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Àíîòàöiÿ. Ìè ðîçãëÿäà¹ìî ïðîáëåìó ïðîñóâàííÿ iíôiëüòðàöi¨ â iðèãàöiéíié ãiäðàâëiöi,
çìîäåëüîâàíó çà äîïîìîãîþ ðiâíÿííÿ Ëüþ¨ñà-Ìiëíà. Ìè ïðîïîíó¹ìî äâà iòåðàöiéíèõ ìåòîäè, ÿêi
äàþòü ïðèéíÿòíi ðåçóëüòàòè ïîðiâíÿíî ç iñíóþ÷èìè ôîðìóëàìè äëÿ ðiçíèõ äîáðå âiäîìèõ ôóíêöié
iíôiëüòðàöi¨. Ìåòîä ïîñëiäîâíèõ íàáëèæåíü, ÿêèé ðîçãëÿäà¹òüñÿ ÿê ìåòîä ôiêñîâàíî¨ òî÷êè, i
ìåòîä âàðiàöiéíî¨ iòåðàöi¨ (íà îñíîâi ìåòîäó ìíîæíèêiâ Ëàãðàíæà) äàþòü ôîðìóëè ïiñëÿ äåêiëüêîõ
iòåðàöié i ïðîñòèõ îá÷èñëåíü ïîðiâíÿíî ç iñíóþ÷èìè ìåòîäàìè, äå ìà¹ áóòè âiäîìå ïåðåòâîðåííÿ
Ëàïëàñà ôóíêöi¨ iíôiëüòðàöi¨.

Abstract. We examine the in�ltration advance problem in irrigation hydraulics modeled through
the Lewis-Milne equation. We propose two iterative methods that give reasonable results compared with
existing formulas for various well-known in�ltration functions. The method of successive approximations
seen as a �xed-point method and the variational iteration method (based on Lagrange multipliers
method) produce formulas after few iterations and simple calculations compared to existing methods
where the Laplace transform of the in�ltration function has to be known.

1 Introduction

The problem of simultaneous advance and in�ltration of water on the soil surface observed in
surface irrigations is of central importance. The equation of Lewis and Milne (1938) [15] forms the
basis for all models attempting to address the problem (Cook et al., 2013 [4]). However, since it
ignores water ponding at the soil surface it is valid only for shallow �ow situations. Philip and
Farrell (1964) [23] showed that using Laplace transformation, a general analytical solution of the
Lewis-Milne equation can be achieved when there is a constant in�ow at the system's entrance. Fur-
thermore, applying various in�ltration functions to the general analytical solution, such as (Horton,
1940 [12]; Kostiakov, 1932 [13]; Philip, 1957 [21]) resulted in speci�c analytical solutions for the
advance x(t) (where x is the distance of advance of the surface water and t is the advance time)
for each in�ltration equation when the water surface quantity is considered negligible. However, in
most cases, the used in�ltration equations are empirical, and hence, their parameters lack physical
meaning.

A important feature of Philip and Farrell (1964) [23] solution is that no assumption is made
about the relationship between advance and time. They also introduced an implicit general solution
to the inverse problem of this equation, which can be used to study the in�ltration process of border
irrigation (Mao et al., 2011 [16]).

Or and Silva (1996) [19] presented a relatively simple numerical prediction method for the
advance problem using a di�erential form of the Lewis-Milne equation, in which the volume of
surface water is again considered negligible. Valiantzas (2000) [26] proposed an advance prediction
equation derived by removing the surface volume term from the volume balance equation. However,
it assumes that advance is described by an exponential equation and that in�ltration follows the
extended Kostiakov-Lewis equation.
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Cook et al. (2013) [4] used a two-parameter in�ltration equation given by Philip (1969) [22] in
the Lewis-Milne equation, with physical soil parameters being sorptivity S and saturated hydraulic
conductivity Ks, providing a solution for all times using the Laplace transform. For short advance
times, their solution is the same as that by Philip and Farrell (1964) [23] when the in�ltration
equation used is the Philip (1957) [21] equation, while for long times, the solution was the same as
that of Collis-George (1974) [3].

From the above, it generally emerges that the analytical solution of the Lewis-Milne equation
usually relies on Laplace transformation, and di�erent assumptions appear among the methods.
Such assumptions concern the volume of surface water, the shape of the advance curve, and the
form of the in�ltration equation, where equations with empirical parameters are usually used instead
of equations containing physically meaningful parameters such as sorptivity and saturated hydraulic
conductivity.

The purpose of our work is to present two new approximate methods when di�erent in�ltration
equations (two-term, empirical or implicit) are incorporated into the Lewis-Milne equation to pro-
duce an advance function. We focus on border irrigation but the problem remains in general the
same also in furrow irrigation (Philip and Farrell, 1964 [23]).

The paper is organized as follows: in Section 2 we formulate mathematically the problem and
we present the �ve di�erent in�ltration functions to be considered in this work. The two iterative
methods are presented in Section 3. The approximate solutions as the output of the iterative
schemes after few steps are derived in Section 4.

2 Problem formulation

The physical problem is described by the Lewis-Milne equation

qt = cx(t) +

∫ t

0
y(t− τ)x′(τ)dτ, (2.1)

where x(t) is the position of the advance front as a function of time t (start of the �ow), q is the
constant �ow rate at the system's entrance and c is the water depth on the soil surface. Of great
interest is the in�ltration equation y(t) since its form a�ects the solution of (2.1). In this study,
we explore di�erent distinct forms; however, it is worth noting that the iterative method presented
herein have broader applicability and can be applied to additional cases.

• The two-term in�ltration equation

y(t) = S
√
t+At, (2.2)

where S is the sorptivity and A is proportional to the saturated hydraulic conductivity Ks.
This equation was proposed by Philip (1957) [21] and it is a truncation of a series solution
and it is valid only for in�ltration at short to medium times.

• The linear equation

y(t) = y0 +Kst, (2.3)

for some initial in�ltration value y0 before y′(t) = Ks. This equation was suggested by Philip
and Farrell (1964) [23] and it holds for large times.
A power law relation of the form

y(t) = κtα, (2.4)

where κ > 0 and α ∈ (0, 1] are empirical constants, an equation proposed by Kostiakov
(1932) [13].
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• The two-parameter implicit in�ltration equations

t =
y

Ks
− S2

2K2
s

ln

(
1 +

2Ksy

S2

)
(2.5)

and

t =
y

Ks
+

S2

2K2
s

(
e−

2Ksy

S2 − 1
)
, (2.6)

proposed by Green and Ampt (1911) [7] and Talsma and Parlange (1972) [25], respectively.
We consider these two equations together since they share the same characteristic that t is
given as a function of y and thus an inversion is needed before proceeding further.

The equation (2.1) is an integro-di�erential equation of Volterra type and an equivalent form
can be obtained by taking the time derivative and apply the Leibniz rule:

q = cx′(t) +

∫ t

0

∂y

∂t
(t− τ)x′(τ)dτ + y(0)x′(t). (2.7)

In this work we consider the direct problem to compute x(t), from (2.1) or (2.7) given the
in�ltration function y(t) and the constants q and c. The majority of the previous works solve (2.1)
by applying the Laplace transform, a method that is useful only if the transform of the in�ltration
function is known, see (Cook et al., 2013 [4]; Philip and Farrell, 1964 [23]) and the references therein.

3 Methods

In this section we present the fundamentals of two iterative methods: the successive approxi-
mation method (SAM) and the variational iterative method (VIM). Our objectives are to:

(a) show that the two methods coincide for the particular problem,

(b) test the e�ectiveness in solving the in�ltration advance problem and

(c) compare the approximate solutions with established ones.
It is worth noting, however, that a comprehensive theoretical exploration of convergence and error
analysis lies beyond the scope of this paper.

3.1 The successive approximation method (SAM)

The SAM or the method of successive approximations is an iterative method considered by
several authors, already decades ago, to solve di�erential equations, integral equations (both of
Fredholm and Volterra type) and optimal control problems. We refer the interested reader to the
early works (B�uckner, 1948 [1]; Chen, 1981 [2]; Mitter, 1966 [17]; Wiggins, 1978 [27]) and the book
by Kress (2014) [14] for the fundamentals of the method. To our knowledge this is the �rst time
that this method is applied to (2.1).

The SAM is based on a �xed-point iteration, where the solution of a general equation
x(t) = F (t, x), is given in a form of a sequence x0(t), x1(t), . . . under the formula

xn+1(t) = F (t, xn) , n = 0, 1, . . . .

In our case, using (2.1) we get

xn+1(t) =
qt

c
− 1

c

∫ t

0
y(t− τ)x′n(τ)dτ. (3.1)

This method requires an initial guess x0(t). Theoretically, the solution is given by x(t) =
limn→∞ xn(t), but in practice the �rst two or three terms result already in a good approximation
of the exact solution.
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3.2 The variational iteration method (VIM)

The main idea behind the VIM is the method of Lagrange multipliers. It is a new method,
compared to SAM, proposed by He in 1997 (He, 1997 [9], 1998 [10]), see also the review paper
by He and Wu (2007) [11]. It is widely used since it solves a large class of linear and non-linear
problems easily and accurately, modelled both by di�erential and integral equations (Dehghan and
Tatari, 2006 [6]; Hamoud et al., 2018 [8]; Momani and Abuasad, 2006 [18]; Ramos, 2008 [24]).

The iteration formula for an equation of the form F (t, x) = g(t), reads

xn+1(t) = xn(t) +

∫ t

0
λ(s) (F (s, xn)− g(s)) ds,

where the value of the multiplier λ depends on the form of linear part of F . In this work, we have
a linear �rst-order di�erential operator, see (2.7), resulting in λ = −1. Thus, the initial equation
can be rewritten as x′(t) + F (t, x, x′) = 0, and the correctional functional takes the form

xn+1(t) = xn(t)−
∫ t

0

(
x′n(s) + F

(
t, xn, x

′
n

))
ds,

where again an initial guess is needed and the approximate solution is the function obtained at the
nth iteration step.

To apply the VIM, we consider the variant (2.7) and we obtain the following iterative scheme

xn+1(t) = xn(t)−
∫ t

0

(
x′n(s)−

q

c+ y0
+

1

c+ y0

∫ s

0

∂y

∂s
(s− τ)x′n(τ)dτ

)
ds.

If the in�ltration function y is given by (2.2) or (2.4) then y0 ≡ 0, and the above formula
after performing the outer integration coincides with (3.1). Thus, both iterative methods for the
particular in�ltration functions result in the same iterative scheme.

In the following section, we will apply (3.1) considering the di�erent in�ltration functions y,
given by (2.2)�(2.6).

4 Exact and approximate solutions

This section is divided into four parts with respect to the di�erent in�ltration functions. For
the linear one, see (2.3), we obtain an exact solution and for the other cases we derive approximate
solutions. The �rst steps of the iterative scheme are presented and we compare them with solutions
previously employed.

4.1 The two-term equation (2.2)

We apply the SAM, see (3.1), with initial guess x0(t) = 0. We obtain immediately, for n = 0,
that x1(t) =

qt
c . In the next step, we get

x2(t) =
qt

c
− 1

c

∫ t

0
y(t− τ)x′1(τ)dτ

=
qt

c
− q

c2

∫ t

0
(S

√
t− τ +A(t− τ))dτ

=
qt

c
− q

c2

(
2S

3
t3/2 +

A

2
t2
)
.
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For n = 2, we derive

x3(t) =
qt

c
− 1

c

∫ t

0
y(t− τ)x′2(τ)dτ

=
qt

c
− 1

c

∫ t

0
(S

√
t− τ +A(t− τ))

(
q

c
− qS

c2
√
τ − qA

c2
τ

)
dτ

=
qt

c
− 2qS

3c2
t3/2 +

q
(
πS2 − 4Ac

)
8c3

t2 +
8AqS

15c3
t5/2 +

A2q

6c3
t3.

(4.1)

In the next step, new terms involving powers of t with exponents 3, 7
2 and 4 will be introduced

and the last term in the above expression will be updated. In general, the nth iterative step will
add three new terms with t in the power of n, n − 1

2 and n − 1. Thus, if the nth step is chosen as
approximate solution, then the last term has to be dropped since it does not contain all information.

The formula (4.1) aligns with (Philip and Farrell, 1964, Eq. (35) [23]), proving the validity of
the proposed scheme. The authors derived this expression by applying the Laplace transform in
(2.1), resulting in a solution that incorporates the complementary error function. Subsequently, an
asymptotic expansion was employed for small values of t. It is evident that our approach, based on
the straightforward integration of elementary functions, is a more preferable methodology.

In Section 5 we examine how the solution changes with the addition of extra terms.

4.2 The linear equation (2.3)

The simple linear form (2.3) of the in�ltration function simpli�es a lot the following calculations
and results in an exact solution. This is in accordance with the theory of VIM where for linear
problems one iteration step is enough to obtain an exact solution (Momani and Abuasad, 2006 [18]).

We substitute (2.3) in (2.7), where now y(0) = y0, to get

q = cx′(t) +Ks

∫ t

0
x′(τ)dτ + y0x

′(t).

Under the natural initial condition x(0) = 0, we get the �rst order linear ordinary di�erential
equation

(c+ y0)x
′(t) +Ksx(t) = q

with solution

x(t) =
q

Ks

(
1− e

− Ks
c+y0

t
)
. (4.2)

The form (4.2) is suitable for large times, since it is based on (2.3), and it �rst appeared by Collis-
George (1974) [3] again with the use of the Laplace transform.

4.3 The power law equation (2.4)

As in the Subsection 4.1 for x0(t) = 0, we get x1(t) =
qt
c , and the next term takes the form

x2(t) =
qt

c
− 1

c

∫ t

0
y(t− τ)x′1(τ)dτ

=
qt

c
− qκ

c2

∫ t

0
(t− τ)αdτ

=
qt

c
− κq

c(c+ αc)
t1+α.
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For n = 2, we get

x3(t) =
qt

c
− 1

c

∫ t

0
y(t− τ)x′2(τ)dτ

=
qt

c
− qκ

c2

∫ t

0
(t− τ)α

(
1− κ(1 + α)

c+ αc
τα
)
dτ

=
qt

c
− κq

c(c+ αc)
t1+α +

κ2qΓ(1 + α)2

c3Γ(2 + 2α)
t1+2α,

(4.3)

where Γ(x) is the Gamma function. In the next step, a term proportional to t1+3α will be added,
thus all previously obtained terms will not change in contrast to what we have seen in Section 4.1.

In (Philip and Farrell, 1964, Eq. (20) [23]) the solution is constructed using the Laplace trans-
form in a series representation

x(t) =
qt

c

∞∑
n=0

(−βtα)n

Γ(2 + nα)
, for β =

κ

c
Γ(1 + α).

The �rst three terms read

x(t) =
qt

c

(
1

Γ(2)
− βtα

Γ(2 + α)
+

β2t2α

Γ(2 + 2α)

)

and using that Γ(2) = 1, and Γ(2 + α) = (1 + α)Γ(1) = 1 + α, we get (4.3).

4.4 The two-parameter implicit infiltration equations

Starting with (2.5), we de�ne γ = 2Ks
S2 , and we rewrite it in the form

y − 1

γ
ln(1 + γy) = Kst.

We set u = −(1 + γy), and we obtain

ueu = −e−(γKst+1),

which can be solved using the Lambert W function with real argument (Corless et al., 1996 [5]).
Recall the de�nitions: W0 = W , if W ≥ −1 and W−1 = W , if W ≤ −1. Since −e−(γKst+1) ≥ −e−1

and u(= W ) ≤ −1, we get

y(t) = − S2

2Ks
− S2

2Ks
W−1

(
−e−2

K2
s

S2 t−1

)
. (4.4)

This equation was derived by Parlange et al. (2002) [20] for the dimensionless form of (2.5). It
prevents us from an analytical representation of the advance position x but we can still derive an
expression that can be numerically evaluated.

The iterative scheme (3.1) now reads: Set x0(t) = 0, to get x1(t) =
qt
c . For n = 1, we obtain
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(using again γ for the sake of presentation)

x2(t) =
qt

c
− 1

c

∫ t

0
y(t− τ)x′1(τ)dτ

=
qt

c
− q

c2

∫ t

0

(
−1

γ
− 1

γ
W−1

(
−e−(1+γKs(t−τ)

))
dτ

=
qt

c
+

q

c2γ
t+

q

c2γ

[
W 2

−1

(
−e−(1+γKst)eγKsτ)

)
2γKs

+
W−1

(
−e−(1+γKst)eγKsτ)

)
γKs

]t
0

=
qt

c
+

q

c2γ
t+

q

c2γ

(
− 1

2γKs
−

W 2
−1

(
−e−(1+γKst)

)
2γKs

−
W−1

(
−e−(1+γKst)

)
γKs

)

= − q

2c2γ2Ks
+

q

c

(
1 +

1

cγ

)
t− q

c2γ

(
W 2

−1

(
−e−(1+γKst)

)
2γKs

+
W−1

(
−e−(1+γKst)

)
γKs

)
.

To derive the above formula we have used the following properties of the Lambert W function:
W
(
−1

e

)
= −1 and ∫

W
(
αeβt

)
dt =

W 2
(
αeβt

)
2β

+
W
(
αeβt

)
β

+ constant.

In the next step, products of Lambert functions will appear in the integrand. Then, there exist
no formulas to compute the integral explicitly. One possibility to overcome this problem is by
expanding the Lambert function around the branch point.

Using similar arguments and straightforward calculations, we can get an explicit representation
of y from (2.6) which reads

y(t) =
S2

2Ks
+Kst+

S2

2Ks
W0

(
−e−2

K2
s

S2 t−1

)
.

The main di�erence compared to (4.4) is the appearance of the linear term Kst.
At the second iteration step, we get

x2(t) =
qt

c
− 1

c

∫ t

0
y(t− τ)x′1(τ)dτ

=
qt

c
− q

c2

∫ t

0

(
1

γ
+Ks(t− τ) +

1

γ
W0

(
−e−(1+γKs(t−τ)

))
dτ

=
qt

c
− q

c2γ
t− qKs

2c2
t2 − q

c2γ

[
W 2

0

(
−e−(1+γKst)eγKsτ)

)
2γKs

+
W0

(
−e−(1+γKst)eγKsτ)

)
γKs

]t
0

=
qt

c
− q

c2γ
t− qKs

2c2
t2 − q

c2γ

(
− 1

2γKs
−

W 2
0

(
−e−(1+γKst)

)
2γKs

−
W0

(
−e−(1+γKst)

)
γKs

)

=
q

2c2γ2Ks
+

q

c

(
1− 1

cγ

)
t− qKs

2c2
t2

+
q

c2γ

(
W 2

0

(
−e−(1+γKst)

)
2γKs

+
W0

(
−e−(1+γKst)

)
γKs

)
.

We note that since y(0) = 0 holds for both in�ltration functions, the VIM coincides with SAM also
here. Given that we consider only two terms in the series expansion we expect that the approximate
solutions will be close to the exact ones only for short times.
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Fig. 5.1. The approximate solution of (2.1) using SAM at di�erent iteration steps
for the in�ltration function (2.2) applied to the "Knight" soil.

5 Numerical examples

Regarding the two-term equation, see Section 4.1, in practise only the �rst few terms are needed
for an accurate approximation as stated by Philip and Farrell (1964) [23]. Usually, the three-term
approximation

x(t) ≃ qt

c
− 2qS

3c2
t3/2 +

q
(
πS2 − 4Ac

)
8c3

t2 (5.1)

is su�cient and we examine its applicability in the next numerical example. The main reason is
that since the in�ltration function (2.2) is for short times then the next terms in (5.1), given the
soils properties, may be neglected.

Fig. 5.2. The approximate solutions of (2.1) for the di�erent in�ltration functions
applied to the "Knight" soil.

We consider the so called "Knight" soil with properties Ks = 10−5ms−1, S = 7.07×10−4ms−1/2
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and A = 0.36Ks (Cook et al., 2013 [4]). The in�ltration process is modelled through the �ow depth
c = 0.1m and the �ow rate q = 4.31 × 10−3m2s−1. In Figure 5.1 we plot the solutions x1, x2, x3
and (5.1). In x2 and x3 the last terms are omitted. We see that the di�erences are not crucial, less
that 4% for t = 60min, and the behavior of the solution does not change drastically from x2 to x3.

In Figure 5.2 we plot all approximate solutions (up to three terms) for soil properties as in
the �rst example. Equation (2.4) is excluded since the coe�cients κ and α are not known for the
particular soil. We observe that for short times all approximate solutions behave similar and the
e�ect of the di�erent in�ltration functions is observed afterwards.

6 Conclusions

In this work we proposed to solve the in�ltration advance problem using two iterative meth-
ods. We considered the successive approximation method and the variational iteration method and
showed that they coincide when zero initial in�ltration is assumed. We derived representations of
the advance position for �ve (but not limited to) di�erent in�ltration functions after few iteration
steps and simple calculations. We compared the results with existing formulas for three of the �ve
in�ltration functions. The representations derived for the implicit functions appear for the �rst time
to our knowledge. As future work we plan to examine with experimental data their applicability as
time increases.
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