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Anoranisg. CraTTiO TPUCBSIYEHO HAYKOBUM iesIM Ta PE3y/IbTaTaM BUIATHOTO YKPATHCHKOTO
maremartuka Leopris Mwuxomaiiosmaa [Homoxia (1914-1968). PosrmsmyTo ocmoBHI imel Teopil ysara-
JIPHEHUX AHANTUYHUX (YHKINNH, METOAy CyMapHHX 300paskeHb Ta HOBL PE3yJbTaTH 3aCTOCYBAHHS B
MaTeMaTHIHOMY MOJE/IIOBaHHI HeiHINHNX KBa3iimeanbHux mporecis y LEF-mmacTax.

ABsTRACT. The article is dedicated to the memory and scientific legacy of the prominent Ukrainian
mathematician Heorhii Mykolaiovych Polozhii (1914-1968). The main ideas of the theory of generalized
analytic functions, the summary representation method are described and some new application results
in mathematical modelling of nonlinear quasi-ideal processes in LEF layers are considered.

1 INTRODUCTION

April 23, 2024 marked the 110th anniversary of the birth of the prominent Ukrainian mathemati-
cian Heorhii Mykolaiovych Polozhii (1914-1968). His scientific contribution is related to classical
problems in the theory of analytic functions, the development of mathematical models for fluid flow
in porous media (filtration theory), and advancements in modern computational mathematics.

Prof. Polozhii achieved outstanding results by founding two new directions: the theory of
(p, @)-analytic functions and the summary representation method. Thanks to personalities like
Prof. Polozhii, from the mid-20th century onward, Taras Shevchenko National university of Kyiv
took a leading position in the field of filtration theory and related issues of mathematical physics.
It is also worth noting that the impetus for the development of the Kyiv scientific school in the
mathematical theory of filtration was the grandiose project of constructing the Dnipro cascade
of hydroelectric power plants. The issue of land reclamation in the southern steppes also played
an important role in stimulating applied work and involving a large number of young promising
researchers.

The article highlights Prof. Polozhii’s main scientific contributions and also outlines some new
results arising from his classic ideas. Details about H. M. Polozhii’s life and scientific work can be
found in [1-3].
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2 THE THEORY OF (p,q)-ANALYTIC FUNCTIONS AND FILTRATION THEORY

Prof. Polozhii developed the theory of (p, ¢)-analitic functions while working on his PhD thesis.
In particular, the following results were obtained: he formulated the concept of conjugate kernels,
constructed a generalized Cauchy integral and a generalized Cauchy-type integral, investigated the
differential properties of (p, ¢)-analytic functions; classified the isolated singularities and proved the
main residue theorem; investigated the issue of uniqueness and (p, q)-continuation for (p, ¢)-analytic
functions, and considered the roots separation problem for the equation f(z) = A = const; proved
the region conservation theorem, the boundary congruence theorem, and the univalent neighborhood
conservation theorem.

This approach has become widely used in applied mathematics and mechanics, particularly in
filtration theory, axisymmetric theory of elasticity, gas dynamics, momentless theory of shells, etc.
Using p-analytic functions, Prof. Polozhii managed to solve a number of classical problems in the
theory of axisymmetric potential, which had not been previously solved through quadratures. A
significant example is the problem of the axisymmetric potential of a spherical disk rather than a
flat one, which is a remarkable achievement given the long-term attention this problem received
from numerous mathematicians. Polozhii’s main ideas are outlined in the monograph [4].

Recall that an analytic function f(z) = u(z,y) + iv(z,y) of a complex variable z = = + iy in
the Cauchy—Riemann sense satisfies the Cauchy-Riemann conditions at each point of a connected
domain A C C:

or Oy 0Oy ox
Polozhii  suggested the generalization of the definition (2.1) introducing a function
f(z) = u(x,y) +iv(z,y) of a complex variable z = x + iy which satisfies the system of equations
ou ou  Ov ou ou  Ov
+pay+a$—0 (2.2)
with given real-valued differentiable functions p, ¢ of variables x,y, and p > 0.
The proposed generalization (2.2) allows a researcher to analytically solve problems in which

the following elliptic system occurs:
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where a;, b;, ¢;, d; (i = 1,2) are known functions of variables z,y.

An important consequence of the theory of (p, g)-analytic functions is the method of majorant
regions. This method is based on the topological properties of (p, ¢)-analytic functions, which makes
it possible to combine two real-valued solutions u(z,y) and v(zx,y) of the corresponding system of
differential equations (3) into one complex-valued function f(z) = u(z,y) + iv(z,y) of a complex
variable z = = + 1y.

Thanks to this, a number of problems in filtration theory and torsion theory for solids of revolu-
tion were solved. The essence of the method lies in using the topological properties of (p, ¢)-analytic
functions to prove variational-topological comparison theorems. These theorems allow for the ap-
proximate determination of the integral characteristics of boundary value problems (for example,
in filtration theory such characteristics include fluid flow, output velocity, and back pressure). By
obtaining these characteristics, estimates from above and below can be determined as the region
changes. Majorant regions, of course, should be simple and at the same time provide a sufficiently
accurate two-sided estimate of the desired characteristic. If high precision is not required, the
method is quite effective.
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Mathematically, this method is based on Polozhii’s theorem on conservation of a region for
linear elliptic systems [5]. Below we formulate an important special case of Polozhii’s theorem for
p-analytic functions defined by an elliptic system

dp 10¢  9dp  10¢

or pdy’ 9y  pox
with a given function p = p(z,y) > 0.

Theorem 2.1. Let f = ¢ + it # const is a p-analytic function in a domain D of the complex
plane z = x + 1y, and let the characteristic function p and its first partial derivatives are Holder
continuous. Then the set f(D) is a region (i.e. a non-empty, connected, and open set).

The theorem has mane it possible to extend the variational theorems of filtration theory and
the method of majorant regions to the case of filtering in a homogeneous medium.

Later, this direction was further developed by I. I. Liashko, I. M. Velykoivanenko, and others,
addressing numerous problems (see, e.g. [6-12]). Moreover, these results were utilized in the
calculation of the Dnipro alluvial dams, the filtration characteristics of the dams at the Kyiv and
Kaniv hydroelectric power plants, and many other hydrotechnical structures [13].

3 THE SUMMARY REPRESENTATION METHOD

Another direction developed by H. M. Polozhii is the summary representation method for solving
problems of mathematical physics, as described in his book [14]. This method is a discrete analogue
of the integral representation method. Such problems arise in the approximation of boundary value
problems formulated by means of partial differential equations. Typically, these problems are re-
duced through discretization to large systems of linear algebraic equations. H. M. Polozhii proposed
a method that allows one to find solutions of two- and three-dimensional boundary value problems
for partial differential equations, either in explicit form, or by reducing them to relatively small
systems of linear algebraic equations (through the so-called P-transformations, that is, matrices of
a special type that are discrete analogues of complete integral transformations).

Considering the limited computational power of electronic computing machines at that time,
the summary representation method was a significant advancement. Its computational efficiency
inspired numerous works by followers, leading to its further development and widespread appli-
cation. In particular, I. M. Lyashenko and V.I.Didenko developed the summary representation
method for the Helmholtz equation in domains consisting of several rectangles. I.I.Lyashko,
I. M. Velikoivanenko and A. A.Hlushchenko applied the method to the problem of non-pressure flat
filtration. H.M. Polozhii, A. A. Skorobohatko and B. M. Bublyk found a solution of the first main
biharmonic problem in the theory of elasticity for a semicircle and a rectangular plate.

The summary representation method was firts proposed in [4] for solving main boundary value
problems in the theory of axisymmetric potential. Those problems are associated with partial
differential equation

0’U 10U  0°U

02 Trow top U=l @y eD (3.1)

where ¢ = const > 0, f(z,y) is a known function, D is a rectangle.
On a uniform grid

T =w0 +1ik, yj=yo+jh1, k=1,2,...,n, j=12,...,m,
h>0, hy>0,

the traditional three-point approximation for the second derivatives and the right-hand difference
approximation for the first-order derivative OU/0z are applied. It is shown that when using the
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P-transformation with respect to the variable = to find the eigenvalues of the corresponding matrix
of type 1I and its fundamental matrix, the Sturm-Liouville problem arises for the finite-difference
equation (see [14, p. 51]):

(@ + k)vppitor + (a+ k= Lvg—1 — AMa + kv, =0,

(3.2)
k=1,2,...,n, a = const,
with the boundary value conditions
vpcosa+vysina =0, wvpp1c085+v,sinf =0, cosacosf#D0, (3.3)
if the rectangle D is not adjacent to the y-axis, and with the boundary value conditions
v # 00, Upy1c08f+v,sinfB =0, cosf #0, (3.4)

if the rectangle D is adjacent to the y-axis (a = 0).

The solution of the problem (3.2), (3.3) or the problem (3.2), (3.4) can be obtained by introducing
special functions of a discrete argument A associated with the so-called Pollaczek polynomials [15,
16].

In [17], the construction of the summary representation formulas for the equation (3.1) is con-
sidered under the condition that the derivative OU/Jzx is approximated by the central difference
derivative. It is shown that in this case the eigenvalues of the corresponding matrix of type II are
closely related to the Legendre polynomials.

The equation (3.1) with partial derivatives in the rectangle D corresponds to the finite-difference
equation

1— L1 _
1 2(a+k)
3 77 | 200+ —ch® | 7 e = flakyy),
1
I+ s

E=1,2,....n; j=1,2,...,m; ~=h/hy.
Introducing the operator
R(u(y)) = 7*ur(y + h1) = 200+ %) + ch?Jun(y) + v*ur(y — ha),
ur(y) = ug(@k, y),

we obtain the finite-difference equation

1 1
0+ [ gl [+ gkl -
=R fe(y;), k=1,2,....,n. (3.5)
Introducing the matrix of type II
Ts = p_1><

0 2a+3 0 0
2a 43 0 2a 4+ 5 0 0
o 0 2a+5 0 2a +7 0 0

0 0 2a4+2n -3 0 20 4+2n -1

0 0 20 4+2n -1 0
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with the diagonal matrix p = diag[2(a+1),2(a+2),...,2(a+n)|, we can rewrite the system (3.5)
in the vector form

R(a(yy)) + Teiily;) = h*fly;) — @s(y;), j=1,2,...,m, (3.6)

where @(y;) and f(y;) are n-dimensional vectors with the components u(y;) and fi(y;) respectively,

038(3!]’) = {[1 - M}Uo(yj)a 0,...,0, |1+ 2(al—i—n)]u"+1(yj)}

is an n-dimensional vector.
The equation for eigenvalues A and eigenvectors ¥ = {v1,v,...,v,} of the matrix Tg can be
written in the form Tg¥ — AU = 0, namely:

(2(1 + 2k + 1)’Uk+1 + (2a + 2k — 1)'Uk—1 - 2(@ + k:))\vk =0,
k=1,2,...,n.

Setting a = v — 1/2, where v > 0 is an integer number, we get the Sturm-Liouville problem

kg + (k — Dvgt — A/2(2k — Do =0, k=1,2,...,n, (3.7)
vg # 00, Upg1 =0, (3.8)
for v =10, and
(k+v)vpsr + (k+v— Do — N2[2(k+v) — 1oy =0, k=1,2,...,n, (3.9)
vo =0, vp41 =0, (3.10)

for v > 0.
Let A = diag[A1, A, ..., Ay] be a diagonal matrix of the eigenvalues of the matrix T and let Py
be its fundamental matrix. Introducing the P-transformation of the vector @(y;) by the formula
u(y;) = By pidly)),

where Pg denotes the transpose of the matrix Py, and applying the main theorem about the matrix
of type II [14, p. 32|, we can rewrite the matrix equation (3.6) as follows:

~

Rii(yy) + Ai(y;) = B Flyy) — Bs(yy),
or in a more detailed form
Ur(y; +h1) — [2(L+ 72 + chf — Xy ]k (y) + Ue(y; — h1) =
= hifely;) — v 2@ kly), k=1,2,...,n. (3.11)

The general solution of each equation in (3.11) can be written in the form

j—1
ur(y;) = Arpr(y;) + Bre(yy) + Z G(j — p) [P fr(yp) — v *Ds.n(yp)],
p=1
J=01,. . mt, (3.12)

where the sum is assumed to be zero for j = 0,1; Ay and By, are arbitrary constants, and ¢ (y;),
Y1(y;), G(j) depend on the value of the quantity

M =1+7"2(1 = M/2) + chi/2

and are defined as follows:
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er(yi) | vr(y;) G(j)
J J
j ' M — Vi 2 -1
ne| > 1 I v, =kt — Livk=p
|7k k e 1k — Uk e k
) . o
el =1 1, jng, jug, v =k — /M — 1
(0
Ink| < 1 | cos(j§0k) | sin (jOk) M 0 = arccos 1
sin 0,

Taking into account the representation (3.12), for the general solution of the equation (3.11) we
have

U(y;) = ®(j)A+(j)B +

j=1 = e (3.13)
+ZG(]_p)[h1f(yp)_ryi wg(yp)]7 jzoalv"‘7m+]—7
p=1

where the sum is assumed to be zero for j = 0,1; A = {Ar}}_, and B= {B4}}_, are n-dimensional
vectors of arbitrary constants; ®(j), ¥(j), G(j) are n x n-dimensional diagonal matrices with the
elements ¢i(yi), ¥x(y;), Gr(j), k =1,2,...,n, respectively.

Multiplying both sides of the equation (3.13) by Pg, we finally get the summary representation
formula for the equation (3.1) in a rectangle D:

j—1
i(y;) = Ps®(j)A+ P (j) B+ PG(j — p) Pyl px
p=1 (3.14)
x (B flyp) — 7 2@s(yp)], G =0,1,...,m+1,

where the sum is assumed to be zero for j =0, 1.
We consider now the following two cases:

(@) a=-1/2
(b) a=v—1/2, where v is a positive integer number.

In case (a), determining the elements of the matrix A and the columns of the matrix Pg comes
down to determining the eigenvalues and the eigenvectors (orthogonal with the weight p) of the
Sturm-Liouville problem (3.7), (3.8).

Considering the recurrence relation for the Legendre polynomials

(m+1)Ppyi(x) + mPy_1(z) — x(2m + 1) Py, (z) = 0,

one can observe that for k = m+1, vy+1Pn(N/2), m =0,1,...,n—1, equation (3.7) can be written
as follows:

(M + 1) Prus1 (M2) + mPr_1 (\/2) = A/2(2m + 1) Pu(A/2) = 0,
m=20,1,...,n—1.

The boundary value conditions (3.8) take the form vy # 0o, P,(A/2) = 0. From this we conclude
that the eigenvalues of the matrix Tg, that is the elements of the diagonal matrix A, are the doubled
zeros of the Legendre polynomial P,(z).

Each eigenvalue A, corresponds to the eigenvector v, of the matrix Tg:

T = NL{PU, Ptw/2), Pon/2), -, Pact(A/2))}
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n—1 1/2
with Ny, = { > P2(Am/2)(2k + 1)} . The fundamental matrix Pg can be written as follows:
k=0

1 1 1
Py = P1()\1/2) Pl(/\g/z) Pl(/\n/Q) N_17
PoiM/2) Poi(02/2) .. Poi(Anf2)

where N = diag[N1, Na,..., N,] is a diagonal matrix. Noting that for a = —1/2, the first compo-
nent of the vector WJg(yp) is zero (regardless of the value of ug) and taking into consideration that
for ¢ > 0 the conditions || > 1, k = 1,2,...,n, are satisfied (indeed, the zeros of the Legendre
polynomials lie in the interval (—1;1) ), we conclude that the summary representation formula (3.14)
gives explicitly the solution of the problem (3.1) in the finite-difference setting for a domain adjacent
to the y-axis if the values of the function uw are known on the vertical line x = xp41.

In case (b), determining the elements of the matrix A and the columns of the matrix Pg comes
down to solving the Sturm-Liouville problem (3.9), (3.10). The Pollaczek polynomials (which are
identical to the associated Legendre polynomials) P,(x,7, A, B,C) of degree n and of the variable
x can be defined by the recurrence relation (see [16])

(n+C)P, —2[(n—14+7+ A+ C)z+ B| P+
H(n+2r +C —2)Py s =0, n=12,...; Py=1, P_ =0.
Putting vg4+1 = Py into the relation (3.9), we obtain
(k+v)Py+ (k+v—1)Pu_g— N2[2(k+v) — 1] P,y =0,
k=1,2,...,n.

The relation above is the same as (3.14) for C = v, 7 =1/2, A= B =0, x = A\/2. Therefore, the
equation (3.9) will be satisfied if

vp = Pr1(X/2,1/2,0,0,v), k=0,1,...,n,n+1,
P,=0, P=1.
Denoting
Ppy=Py(2,1/2,0,0,v), Po,(z)=1, P_1,(z)=0,
we obtain vy = Pr_1,,(A/2), k =0,1,...,n,n+ 1, and the boundary value conditions (3.10) take
the form
Vo :P_l’y()\/2) :0, Pn,l,()\/Q) =0.
Thus, in case (b), the eigenvalues of the matrix T3 (that is, the elements A, of the matrix A) are
the doubled zeros of the polynomials P, ,(z). Each eigenvalue A, corresponds to the eigenvector
Uy, of the matrix Ty:
1

Nm,l/

Um =

{1, PLu(Am/2), Pou(Am/2), -, Pac1,0(Am/2)}

n—1 1/2

with Ny, , = { > P, (Am/2)[2(k +v) + 1}} . The fundamental matrix Ps can be written as
k=0

follows:

1 1 1
P = P, (M1/2) P ,(A2/2) ... P u(\/2) N1

Pnfl,zz()\l/Q) Pnfl,u()\2/2) Pnfl,u()\n/2)
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where N, = diag[N1,,, Na,u, ..., Ny ] is a diagonal matrix. The general properties of the Pollaczek
polynomials [15, 16] imply that all the zeroes of the polynomial P, ,(x) lie in the interval (—1; 1).
Therefore, for ¢ > 0 the conditions |nx| > 1, k = 1,2,...,n, are satisfied. We conclude that the
summary representation formula (3.14) provides explicitly the solution of the problem (3.1) in the
finite-difference setting for a domain which is not adjacent to the y-axis.

4 TEXTBOOKS ON MATHEMATICAL PHYSICS AND COMPUTATIONAL MATHEMATICS

In addition to his active scientific work, Prof. Polozhii was engaged in intensive pedagogical
activities, creating innovative textbooks on mathematical physics and computational mathematics.
Notably, he authored the first Ukrainian textbook on mathematical physics, ’Equations of Math-
ematical Physics’ [18]. The university textbook "Mathematical Workshop’ [19], written by a team
of authors under Polozhii’s leadership, was translated into German and Polish. His university text-
book [20] has been widely recognized and remains popular among students and lectures in Ukraine
and abroad.

5 MODELING OF NONLINEAR QUASI-IDEAL PROCESSES IN LEF' LAYERS

Based on the generalization, adaptation, and synthesis of numerical methods of complex analysis,
the summary representation method, and decomposition, works [21-23| develop the methodology
for mathematical modeling of nonlinear quasi-ideal processes in LEF-reservoirs (i.e., zonally hetero-
geneous porous oil and gas, aquifer, and shale reservoirs, whose zone geometry is determined taking
into account the feedback of process characteristics on the medium’s conductivity).

Namely, the methodology is meant for solving nonlinear boundary value problems for systems
of elliptic differential equations, where the medium’s conductivity coefficient is influenced by the
potential field (head, pressure) and the flow function. The proposed approach is applicable to simply,
two- and multi-connected curvilinear domains bounded by equipotential lines and streamlines (LEF-
regions), using the summary representation method for differential equations with discontinuous
coefficients (in the case of layered media) or numerical-analytical representations of solutions (which
generalize the summary representation method to cases of heterogeneous and anisotropic media).

For the first time, the summary representation formulas are applied as a component of previously
developed (based on complex analysis) computational procedures. The combination of methods
from complex analysis (involving conformal mappings) and the summary representation formulas
for approximating coordinates of internal nodes of a dynamic grid significantly improves existing
methodologies for solving such class of problems. It enhances the efficiency (convergence rate) of
the corresponding iterative process, addressing the challenge of achieving the necessary accuracy in
initial approximations of sought-after functions. Moreover, it allows for comprehensive consideration
(summarily) at each iterative step of the influence not only of surrounding nodes but also all
boundary and internal nodes of the dynamic grid, thereby greatly accelerating the attainment of
convergence for the sought harmonic functions.

In particular, the model problems describing stationary filtration processes are studied in the
following cases: in curvilinear simply connected so-called LEF-domains G, C C (z = x+iy) bounded
by the equipotential lines L, = {z : fi(x,y) = 0}, L* = {z : f3(z,y) = 0} and by the streamlines
Lo ={z: fa(z,y) = 0}, L® = {z : fo(x,y) = 0} with the potential field p = ¢(z,y) satisfying the
conditions

i

L= dl=pt, | =2F

Lo Of

Y

Lo

where —oo < @, < * < 400 are constants and 7 is the external normal to the respective curve;
in two-connected LEF-domains bounded by two smooth closed curves L, = {z : fi(x,y) = 0} (the
inner curve), L* = {z : f*(z,y) = 0} (the outer curve), where, to form simply connected LEF-

domains GL, a conditional cut I' is made along a certain sought streamline (then Ly and L° are
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the boundary streamlines of the domain G, which are respectively the upper and lower edges of

the cut I'); in three-connected LEF-domains bounded by two internal well contours — equipotential
lines Ly, = {2z : fu(z,y) = 0}, L* = {z : f*(x,y) = 0} and by impermeable external contour
L = {z: f(x,y) = 0} where two conditional cuts, Iy and I'*, are made along such streamlines
(which are the separation lines of the flow) that are uniquely determined by the ’stopping’ points of
the flow: H, € L, H* € L, G} = G,\(I's UT™); in LEF-domains with a free boundary (depression
curve), where an additional condition is specified: ¢|pc = g(y), H 2y = y« = f*(z4), 9(y) is some
known monotonically decreasing function.

For multiply connected LEF-domains, the complexity lies in the incomplete determination of
the complex quasipotential field shape, which depends on various factors: the configuration of
the physical domain, including the relative placement of wells, methods of conditional cuts to
reduce a multiply connected domain to a simply connected one, the relationship between boundary
potential values, and so on. In [23] a new approach is proposed for classifying situational states
of flow formation, which allows for standardization across all cases of three-connected curvilinear
LEF-domains bounded by three equipotential lines, and four-connected curvilinear LEF-domains
bounded by three equipotential lines and an impermeable contour. It includes the formulation of
inverse problems for quasiconformal mappings, their discrete analogues, and numerical algorithms.

6 CONCLUSION

Heorhii Mykolayovych Polozhii (1914-1968) is rightfully regarded as one of the foremost and
influential figures within the Kyiv scientific school of mathematical modeling and computational
mathematics. He is the author of the majorant regions method and the summary representation
method. The former allows for the systematic construction of bilateral estimates of filtration char-
acteristics by deforming the filtration domain of complex shapes. The latter is a discrete analogue
of integral representation methods. In this method, the solution at each node of the grid domain is
formulated in a closed form as a summary representation formula. Depending on the nature of the
boundary conditions, these formulas either appear explicitly or contain a small number of unknown
parameters (compared to the total number of grid nodes) that are determined by auxiliary systems
of linear algebraic equations.

The directions initiated by H. M. Polozhii have become guiding principles for the research
endeavors of his numerous followers both in Ukraine and abroad. He was also the founder and first
head of the Department of Computational Mathematics at Taras Shevchenko National University of
Kyiv, and established a scientific school whose representatives continue to engage in active research
to this day.

The article focuses on H. M. Polozhii’s ideas in the theory of generalized analytic functions and
the summary representations method. Additionally, it describes a new methodology for mathemat-
ical modeling of nonlinear quasi-ideal processes in LEF reservoirs based on numerical methods of
complex analysis and summary representations.
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