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Àíîòàöiÿ. ßê âiäîìî, îïåðàòîð Êóïìàíà øèðîêî âèêîðèñòîâó¹òüñÿ ïðè àíàëiçi ñêëàäíèõ

äèíàìi÷íèõ ñèñòåì. Ó öié ñòàòòi ìè ðîçãëÿäà¹ìî ïðîáëåìó ÷èñåëüíîãî ïðåäñòàâëåííÿ îïåðàòîðiâ

Êóïìàíà íà âiäòâîðþþ÷èõ ÿäåðíèõ Ãiëüáåðòîâèõ ïðîñòîðàõ. Îñíîâíîþ iäå¹þ çàïðîïîíîâàíîãî

ïiäõîäó ¹ âèêîðèñòàííÿ ïîíÿòòÿ çàãàëüíî¨ ñõåìè ðåãóëÿðèçàöi¨ äëÿ çàáåçïå÷åííÿ ñòiéêîñòi ïîáóäî-

âàíèõ àïðîêñèìàöié. Öÿ êîíöåïöiÿ äîçâîëÿ¹ íàì îäíî÷àñíî ðîçãëÿäàòè êiëüêà äîáðå âiäîìèõ

ìåòîäiâ ðåãóëÿðèçàöi¨, ÿêi ðàíiøå âèêîðèñòîâóâàëèñÿ äëÿ àïðîêñèìàöi¨ îïåðàòîðiâ Êóïìàíà. Ìè

òàêîæ îáãîâîðþ¹ìî ïèòàííÿ âèáîðó ïàðàìåòðà ðåãóëÿðèçàöi¨, ÿêå äîñi áóëî íåäîñòàòíüî âèâ÷åíèì.

Abstract. As is known, the Koopman operator is widely used in the analysis of complex dynamic

systems. In this paper, we consider the problem of numerical representation of the Koopman operators

on Reproducing Kernel Hilbert spaces. The main idea of the proposed approach is the use of a con-

cept of general regularization scheme to ensure the stability of the constructed approximations. This

concept allows us to simultaneously consider several well-known regularization methods, which have

been previously employed for approximating the Koopman operators. We also discuss the issue of the

regularization parameter choice, that has been understudied so far.

1 Introduction

The Koopman operator [8] is a tool to predict the values of the so-called observable functions
ψ along the trajectories of dynamical systems. The use of the Koopman operator is most e�ective
when studying dynamic systems, information about which has a high degree of uncertainty or is too
large in amount. Therefore, the problem of numerical representation of the Koopman operator is of
great interest to researchers. There are various approaches to the approximate representation of the
Koopman operator, for example, using neural networks [11, 12] and tensor product spaces [7, 13].
Recently, the representation of the Koopman operator for observable functions ψ from reproducing
kernel Hilbert spaces (RKHS) has become increasingly popular [20], [4,6,9,10,16,18,21]. Within this
approach, the Koopman operator is represented in terms of the inversion of some compact operator.
Then such a representation becomes an ill-posed problem that needs to be regularized. In previous
studies, the above regularization has been performed by means of the standard Tikhonov technique
(see, e.g., [6]) and by the so-called spectral cut-o� method (see, e.g., [2,16]). The �rst contribution
of the present study is that we analyze the general regularization scheme that covers previously
used Tikhonov techniques and spectral cut-o� method as particular cases. Moreover, the present
study sheds light on the choice of a parameter regulating the performance of the regularization.
Note that the above choice remained in fact open in [2, 6, 16].

The article is organized as follows. Section 2 contains de�nitions, concepts and notation which
are necessary for the further presentation. Section 3 describes the general regularization scheme
that will be used to numerical representation of the Koopman operator. The main result of the
study, Theorem 4.1, containing an accuracy estimate of the approximation of the Koopman operator
and a suitable choice of regularization parameter, is presented and proven in Section 4.
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2 Definitions, notation and concepts

Let X ⊂ Rd be equipped with the Borel σ-algebra BX and the corresponding probability measure
µ. Let also L2,µ = L2,µ(X ) be the Hilbert space of functions that are square-integrable with respect
to the measure µ. By ⟨·, ·⟩L2,µ and ∥ ·∥L2,µ , respectively, we will denote the scalar product and norm
on L2,µ(X ), such that, for example, ⟨f, g⟩L2,µ :=

∫
f(t)g(x)dµ(x).

In this study we will follow very recent publication [16] and consider the semigroup of the
Koopman operators Kt : L2,µ(X ) → L2,µ(X ) indexed by time t ∈ [0,∞) and associated with the
Caushy problem for a stochastic di�erential equation (SDE)

dXt = b(Xt)dt+ σ(Xt)dWt, (2.1)

X0 = x ∈ X ,

such that the image of any observable function ψ ∈ L2,µ(X ) under the action of Kt is de�ned by
the relation

(Ktψ)(x) = E[ψ(Xt)|X0 = x] =

∫
ψ(y)ρt(x, dy),

where in the above formulas Wt is d-dimensional Browian motion, b : X → Rd, σ : X → Rd×d are
assumed to be Lipschitz-continuous and for each A ∈ BX

ρt(x,A) = P(Xt ∈ A|X0 = x).

Note that the above conditions on b, σ and Theorem 5.2.1 from [14] guarantee the existence and
uniqueness of the solution Xt, t ≥ 0, to SDE (2.1) in X .

Moreover, in the sequel we assume the invariance of µ for the stochastic process described by
SDE (2.1), which means that for any t ≥ 0 and A ∈ BX∫

ρt(x,A)dµ(x) = µ(A)

and it is equivalent to the identity∫
(Ktψ)(x)dµ(x) =

∫
ψ(x)dµ(x)

for all t ≥ 0 and ψ ∈ L2,µ(X ).
To study the Koopman operator we will use the concept of Reproduction Kernel Hilbert Space

(RKHS). It is known (see, e.g., [19]) that every RKHS can be generated from a symmetric and
positive de�nite function k : X × X → R of two variables in X , called the reproducing kernel of
H = H(X , k). Recall that a function k : X × X → R is called positive de�nite on X if for any m
and any pairwise distinct x1, x2, . . . , xm ∈ X the quadratic form

⟨Kb, b⟩Rm =
m∑
i=1

m∑
j=1

bibjk(xi, xj)

is positive for all m-dimensional vectors b = (b1, b2, . . . , bm) ∈ Rm\{0}, where K = {k(xi, xj)}mi,j=1

is sometimes called the Gram matrix of k : X × X → R. It is well known that for any ψ ∈ H the
following reproducing property follows:

ψ(x) = ⟨ψ,Φ(x)⟩H , x ∈ X ,

where ⟨·, ·⟩H is the inner product in H and Φ : X → H denotes the so-called feature map corre-
sponding to the kernel k, i.e.

Φ(x) = k(x, ·), x ∈ X .
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The norm on H is de�ned in the standard way ∥ · ∥2H := ⟨·, ·⟩H .
Assumption 2.1. The kernel k(x, y) is bounded on X × X .

The above assumption is usual in the kernel-based learning, see, e.g., [17]. One needs this
assumption to guarantee the bounds for the operator norms (2.7), (2.8) below.

As in [17] we de�ne the linear operator E : L2,µ(X ) → H

Eψ :=

∫
ψ(x)Φ(x)dµ(x), ψ ∈ L2,µ(X ).

It is known (see, e.g., [15]) that the adjoint operator E∗ : H → L2,µ(X ) is the embedding operator
from H into L2,µ(X ), i.e.

E∗ξ = ξ, ξ ∈ H.

Following [16], we consider the covariance operator

CH = EE∗ ∈ L(H)

and the cross-covariance operator Ct
H : H → H, which acts as follows on ψ ∈ H

Ct
Hψ :=

∫
(Ktψ)Φ(x)dµ(x) = EKtψ = EKtE∗ψ. (2.2)

Moreover, as in [16] we also consider the operator

Kt
H := C−1

H Ct
H . (2.3)

Next proposition relates the above introduced operators.

Proposition 2.1. [16, Proposition 4.4] For t > 0, the following statements are equivalent:
(i) KtH ⊂ H.
(ii) Kt

H ∈ L(H).
(iii) rankCt

H ⊂ rankCH .

Observe that if one of (i)�(iii) holds, then Kt
H = Kt |H , and for any φ ∈ H we have

Ktφ = Kt
Hφ = C−1

H Ct
Hφ. (2.4)

Moreover, according to [16, Equation (4.7)] for any φ ∈ H it holds

C−1
H Ct

Hφ = (E∗)−1KtE∗φ. (2.5)

Combining (2.4) and (2.5), we get

E∗Kt
Hφ = E∗C−1

H Ct
Hφ = KtE∗φ. (2.6)

At this point we note that the exact Koopman operator Kt is not accessible, and our goal is to
mimic its action. For this we can use points xi, yi, i = 0, 1, . . . ,m− 1, sampled from trajectories of
the considered dynamical systems.

As an empirical estimator for Ct
H we take

Cm,t
H =

1

m

m−1∑
j=0

k(xj , ·)⟨k(yj , ·), ·⟩H , Cm,t
H ∈ L(H).

Note that in fact the above operator acts in the m-dimensional space spanned by the kernel
sections k(xj , ·).
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Assumption 2.2. Assume that x0 = X0, x1, x2, . . . , xm−1 are drawn i.i.d. from µ. Then
yi, i = 0, 1, . . . ,m − 1, are obtained from the conditional distribution ρt(xk, ·), i.e.,
yk|(xk = x) ∼ ρt(xk, ·) for µ-a.e. x ∈ X.

It follows from Proposition 3.5 [16] that if Assumptions 2.1 and 2.2 are satis�ed, then with
probably 1− δ it holds

∥Ct
H − Cm,t

H ∥HS ≤
γ log

1
2

2
δ

m1/2
, (2.7)

where ∥·∥HS is the Hilbert-Schmidt operator norm. Here and in the sequel, we adopt the convention
that γ denotes a generic positive coe�cient, which can vary from inequality to inequality and does
not depend on quantities such as δ and m.

Let us also consider the sampling operator

E∗
m : H → Rm, E∗

mf = (f(x0), . . . , f(xm−1)) ,

which can be seen as an empirical version of the embedding operator E∗ : H → L2,µ. Then for any
v = (v0, v1, . . . , vm−1) the adjoint operator Em = (E∗

m)∗ : Rm → H can be de�ned as

Emv = (E∗
m)∗v =

1

m

m−1∑
j=0

k(xj , ·)vj .

If Assumption 2.1 is satis�ed then it is well-known (see, e.g., Lemma 4.2 [15]) that with probably
1− δ we have

∥EE∗ − EmE∗
m∥H→H ≤ ∥EE∗ − EmE∗

m∥HS ≤
γ log

1
2

2
δ

m1/2
. (2.8)

3 General regularization scheme

From (2.3) and Proposition 2.1 it follows that the representation of the Koopman operator on
H involves the inverse of the covariance operator, which becomes an unbounded operator due to
its compactness. Therefore, to ensure a stability in the approximate calculation of the Koopman
operator, regularization is required, since such approximation is an ill-posed problem. To this end,
we will use a general approach, originated in [1], to solve a wide range of ill-posed problems. More
detailed information about this approach can be found in [3, 5].

Recall that the most regularization schemes can also be indexed by families of parameterized
functions gα(t), 0 < t <∞, α > 0. The only requirement is that there are positive constants γ0, γ,
γ̃ such that

sup
0<t<∞

|gα(t)| ≤
γ0
α
, sup

0<t<∞

√
t|gα(t)| ≤

γ√
α
, sup

0<t<∞
t |gα(t)| ≤ γ̃. (3.1)

Further important property of the regularization method indexed by {gα} is its quali�cation that
is the largest positive number p for which it holds

sup
0<t<∞

tp|1− tgα(t)| ≤ γpα
p, (3.2)

where γp does not depend on α.

For example, the standard Tikhonov method with gα(t) = (α+ t)−1 has the quali�cation 1. The
iterated Tikhonov method with

gα(t) = gr,α(t) =
r∑

i=1

αi−1(α+ t)−i =
1

t

(
1− αr

(α+ t)r

)
, λ ̸= 0, r = 1, 2, . . .
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has the quali�cation r. The spectral cut-o� method, in which

gα(t) =

{
t−1, α−1 ≤ t <∞
0, 0 ≤ t < α−1

, (3.3)

has in�nite quali�cation.
We will look for an approximate representation of (2.3) in the form

K̂m,t
α f = gα(EmE∗)Cm,t

H f.

At this point we note that when using the Koopman operator Kt : L2,µ → L2,µ for predicting
the values of observable functions ψ ∈ H, it is natural to consider and approximate Kt as an
operator from H to L2,µ, such that the approximation accuracy will be evaluated in terms of the
operator norm ∥ · ∥H→L2,µ . Our main result, presented in the next section consists in estimating
that accuracy. For this we need the following statement.

Proposition 3.1. It holds true

∥Kt − K̂m,t
α ∥H→L2,µ = ∥(EE∗)1/2(Kt − K̂m,t

α )∥H→H .

Proof. For any h ∈ H we have

∥h∥L2,µ = ∥E∗h∥L2,µ = ⟨E∗h, E∗h⟩1/2L2,µ
= ⟨EE∗h, h⟩1/2H

=
⟨
(EE∗)1/2(EE∗)1/2h, h

⟩1/2
H

=
⟨
(EE∗)1/2h, (EE∗)1/2h

⟩1/2
H

= ∥(EE∗)1/2h∥H .

Substituting h = (Kt − K̂m,t
α )f , f ∈ H, into the relation above, we obtain the statement of

Proposition. □

4 Main result

Now we are in a position to prove the following statement.
Theorem 4.1. Let Assumptions 2.1 and 2.2 be satis�ed. Then with probably 1− δ it holds

∥Kt − K̂m,t
α ∥H→L2,µ ≤ γ

(
√
α+

log3/4 2
δ

m1/4
+

log1/2 2
δ√

αm
+

log3/4 2
δ

αm3/4

)

and for α ≍ m−1/2 we have

∥Kt − K̂m,t
α ∥H→L2,µ ≤ γm−1/4 log3/4

2

δ
.

Proof. Let us write the following representation for the error

Ktf − K̂m,t
α f = Ktf − gα(EmE∗

m)Cm,t
H = △1f +△2f,

where
△1 := Ktf − gα(EmE∗

m)Ct
H ,

△2 := gα(EmE∗
m)(Ct

H − Cm,t
H ).

Using relations (2.2) and (2.6) we obtain

Ct
H = EKtE∗ = EE∗Kt

H .

Then
△1f = Ktf − gα(EmE∗

m)EKtE∗f = (I − gα(EmE∗
m)EE∗)Kt

Hf.
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We consider the operator
△̄1 = (EE∗)1/2 (I − gα(EmE∗

m)EE∗) .

It is easy to see that

△̄1 =

5∑
i=1

△̄1,i,

where
△̄1,1 = (EE∗)1/2 − (EmE∗

m)1/2,

△̄1,2 = (EmE∗
m)1/2 (I − gα(EmE∗

m)EmE∗
m) ,

△̄1,3 =
(
(EmE∗

m)1/2 − (EE∗)1/2
)
gα(EmE∗

m)EmE∗
m,

△̄1,4 =
(
(EE∗)1/2 − (EmE∗

m)1/2
)
gα(EmE∗

m) (EmE∗
m − EE∗) ,

△̄1,5 = (EmE∗
m)1/2gα(EmE∗

m) (EmE∗
m − EE∗) .

By means of (3.1), (3.2) and (2.8) we obtain

∥△̄1,1∥H→H ≤
γ log

1
4

2
δ

m1/4
, ∥△̄1,2∥H→H ≤ γ1/2

√
α,

∥△̄1,3∥H→H ≤
γ log

1
4

2
δ

m1/4
γ̃, ∥△̄1,4∥H→H ≤

γ log
3
4

2
δ

m3/4

γ0
α
,

∥△̄1,5∥H→H ≤
γ log

1
2

2
δ

m1/2

γ̄√
α
.

Then

∥△̄1∥H→H ≤ γ

(
√
α+

log3/4 2
δ

m1/4
+

log1/2 2
δ√

αm
+

log3/4 2
δ

αm3/4

)
and taking into account Proposition 3.1, for α ≍ m−1/2 we have

∥△1f∥L2,µ = ∥(EE∗)1/2△̄1K
t
Hf∥H ≤ γm−1/4 log3/4

2

δ
∥Kt

Hf∥H .

Using (2.7) we �nd
∥△2f∥L2,µ = ∥(EE∗)1/2gα(EmE∗

m)(Ct
H − Cm,t

H )f∥H

≤ ∥(EmE∗
m)1/2gα(EmE∗

m)(Ct
H − Cm,t

H )f∥H

+∥((EE∗)1/2 − (EmE∗
m)1/2)gα(EmE∗

m)(Ct
H − Cm,t

H )f∥H

≤
γ log

1
2

2
δ

m1/2

γ̄√
α
∥f∥H +

γ log
3
4

2
δ

m3/4

γ0
α
∥f∥H .

Hence, for α ≍ m−1/2 it holds

∥△2f∥L2,µ ≤ γm−1/4 log3/4
2

δ
.
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Summing up the estimates for ∥△1f∥L2,µ , ∥△2f∥L2,µ we get the assertion of Theorem. □
Remark 4.1. As it has been already mentioned in the introduction, some particular cases of the

general regularization scheme (3.1) have been studied in the context of approximate representation of
the Koopman operators in RKHS. For example, in [6] the accuracy of an approximate representation
of the Koopman operators by means of the Tikhonov regularization corresponding to gα = (α+ t)−1

has been proven to be of the order O(m−1/2α−2) that is worse than the bound given by Theorem
4.1. Note also that in our terms the accuracy of an approximate representation of the Koopman
operators by means of the spectral cut-o� regularization (2.6) has been proven to be of order not
better than O(

√
α +m−1/2α−1), which is still worse than the bound of Theorem 4.1. Thus, if no

additional assumptions are made concerning the spectrum of the Koopman operators, such as the
ones in [9], then the order of accuracy obtained in Theorem 4.1 is the best among the reported in
literature.
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