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AHOTALIA. Y IBOMY JOCJIIZKEHHI MH IIPEICTABJSIEMO iTepaliifHy TEeXHIKYy BOCBMOTO MODPSIKY
IJIsi PO3B’si3aHHsI HEJIHIMHOTO DIBHAHH#A. JAIMPOIOHOBAHUIM HAMU METOJl € ONTHMAJBHUM 3Ti/HO 3
rimote30i0 Kynra-Tpayba, mo BrMarae Jumre <TOTHPBOX OIIHOK (DYHKINI Ha iTeparmiio s TeXHIKH
BOCBMOTO HOpAAKy. Mmu mpoaHami3yBail TEOPeTHUHI aCHeKTH HAIIOI CXEMH, PeTeIbHO AOCTIIIZKYIoun
i1 BIaCTUBOCTI 301K HOCTI Yepe3 OCHOBHY TEOPEMY, fKa CIYKUTH /IS JEMOHCTPAIN] HOPSAKY 3012KHOCTI.
11106 mepeBipuTH TPaKTUYUHY KOPHUCHICTH HAIMMX (DYHKINM ONTHUMAJILHOL iTepariii, My IPOBOAVIMO TOPiB-
HAJTBPHAYA aHAJI3 i3 ICHYIOUMMH KOHKYDPEHTAaMH, BUKOPDHCTOBYIOUH CTAHIAPTHI akagemiuHi 3amadi. Lle
IO3BOJISIE HAM MIIKPECJUTH 9y[A0BY HPOAYKTHBHICTH i e(eKTUBHICTDh HAIMOTO MiIXOAY /10 PO3B’sI3aHHS
HeJTiHIfTHIX PiBHAHB.

ABSTRACT. In this study, we present an iterative technique of eighth order for solving a non-linear
equation. Our proposed method is optimal according to Kung-Traub conjecture, requiring only four
function evaluations per iteration for the eighth order technique. We analysed the theoretical aspects of
our scheme, thoroughly exploring its convergence properties through the main theorem, which serves to
demonstrate the convergence order. To check the practical utility of our optimal iteration functions, we
conduct a comparative analysis against existing competitors using standard academic problems. This
enables us to highlight the superior performance and effectiveness of our approach in solving non-linear
equations.

1 INTRODUCTION

The common problem of solving nonlinear equations in various scientific and engineering fields
are in the form of 6(«) = 0. In real-world applications, exact solutions to these equations are
often impractical or even impossible to obtain, so iterative methods are utilized to find approximate
solutions. Newton’s iteration method is a well-known approach for solving such equations, with
a order of convergence of two, making it an optimal method in terms of efficiency, requiring two
function evaluations per iterative step.

In recent years, researchers have developed higher-order iterative methods that improve upon
classical methods like Newton’s method. These higher-order methods achieve increased convergence
rates, but they also require a greater number of function evaluations per step. To balance efficiency
and convergence order, a measure is called the efficiency index has been introduced. The Kung-
Traub conjecture states that the order of convergence for any multi-point iterative method cannot
exceed the bound of 2”71, where n is the number of functions evaluations per iteration, which is
considered as the optimal order.

The experts [2—4] discussed a recent development in the field of iterative methods, specifically
the elimination of derivatives from the iteration functions. The conventional challenge associated
with iterative methods involving derivatives is the computational effort required to calculate these
derivatives at each step. This difficulty is particularly pronounced for high-order derivatives, making
such methods impractical and time-consuming for real-world problems.

Key words: non-linear equations, order of convergence, Local convergence, Lipschitz continuity condition, Fréchet
derivative, Basin of attraction.
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In [9], the researchers discussed the third order iterative method. In [1,10, 14| the experts
discussed the fourth order iterative method, in [11] fifth order itertaive method, sixth order iterative
algorithm discussed in [5,12] and seventh order iterative method discussed in [13]. Inspired by all
these higher order iterative methods we developed the eighth order optimal iterative method.

We emphasizes the significance of optimal eighth-order multi-point derivative-free methods as
a noteworthy class of iterative methods. This method offers faster convergence towards the desired
root and demonstrate a superior efficiency index compared to conventional methods like Newton’s
method. Moreover, this method enable the achievement of a specified level of accuracy which is
expressed in terms of digits within a relatively small number of iterations, further enhancing the
practical applicability.

In this paper, we focuses on developing optimal eighth order iterative methods using divided
difference techniques. After that we analyzes the convergence order of this method and provides
numerical examples to compare them with existing optimal method. The discussion extends to the
application of these methods to solve the problem of fraction conversion of nitrogen and hydrogen
to ammonia and Planck’s radiation law.

This paper is structured as follows. In Section 2, we focuses on the development and analysis
of eighth-order iterative methods for solving nonlinear equations. In Section 3, we discusses the
convergence speed that is order of convergence of our proposed method. In Section 4, we apply
our technique to real-world problems, providing numerical examples and comparing it with existing
methods. Finally, in Section 5 we present the conclusions drawn from the proposed method.

2 EIGHTH-ORDER PROPOSED METHOD

In this section, we introduce the derivative-free optimal eighth order iterative method. This
technique significantly enhances the rate at which the algorithm converges to the root. In 2007
Jisheng Kou et.al [14] proposed fourth order optimal technique

- O(an)
/871 - an - Gl(an)7
9 9 (2.1)
o = Oy — (9(0@)) + (G(ﬁn))
0" (o) (H(O‘n) - 9<5n))
To increase the order of convergence of (2.1) we add the Newton’s method as
0(m)
Wy, = Y — .
"0
By adding third step to (2.1), we get eighth-order convergence
_ f(an)
Bn = ap — Hl(an)’
(6(en))” + (8(5n))”
Tn = Qn — / ) (22)
0(yn)

n

In equation (2.2), the number of function is five. According to the Kung-Traub conjecture the order
of convergence should be 16. So to get the optimal order of convergence, we need to reduce the
computational cost that is to approximate 6'(7,) by using Newton interpolation

p(s) =ap+ai(s — @) + az(s — oz)2 +as(s — oz)g,
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which satisfies p(a) = 0(«), p'(a) = 0'(«), p(B) = 0(8), p(v) = 0(y).
From this, we get

pla) = b(a) = ag,

p'(a) =0'(e) = ar.
To determine the value of as and as, we define the first order and second order divided difference
as

01,0 = =0 bl ] = =T B,
Clearly, we have
: Ola, o] — 0[B, o]
0[8, a, ] = P
_ 6[8,a] ~ 0'(a)
B—a
Now,
p(B) = 0(8) = 0(a) + 0'(a) (8 — a) + az(B — @)* + a3(8 — a)*, (2.3)
p(y) = 0(7) = () +0'(a) (v — @) + az(y — @)* + az(y — a)”. (24)
From equation (2.3) it follows
WB) ) _ f0) + as(8— @) + ay(8 — )
and 0 o
[B,;]—_a (@) _ az +az(B — ).
Thus
018, a,a] = a2 + az(f — ). (2.5)
Similarly, from equation (2.4), we get
0]y, o, a] = az + az(y — ). (2.6)

From (2.5) and (2.6), we get the value of ag
_ 0B, a,a] = 0[v,a,q]

as = 2.7
3 5 (2.7)

Now using equation (2.7) in equation (2.5), we get the value of ay
ay = Q[B,OL,O(](’)’—O&) _0[’%0570‘](6_04)‘ (28)

v—5
Using the approximation 6'(v,) = p/(v,) and substituting the value of aj, a2, and as in equa-
tion (2.2), our proposed eighth-order iterative method (PM) is

— o — 0(an)
= 0 = gt
o (Ban)” + (8(5))° 29
o 0(n)
Wn+1 = Tn )

9/(an) + 2a2(7n - an) + 3(13(771 - an)Q
where a and a3 is given by (2.8) and (2.7) respectively.
Now equation (2.9) is optimal as per Kung-Traub conjecture. The total number of function

is1 four, and the order of convergence is equal 8. The efficiency index of our proposed method is
81 = 1.681792830507.
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3 CONVERGENCE ANALYSIS

In this section, we prove the convergence analysis of (2.9). By employing Taylor’s theorem we
conduct a comprehensive analysis of the iterative technique and we derive the error equation which
presents eighth order of convergence.

Theorem 3.1. Let 8 : D C R — R be a sufficiently smooth function having continuous
derivatives. If O(«) has a simple root o* in the open interval D and o chosen in sufficiently small
neighbourhood of o*, then the method (2.9) is of eighth-order convergence and the error equation
is

en+1 = (c3 (3¢5 —c3)) (3¢5 —czco+ca) el + O (e]).

Proof. Let e, = o, — @™ be the error in n-th iteration. Using Taylor’s series expansion around
o we get
o' (a*)

1!

Since o* is the simple root, so §(a*) =0,

ell(a*)
210" (a*)

0”(06*)

O(cn) = (™) + 3

(o — @) +

O(a,) = 0'(a*) |en + e +

Let ¢ = i(!:,iiggi)), k=2,3,---. Using the value of ¢ in equation (3.1), we get

O(an) = 6'(a¥) [en + o€’ 4 c3ed + cued + c5ed + el + crel + - } ,
and clearly
0 () = 0' (™) [1 + 2c9e,, + 3cze? + deged + Sesel + 6egel + Terel + - } :
From the first step of equation (2.9), we get
Br = co€2 + (2¢3 — 203) e + (40% — Teseg + 3cy) et
+ (—80‘2l + 200303 — 10¢cqce — 60;2,) + 4(:5) ei
+ (16¢5 — 52csc3 + 28cac3 + (33¢3 — 13¢5) co — 1Tcses + eg) €
— 2(16¢5 — 64cscy + 36cacs + 9 (Tc3 — 2¢5) 3 + (8ce — 46cse4) €2
— 9¢3 + 6¢] + 1lcges)el, + (64ch — 304esch + 176cacs
+ (408¢3 — 92¢5) c3 + (44cs — 348cses) 3 + (—135¢3 + 118cses + 64c]) 2
+ ¢4 (75¢ — 3les) — 2Tczeq) el + O (€5) -
From the second step of equation (2.9), we get
Yn = (303 — 0203) efl -2 (90‘21 — 10636% + cqco + cg) efL
+ (7003 — 130c3c3 + 30c4c3 + (420% — 305) co — 76364) eg
— 2(111c§ — 288c3¢3 + 92cach + 4 (43¢5 — 5es) 3
7

+ 2 (cg — 3leseq) ca — 14c§ + 30421 + 50305)en

+ (624(:; — 2076¢3¢5 + 799cscs + (18623 — 239c5) 3 + (50cs — 965¢3¢4) €3

+ (—395¢3 + 164csc3 + 91c]) e + cq (12265 — 17c5) — 130366) el +0 (e).
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From the final step of equation (2.9), we get
Wnt1 = Tn — (3¢5 — cacs) e — 2 (9¢3 — 10esc3 + caco + c3) €D
+ (7003 — 130636% + 30040% + (426§ — 305) co — 70304) eg
-2 (11103 — 288c3ch + 92c4c3 + 4 (4303 - 505) s
+ 2 (c — 3lezeq) e — 14¢3 + 33 + 56305)62 (3.2)
+ (61565 — 2070c3c] + T96esc + (18613 — 239¢s) cf
+ (50cg — 964cses) c3 + (— 395¢; + 164cscs
+ 9103)02 + ¢4 (1220% —17cs) — 136306)62 +0 (e%) .

Hence, from equation (3.2), we concluded that the convergence order of the proposed method (2.9)
is equal 8 and it is represented by the error equation

ent1 = (363 = ca) (3¢} —esea + ea) €l + O (€D).

4 NUMERICAL EXAMPLES

In this section, we validate the efficacy of our proposed eighth-order method through a series
of illustrative numerical examples. The chosen examples are carefully selected to showcase the
method’s superior convergence properties and efficiency in comparison to existing techniques. Em-
ploying the Mathematica 11.3 software, we present detailed numerical results that highlight the
accelerated convergence rates achieved by our method. We denote our approach as the proposed
method (PM) and compare its numerical results with two existing methods, denoted as SKHT and
SLLW. In Tables 4.1-4.4, we present the numerical comparison between our results and the results
obtained from existing techniques. In the Tables 4.1-4.4, the first column represents the method
names, the second column shows the number of iterations required by each method, the third col-
umn presents the approximate root, the fourth column presents the absolute value of the function
at each iteration, the fifth column highlights the absolute difference between consecutive iterations,
the sixth column indicates the Computational Order of Convergence (COC), and the final column
reports the CPU time taken for each method.

Based on the comparison of absolute functional values, the differences between consecutive iter-
ations, and CPU time, our proposed method (PM) demonstrates superior performance compared to
the existing methods. PM achieves more accurate results with smaller differences between consec-
utive steps, and lower computational time as compared to existing techniques. In Figures 4.1-4.4,
we present the visual comparative analysis between our technique and existing methodologies.

4.1 REAL-LIFE APPLICATION PROBLEM

We compared our results with the following methods: Kung and Traub proposed the method [7]
denoted by (8KHT)

— o — O(an)
= o0~ G,
g M) 6an)
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0(cn) 0(0n)0(Bn)0(vn)(0(ctn))* + 0(Bn)(6(Bn)) = (1)
0'(@n) (0(cn) — 0(8a))” (0(cm) — 0(1))*(0(Bn) — (7))
Liu and Wang proposed the method [8] denoted by (8LLW)

Qpt1 = Yn —

— . — 0(an)
IBTL — tin 9’(04”)’
Y = Bn Blon) — 2003, 0 (cn)’
alzv_ﬂwwﬂ%%ﬂmwa_ 0(n) 46(n)
n+ n 0’(’}%) Q(Oén) — 29([3”) H(Bn) — 0('}%) Q(Oén) i 9(’}/”)

Example 4.1. Converting nitrogen and hydrogen into ammonia using a fractional approach,
see [6]. The proportion that represents the amount of nitrogen and hydrogen that have been
converted into ammonia in a chemical process is called the fractional conversion. We may apply this
metric to track the reaction’s progress and find the best circumstances for getting the highest yield.
How much ammonia is produced as a percentage of the total nitrogen and hydrogen that were added
to the reaction system is called the fractional conversion. To optimize ammonia production, this
ratio serves as a clear indicator of the reaction’s efficiency and directs the adjustment of conditions.
As the quantity of ammonia produced is divided by the total quantity of nitrogen and hydrogen
input into the reaction system, we get the equation for the fractional conversion of nitrogen and
hydrogen to ammonia.

One way to calculate the fractional conversion is to divide the total amount of nitrogen and
hydrogen delivered into the reaction system by the amount of ammonia produced. This relationship
gives a ratio that shows how much ammonia (A) has been produced from nitrogen and hydrogen. We
can use the fractional conversion to track how far along the reaction is and when it will be finished.
Decimal or percentage forms are common for expressing fractional conversions. In this problem,
the values of temperature and pressure have been taken as 500°C and 250 atm, respectively. This

problem has the following non-linear form:
0(a) =t — 7.7907503 + 14.744502 + 2.511a — 1.674 = 0. (4.1)

The equation (4.1) has four roots. The roots are 0.384094, 0.27776, and 3.94854 + 0.3161244. For
the initial value ap=0.3, the following Table 4.1 is provided.

Table 4.1. Numerical comparison of our results with existing techniques

method|n| oy | 0(cw) | | ap—1 —an | |COC|CPU Time
A 1| 0.27776 | 4.3705 x 10712 {7.21367 x 10~ 13

21 0.27776 [2.11053 x 10712/2.69063 x 10~ 13| 8 0.156
SKHT 1| 0.27776 | 4.71531 x 1078 | 5.24834 x 10~7

21 0.27776 | 1.11022 x 10~ | Indeterminate 8 0.157
— 1]0.278602| 0.00757591 0.000841346

210.277761| 0.0000107518 | 0.0000278803 | 8 0.235

310.277733| 2.3973 x 10~* | 2.67015 x 107°

The Table 4.1 shows that the proposed method (PM) performs significantly better than the
existing techniques, (SKHT and S8LLW). In PM, both the absolute value of the function and the
difference between consecutive errors are consistently smaller which indicates higher accuracy. In
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Fig. 4.1. Graphical comparison of our results with existing techniques

comparison with S8KHT, the error of PM is almost half. Additionally, PM takes less time to compute,
making it more efficient. The Figure 4.1 also clearly demonstrate that the error is less in PM as
compared to existing techniques.

Example 4.2. Planck’s blackbody radiation law, see [10]. Planck’s radiation law, which is
sometimes called Planck’s blackbody radiation law, describes the electromagnetic radiation spec-
trum density emitted by a blackbody at a given temperature when it is in thermal equilibrium.
According to this law, the rate of radiation and the blackbody’s temperature are directly propor-
tional to the spectrum radiance, which is the quantity of radiation emitted per unit area, unit
solid angle, and unit frequency. The mathematical foundations of the emission of radiation from a
blackbody under different conditions are provided by this basic law

2 1=,

O(a) =e +5

(4.2)

where a stands for the maximal wavelength. The exact roots of equation (4.2) are 0 and 4.96511.
For the initial value ag= 3, the following Table 4.2 is provided.

Table 4.2. Numerical comparison of our results with existing techniques

method|n o, | (o) | || @1 — an ||COC|CPU Time

AL 1|4.9653832924707295940| 5.2 x 107° | 2.7 x 10~*
2|4.9651142317442763037| 2.0 x 10738 | 1.0 x 10737 | 8 0.828
3(4.9651142317442763037|8.8 x 1073%6| 4.6 x 10730

SKHT 1|5.0029184879164884514|  0.0073 0.038
2(4.9651142319790888075| 4.5 x 1071 | 2.3 x 10719 | 8 0.843
3(4.9651142317442763037| 7.0 x 10744 | 3.7 x 10~43

LW 1|4.9940825929871859263|  0.0056 0.029
2/4.9651194888792980915| 1.0 x 1076 | 5.3 x 1076 | 8 0.843
34.9651142317444518319|3.4 x 10714 | 1.8 x 10713

The Table 4.2 shows that, in PM from first to the second iteration, and the second to the third
iteration, the error is approximately reduced eight times. When compared with SKHT method, the
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error is reduced by approximately six times, while compared with 8LLW method, the error reduction
is approximately 20 times which indicates higher accuracy in PM. The Figure 4.2 provides the visual
representation of less error of PM as compared to existing techniques.

Comparision of absolute error
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Fig. 4.2. Graphical comparison of our results with existing techniques

4.2 ACADEMIC PROBLEM

Example 4.3. Consider the nonlinear equation
f(a)=In(c®* +a+2)—a+1=0. (4.3)

The exact root of the equation (4.3) is 4.15259. For the initial value ag= 4, the following Table
4.3 is provided.

Table 4.3. Numerical comparison of our results with existing techniques

Method |n anp | 0(an) | || an—1 — ap |[|[COC|CPU Time
A 1]4.1525907367571995494| 2.5 x 10714 | 4.1 x 10~

214.1525907367571582750 (5.6 x 107115/9.3 x 107115 | 8 1.61
314.1525907367571582750(3.8 x 107920| 6.3 x 107920

SKHT 1]4.1525912474738348606| 3.1 x 1077 | 5.1 x 1077
214.1525907367571582750( 3.4 x 10727 | 5.7 x 1072 | 8 1.673
314.1525907367571582750 (5.3 x 107117| 8.8 x 10117

SLLW 1(4.1528316692180028950| 0.00015 0.00024
214.1525907373512851664 | 3.6 x 10710 | 5,9 x 10710 | 8 1.766
314.1525907367571582750| 2.2 x 10721 | 3.6 x 1072!

From Table 4.3, we can see that, the error in PM decreases approximately eight times from
the first to the second iteration, and from the second to third iteration. Compared to the SKHT
method and S8LLW method, the error in PM is reduced to approximately seven times and 43 times
respectively. That gives better result. The Figure 4.3 visually shows, the smaller error in each
iteration of PM as compared to existing techniques.

Example 4.4. Consider the nonlinear equation

0(a) = a® +40* — 10 = 0. (4.4)
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The exact root of equation (4.4) is 1.36523. For the initial value ap= 1, the following Table 4.4 is
provided.

Table 4.4. Numerical comparison of our results with existing techniques

method |n oy, | 0(an) | || an—1 — an ||COC|CPU Time
AL 1[1.3653426948260834139|  0.0019 0.00011

211.3652300134140968458 (2.2 x 10732 | 1.3 x 10733 | 8 1.414
3/1.3652300134140968458 (8.6 x 107264| 5.2 x 107265

SKHT 1[1.3709171842544731067|  0.094 0.0057
2/1.3709171842544731067| 3.5 x 1072 | 2.1 x 10710 | 8 1.572
3/1.3652300134140968458 | 7.0 x 10739 | 4.3 x 10740

SLLW 1[1.3600211459109570607|  0.086 0.0052
2|1.3652348576908087136| 0.000080 | 4.8 x 1076 | 8 1.429
3/1.3652300134183159594 | 7.0 x 10~ | 4.2 x 10712

In Table 4.4, we can see that the error in PM decreases approximately eight times from the
first to the second iteration, and from the second to third iteration. Compared PM with SKHT
method, the error decreases approximately seven times, while with 8LLW method PM achieves a
much larger error reduction approximately 24 times which indicates that PM is much effective at
minimizing error. The Figure 4.4 provides a clear visual of the error decreases with each iteration,
showing the ability of PM to reduce errors efficiently.

5 CONCLUSION

In this study, we have introduced an optimal eighth-order iterative method for solving nonlinear
equations, by using the divided difference approximation. The method involves performing four
function evaluations per iteration, achieving a convergence order of eighth. Through convergence
analysis and numerical examples, we demonstrate the proposed method satisfied of Kung-Traub
conjecture. Qur proposed eighth-order PM method has been tested against known schemes, show-
casing its superiority. We applied the newly developed method, along with existing ones, to solve
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Fig. 4.4. Graphical comparison of our results with existing techniques

problems such as Conversion of nitrogen and hydrogen into ammonia and Planck’s radiation law.
The results obtained highlighting the effectiveness of the eighth order PM method. Our numerical
experiments suggest that this method offer a valuable alternative for efficiently solving non-linear
equations.
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