, or for the wave equation: β1 = − 2

C2h2
, β2 =

1

C2h2
, βm = 0, for

n = 3, . . . , N , µ2 =
1

C2h2
. The sequence of problems (3.2) is obtained from the approximation of

time derivatives by �nite-di�erence approximations at mesh points tn, see [10].
The functions un, n = 0, . . . , N are approximated by the linear combinations of elements from

the fundamental sequence

un(x) ≈ un,M (x) =

n∑
m=0

M∑
j=1

αm,jΦn−m(x,yj), x ∈ D, (3.3)

where yj /∈ D, j = 1, . . . ,M are selected source points and αm,j , m = 0, . . . , n, j = 1, . . . ,M are
coe�cients to be determined, M ∈ IN. The explicit expression for the elements of the fundamental
sequence Φn are

Φn(x,y) =


K0(µ|x− y|)vn(|x− y|) +K1(µ|x− y|)wn(|x− y|), x ̸= y, d = 2,

e−µ|x−y|

|x− y|
ṽn(|x− y|), x ̸= y, d = 3,

where K0 and K1 are modi�ed Bessel functions, see [1], the polynomials vn, wn and ṽn are known,
see [3, 4].

By collocating on the boundary of the domainD, from the (3.2) we obtain the following recursive
systems for determining the coe�cients αn,j , for n = 0, . . . , N :

M∑
j=1

αn,jΦ0(xℓ,i,yj) = fℓ,n(xℓ,i)−
n−1∑
m=0

M∑
j=1

αm,jΦn−m(xℓ,i,yj), ℓ = 1, 2, (3.4)
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where xℓ,i, ℓ = 1, 2, i = 1, . . . , M̃ are selected collocation points, M̃ ∈ IN. The recurrent systems
(3.4) are obtained from the observation that only the coe�cients αn,j in front of Φ0 have not been
previously used in approximations u0,M , . . . , un−1,M .

For two-dimensional domains, we assume that boundary curves are star-like curves with respect
to origin and have following parametrization

Γℓ = {γℓ(s) = (γℓ,1(s), γℓ,2(s)), s ∈ [0, 2π]} , ℓ = 1, 2.

This parametrization is compatible with representation of Γ1 in the (2.1). Then the source points
are evenly distributed on the arti�cial curves by the following rule

yj =


η2γ2(sj), sj =

4π

M
j, j = 1, . . . ,

M

2
,

η1γ1(s̃j), s̃j =
4π

M

(
j − M

2

)
, j =

M

2
+ 1, . . . ,M

with η2 > 1 and 0 < η1 < 1. Collocation points are placed on the boundary curves by the following
rule

xℓ,i = γℓ(si), si =
2π

M̃
i, i = 1, . . . , M̃ , ℓ = 1, 2.

For three-dimensional domains, we assume that boundaries are star-shaped surfaces with fol-
lowing parametrization

Γℓ = {γℓ(θ, φ) = (γℓ,1(θ, φ), γℓ,2(θ, φ), γℓ,3(θ, φ)), θ ∈ [0, π], φ ∈ [0, 2π]} , ℓ = 1, 2.

The source points are evenly distributed on the arti�cial surfaces by the following rule{
yj

}M

j=1
=

{
ỹℓ,j1,j2

}2,m1,m2

ℓ=1,j1=1,j2=1
: ỹℓ,j1,j2 = ηℓγℓ(θj1 , φj2),

with θj1 =
π

m1 + 1
j1, φj2 =

2π

m2
j2, for j1 = 1, . . . ,m1, j2 = 1, . . . ,m2, ℓ = 1, 2 and M = 2m1m2,

for m1,m2 ∈ IN.

Collocation points are evenly distributed on the boundary surfaces Γℓ, ℓ = 1, 2 by the following
rule

{xℓ,i}2,M̃ℓ=1,i=1 = {x̃ℓ,i1,i2}
2,m̃1,m̃2

ℓ=1,i1=1,i2=1 : x̃ℓ,i1,i2 = γℓ(θi1 , φi2),

with θi1 =
π

m̃1 + 1
i1, φi2 =

2π

m̃2
i2, for i1 = 1, . . . , m̃1, i2 = 1, . . . , m̃2 and M̃ = m̃1m̃2, for

m̃1, m̃2 ∈ IN.

The ratio between the number of collocation and source points should be 2M̃ ≥ M . For more
information on source and collocation points distributions, see [2].

Finally, taking into account (3.1) and (3.3), we can compute the �tness function (2.4) by the
following discrete rule

E(r) =
N∑

n=0

M̃∑
i=1

∣∣∣∣∣∣
n∑

m=0

M∑
j=1

α
(r)
m,jΨn−m(x2,i,y

(r)
j )− g2(x2,i, tn)

∣∣∣∣∣∣
2

+ λ ∥r∥22 ,

where Ψn(x,y) =
∂Φn(x,y)

∂ν(x)
and the coe�cients α

(r)
m,j are obtained from the (3.4). Γ1, given by

the r. We use the superscript (r) next to the coe�cients αm,j and source points yj to emphasize
that they depend on the r.
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4 Numerical examples

In this section, the results of numerical examples of the reconstruction of the inner boundary
for two and three dimensional domains for both unsteady problems are presented. In all examples,
we generate synthetic data for a given boundary function f2(x, t) = t2e−4t+2|x|, by solving the
appropriate direct problems (1.1) or (1.2), by the two-step MFS-based numerical method (section
3), and compute the Neumann trace g2 on the outer boundary Γ2. To avoid an inverse crime, we
consider a larger number of source and collocation points compared to the inverse problem. In the

case of noisy data, the noise is added to the function g2, such that
∥∥∥gδ2 − g2

∥∥∥
L2(Γ2×[0,T ])

≤ δ, where

gδ2 is the noised function and δ > 0 is the noise level.

We use following parameters of the GA: population size popsize = 40, crossover probability
pc = 80%, mutation scaling Sm = 0.1, mutation probability pm = 50%, the number of elite
individuals pel = 10%, selection pressure parameter q = 0.0375 (1.5/popsize), max number of
iterations itmax = 200 (or itmax = 500, for d = 3), max number of iterations without improvement
itnc = 20. The values of Rmin and Rmax depend on the knowledge of the minimum and maximum
radii of the circles (or surfaces, for d = 3) allowed for the inner boundary, and we use neither
too small nor larger than allowed so as not to exceed outer boundary, thus for d = 2 we use
Rmin = 0.1, Rmax = 0.6 and for d = 3 we use Rmin = 0.1, Rmax = 2 (note that in front of Y R

0,0

there is a coe�cient c00). A similar logic is used to select Ai, Bi and we use prede�ned decreasing
modulo values: Ai : 0,−0.3,−0.3,−0.2,−0.2, . . ., Bi : 0.6, 0.3, 0.3, 0.2, 0.2, . . . (for d = 3 we use
Ai : 0,−1.5,−1.5,−1.5,−1,−1, . . ., Bi : 2, 1.5, 1.5, 1.5, 1, 1, . . .).

For numerical solution of the direct problem we use following parameters: N = 10, for d = 2:
M = 48, M̃ = 24, η2 = 2, η1 = 0.5 (when generate synthetic data g2: M = 96, M̃ = 48, η2 = 1.2,
η1 = 0.8), for d = 3: M = 72, M̃ = 36, η2 = 2, η1 = 0.5 (when generate synthetic data: M = 128,
M̃ = 64, η2 = 2, η1 = 0.5). In the case of small parameters, the �tness is calculated with an
error, then for good individuals and bad individuals, similar �tnesses are obtained, this leads to a
population with a large number of bad individuals and �nding the wrong solution. On the other
hand, when the parameters are too large, the �tness is calculated with a very small error for good
individuals, but this increases the computational cost because we need to �ll and solve the large
recurrent systems for each individual for each population. Number of basis functions K = 9, for
d = 2 and K = 25, for d = 3. The regularization parameter is chosen based on several numerical
experiments, for which the most accurate result is obtained, namely λ = 1e − 10, for δ = 0% and
λ = 1e − 4, for δ = 5%. For the heat equation we use c = 1 and for the wave equation C = 1, the
�nal time is T = 2.

In examples 4.1 and 4.2 we show the results of numerical experiments in two-dimensional domains
for the heat and wave equations, and three-dimensional domain for the heat equation is considered
in the example 4.3.

Example 4.1. In this example we consider the inverse problem for the heat equation (1.1),
(1.3) in two-dimensional domains. The exterior boundary curve Γ2 is the unit circle

Γ2 = {γ2(s) = (cos s, sin s), s ∈ [0, 2π]}

and the interior boundary curve Γ1 (to be reconstructed) is an apple-shaped curve with the
parametrization

Γ1 =

{
γ1(s) =

1 + 0.9 cos s+ 0.1 sin(2s)

2 + 1.5 cos s
(cos s, sin s), s ∈ [0, 2π]

}
.

The approximate curve was obtained after 200 iterations for exact data and after 150 iterations
for noised data. In Fig. 4.1 the exact and reconstructed boundary curves Γ1 are presented in the
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a) δ = 0% b) δ = 5%

Fig. 4.1. Reconstructed (solid line) and exact (dashed line) boundary curves Γ1

for exact and 5% noisy data for the heat equation for the example 4.1

case of exact (a) and noisy (b) data. The best �tness for every population is presented in �g. 4.2.
It can be seen from this �gure that quite good approximations are obtained in the �rst iterations,
and the solution improves in the last iterations. The same tendency occurs for the case of the wave
equation and three dimensional domains.

a) δ = 0% b) δ = 5%

Fig. 4.2. The best �tness, computed by (2.4), for every population for the example 4.1

Example 4.2. In this example we consider the inverse problem for the wave equation (1.2),
(1.3) in two-dimensional domains. The exterior boundary curve Γ2 is a kite-shaped curve with the
following parametrization

Γ2 =
{
γ2(s) = (cos s, sin s− 0.5 sin2 s+ 0.5), s ∈ [0, 2π]

}
and the interior boundary curve Γ1 is a peanut-shaped curve with the parametrization

Γ1 =
{
γ1(s) =

√
(0.5 cos s)2 + (0.25 sin s)2(cos s, sin s), s ∈ [0, 2π]

}
.

The approximate curve was obtained after 200 iterations for exact data and after 80 iterations
for noised data. In Fig. 4.3 the exact and reconstructed boundary curves Γ1 are presented in the
case of exact (a) and noisy (b) data.
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a) δ = 0% b) δ = 5%

Fig. 4.3. Reconstructed (solid line) and exact (dashed line) boundary curves Γ1

for exact and 5% noisy data for the example 4.2

Example 4.3. In this example we consider the inverse problem for the heat equation (1.1),
(1.3) in three-dimensional domains. Boundary surfaces have following parametrization

Γ2(θ, φ) = {γ2(θ, φ) = ω(θ, φ), θ ∈ [0, π], φ ∈ [0, 2π]} ,

Γ1(θ, φ) =

{
γ1(θ, φ) =

1

2

√
0.8 + 0.2(cos(2φ)− 1)(cos(4θ)− 1)ω(θ, φ), θ ∈ [0, π], φ ∈ [0, 2π]

}
,

where ω(θ, φ) is given in (2.2).

a) exact b) δ = 0% c) δ = 5%

Fig. 4.4. Exact (a) and reconstructed boundary surfaces Γ1 for exact (b)
and 5% noisy (c) data for the example 4.3

The approximate surface was obtained after 500 iterations, and for noised data after 297 itera-
tions. In Fig. 4.4 the exact and reconstructed boundary surfaces Γ1 are presented; the sections of
the domain at x1 = 0 are presented in Fig. 4.5. Similar results are obtained in case of the wave
equation. When the external boundary is more complicated the algorithm requires more iterations.

As can be seen from the results, in order to obtain an accurate numerical solution, it is necessary
to perform a large number of iterations, especially for d = 3. For large values of M or M̃ , the
algorithm can work for a long time, so the optimal idea is to perform a small number of iterations
by GA, and then re�ne the solution using Newton-type methods.

5 Conclusion

The application of GA is considered for the numerical solution of the inverse problem of recon-
struction of the inner boundary of a double connected domain based on known Cauchy data of the
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a) δ = 0% b) δ = 5%

Fig. 4.5. Reconstructed (solid blue line) and exact (dashed blue line) sections of boundary
surfaces Γ1 at x1 = 0, for exact and 5% noisy data for the example 4.3

function that satis�es either the heat or the wave equation. The radial function of the sought bound-
ary is given in the form of the linear combination of basis functions, and the unknown coe�cients
are sought by GA. The �tness function of the individual is proposed, for the calculation of which
it is necessary to solve a direct non stationary problem. The last problem according to Rothe's
method is reduced to a sequence of recurrent stationary problems, which are completely discretized
by the MFS. The algorithm is tested for both equations, for two and three dimensional domains,
and for exact and noisy data. The advantage of the method is the possibility of application to other
non stationary problems, and the lack of a good initial approximation, and the disadvantage is a
large number of iterations in the case of complex domains, which can lead to a long execution time.
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