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Anorauig. dx Bimomo, omepatop KynMmana IMHpPOKO BHKOPHUCTOBYEThCS IIPU AHAJMIZL CKJIATHUX
JIUHAMIYHUX CHCTeM. ¥ TIi#f CTATTI MU PO3IISIAEMO TPOOIEeMy YUCETHHOTO IIPEICTABICHHS OMepaToOPiB
Kynmana nva BigTBopioounx sjepaux LinbbeproBux npocropax. (OCHOBHOIO 1JI€€10 3aIlIPOIIOHOBAHOTO
MIXOY € BUKOPUCTAHHS MOHSTTS 3araJIbHOI CXEMU Peryssipu3arti aisa 3abe3medenns CTiKoCTi mobymo-
BaHUX anpokcumariiii. Ilg KoHIemisa J03BOIAE HaM OJHOYACHO PO3LJIANATH KiIbKa J100pe BiIoMmx
METOIIB peryasgpu3aliii, siki paHile BUKOPUCTOBYBAJINCH Jjis anmpokcuMariii omeparopis Kynmana. Mu
TaKOK OOTOBOPIOEMO ITUTAHHS BUOOPY MapaMeTpa Peryaspu3aliii, ske J10ci 6y/10 HeJOCTATHBO BUBYEHUM.

ABSTRACT. As is known, the Koopman operator is widely used in the analysis of complex dynamic
systems. In this paper, we consider the problem of numerical representation of the Koopman operators
on Reproducing Kernel Hilbert spaces. The main idea of the proposed approach is the use of a con-
cept of general regularization scheme to ensure the stability of the constructed approximations. This
concept allows us to simultaneously consider several well-known regularization methods, which have
been previously employed for approximating the Koopman operators. We also discuss the issue of the
regularization parameter choice, that has been understudied so far.

1 INTRODUCTION

The Koopman operator [8] is a tool to predict the values of the so-called observable functions
1 along the trajectories of dynamical systems. The use of the Koopman operator is most effective
when studying dynamic systems, information about which has a high degree of uncertainty or is too
large in amount. Therefore, the problem of numerical representation of the Koopman operator is of
great interest to researchers. There are various approaches to the approximate representation of the
Koopman operator, for example, using neural networks [11, 12| and tensor product spaces |7, 13].
Recently, the representation of the Koopman operator for observable functions ¢ from reproducing
kernel Hilbert spaces (RKHS) has become increasingly popular [20], [4,6,9,10,16,18,21|. Within this
approach, the Koopman operator is represented in terms of the inversion of some compact operator.
Then such a representation becomes an ill-posed problem that needs to be regularized. In previous
studies, the above regularization has been performed by means of the standard Tikhonov technique
(see, e.g., [6]) and by the so-called spectral cut-off method (see, e.g., [2,16]). The first contribution
of the present study is that we analyze the general regularization scheme that covers previously
used Tikhonov techniques and spectral cut-off method as particular cases. Moreover, the present
study sheds light on the choice of a parameter regulating the performance of the regularization.
Note that the above choice remained in fact open in [2,6,16].

The article is organized as follows. Section 2 contains definitions, concepts and notation which
are necessary for the further presentation. Section 3 describes the general regularization scheme
that will be used to numerical representation of the Koopman operator. The main result of the
study, Theorem 4.1, containing an accuracy estimate of the approximation of the Koopman operator
and a suitable choice of regularization parameter, is presented and proven in Section 4.
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2 DEFINITIONS, NOTATION AND CONCEPTS

Let X C R? be equipped with the Borel o-algebra By and the corresponding probability measure
p. Let also Lo, = Lo, (X) be the Hilbert space of functions that are square-integrable with respect
to the measure p. By (-,-)r,, and |||z, ,, respectively, we will denote the scalar product and norm
on Ly, (X), such that, for example, (f,9)r,, = [ f(t)g(x)du(z).

In this study we will follow very recent publication [16] and consider the semigroup of the
Koopman operators K* : Ly, (X) — Lg ,(X) indexed by time ¢ € [0,00) and associated with the
Caushy problem for a stochastic differential equation (SDE)

dX; = b(Xt)dt + O'(Xt)th, (21)
Xo=2€ X,

such that the image of any observable function 1 € La ,(X) under the action of K* is defined by
the relation

<mew=mw&»m=ﬂ:/¢@mmﬂw

where in the above formulas W; is d-dimensional Browian motion, b: X — R? ¢ : X — R¥*? are

assumed to be Lipschitz-continuous and for each A € By
pi(z, A) =P(X; € A|Xo = ).

Note that the above conditions on b, ¢ and Theorem 5.2.1 from [14] guarantee the existence and
uniqueness of the solution X3, ¢ > 0, to SDE (2.1) in X.

Moreover, in the sequel we assume the invariance of u for the stochastic process described by
SDE (2.1), which means that for any ¢ > 0 and A € By

[ oo Aydtz) = )

and it is equivalent to the identity

[ o @an) = [o@uts
for all t > 0 and ¢ € Ly ,(X).

To study the Koopman operator we will use the concept of Reproduction Kernel Hilbert Space
(RKHS). It is known (see, e.g., [19]) that every RKHS can be generated from a symmetric and
positive definite function k : X x X — R of two variables in X, called the reproducing kernel of
H = H(X,k). Recall that a function k£ : X x X — R is called positive definite on X if for any m
and any pairwise distinct 21, x2, ..., Ty € X the quadratic form

(Kb, b)r Zm:zm: bibjk(z, ;)

is positive for all m-dimensional vectors b = (b1,bs,...,bn) € R™\{0}, where K = {k(z;, x;)}]"; 4
is sometimes called the Gram matrix of & : X x & — R. It is well known that for any ¢ € H the
following reproducing property follows:

(@) = (¢, ®(@))n, =€,

where (-,-)g is the inner product in H and ® : X — H denotes the so-called feature map corre-
sponding to the kernel £, i.e.
O(x) = k(z,.), zelX.
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The norm on H is defined in the standard way || - |3 = (-, ) n.

Assumption 2.1. The kernel k(x,y) is bounded on X x X.

The above assumption is usual in the kernel-based learning, see, e.g., [17]. One needs this
assumption to guarantee the bounds for the operator norms (2.7), (2.8) below.

As in [17] we define the linear operator £ : Lo ,(X) — H

evi= [U@B@)dua), b € Loy ().

It is known (see, e.g., [15]) that the adjoint operator £* : H — Lg ,,(X) is the embedding operator
from H into Lo ,(X), i.e.
EE=¢, &€ H.

Following [16], we consider the covariance operator
Cu=EE" € L(H)

and the cross-covariance operator C%; : H — H, which acts as follows on ¢ € H

Chp = /(K%)(I)(x)d,u(a:) = EK") = EK'E*Y. (2.2)
Moreover, as in [16] we also consider the operator
Ky = Cy'CYy. (2.3)

Next proposition relates the above introduced operators.

Proposition 2.1. [16, Proposition 4.4 For t > 0, the following statements are equivalent:
(i) K'HC H.
(i) K& € L(H).
(iii) rankC% C rankCp.

Observe that if one of (i)-(iii) holds, then K% = K' |y, and for any ¢ € H we have

K'e = Kjjp = Cy' Chrp. (2.4)
Moreover, according to [16, Equation (4.7)] for any ¢ € H it holds
Ch'Clip = (£ K E . (2.5)
Combining (2.4) and (2.5), we get
E* Kl =E*Cy Clyp = K'E* . (2.6)

At this point we note that the exact Koopman operator K* is not accessible, and our goal is to
mimic its action. For this we can use points x;, y;, ¢ = 0,1,...,m — 1, sampled from trajectories of
the considered dynamical systems.

As an empirical estimator for C%, we take

m—1
m 1 m
Ot = L3 bay k() i O € £(H).
j=0

Note that in fact the above operator acts in the m-dimensional space spanned by the kernel
sections k(xj,-).
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Assumption 2.2. Assume that xo = Xg, 1,Z2,...,Tm—1 are drawn i.i.d. from p. Then
yi, © = 0,1,. — 1, are obtained from the conditional distribution pi(xg,-), i.e.,
Y| (zp = ) ~ pt(xk, -) for p-a.e. v € X.

It follows from Proposition 3.5 [16] that if Assumptions 2.1 and 2.2 are satisfied, then with
probably 1 — ¢ it holds
ylog? 2

t it

2.7)

where || || gs is the Hilbert-Schmidt operator norm. Here and in the sequel, we adopt the convention
that v denotes a generic positive coefficient, which can vary from inequality to inequality and does
not depend on quantities such as 6 and m.

Let us also consider the sampling operator

g H—R™ Ef=(f(xo)y..., f(xm-1)),

which can be seen as an empirical version of the embedding operator £* : H — Ly ,. Then for any

v = (v, v1,...,Um—1) the adjoint operator &, = (&;,)* : R™ — H can be defined as
1 m—1
Emv= (&) v=— k(zj,-)
m
7=0

If Assumption 2.1 is satisfied then it is well-known (see, e.g., Lemma 4.2 [15]) that with probably
1 — 6 we have .
vlog2 3

1E€" — EmElllm < |1EE" — EmElllus < o
m

(2.8)

3 GENERAL REGULARIZATION SCHEME

From (2.3) and Proposition 2.1 it follows that the representation of the Koopman operator on
H involves the inverse of the covariance operator, which becomes an unbounded operator due to
its compactness. Therefore, to ensure a stability in the approximate calculation of the Koopman
operator, regularization is required, since such approximation is an ill-posed problem. To this end,
we will use a general approach, originated in |1], to solve a wide range of ill-posed problems. More
detailed information about this approach can be found in [3,5].

Recall that the most regularization schemes can also be indexed by families of parameterized
functions go(t), 0 <t < 0o, @ > 0. The only requirement is that there are positive constants 7, 7,
4 such that

0 -
sup |ga(t)] < 22, sup Vilga(t)| < —=, sup t|ga(t)] < 7. (3.1)
0<t<oo « 0<t<oo \/a 0<t<oo

Further important property of the regularization method indexed by {gn} is its qualification that
is the largest positive number p for which it holds

sup tP|1 —tga(t)| < o, (3.2)
0<t<oo
where 7y, does not depend on a.
For example, the standard Tikhonov method with g, (¢) = (a+¢)~! has the qualification 1. The
iterated Tikhonov method with

«

g( —groz Za Oé+t 1(1_(04—:25)7”)7 A£0, r=1,2,...
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has the qualification r. The spectral cut-off method, in which

© 71, al<t<oo (33
=90, 0<t<al ’ '

has infinite qualification.
We will look for an approximate representation of (2.3) in the form

K™ f = go(EnEX)CH'F.

At this point we note that when using the Koopman operator K' : Ly, — Lo, for predicting
the values of observable functions ¢» € H, it is natural to consider and approximate K' as an
operator from H to Lg,, such that the approximation accuracy will be evaluated in terms of the
operator norm | - [[g—r,,. Our main result, presented in the next section consists in estimating
that accuracy. For this we need the following statement.

Proposition 3.1. It holds true

1K = K3 s ps,, = (EE)Y(K" = K)o

Proof. For any h € H we have
* * x7\1/2 * 1/2
1Blla, = 1€ L, = (€*h,E7R) L} = (E€*h, h)}f

1/2 1/2

- <(55*)1/2(55*)1/2h,h> - <(55*)1/2h, (55*)1/2h> — (EE)Y2| 1.

H H

Substituting h = (K! — K&"’t)f, f € H, into the relation above, we obtain the statement of
Proposition. ]

4 MAIN RESULT

Now we are in a position to prove the following statement.
Theorem 4.1. Let Assumptions 2.1 and 2.2 be satisfied. Then with probably 1 — § it holds

N log?’/4 2 logl/2 2 logg‘/4 2
t m,t 0 d )
I8 = Ko oy <3 <\/a+ ml/4 Vam am3/4

—-1/2

and for a < m we have

3/4 2
5

HKt _Kglmt —1/4

|HL,, < ym™ "/ "log

Proof. Let us write the following representation for the error
K'f = Kg'f = K'f = ga(EmEn)C" = O f + Do,

where

ANRES th - ga(gmg:n)cgﬂ
D2 = galEmEl)(Clr — C).
Using relations (2.2) and (2.6) we obtain
Cl = EK'E* = €KY,

Then
A1f = th - ga(gm‘g:m)gth*f = (I - ga(gmg:n)gg*) Klt‘]f
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We consider the operator B
Ay = (EENY2 (I = ga(EnEr)EEY).

It is easy to see that
5
=24
i=1
where

Arg = (EENY2 — (En&n)Y2,

Ao = (EnEE)2 (I = ga(EnER)EmER)

Brg = ((En&i) "2 = (E€)2) ga(EnEin)Emn

Dra= ((EEV = (EnEn)"?) galEnkr) (Enkr — EEV),

Ars = (EmEL) 2 ga(EmEL) (EmEL, — EEY).
By means of (3.1), (3.2) and (2.8) we obtain

\ V)

_ vlo g _
Al H—m < 745, A1 2llHsm < 7ppVa,

19 3 9
_ vlogi 3 _ . vlog# § o
[A1alla—m < W% [A1allH—m < m3/A o’

_ < .
||A1,5HH—)H —= m1/2 \/a

Then

10g3/4 2 log

10g3/4 2
ml/4 vam + am3/4

1/2

1/2 2
5

1A g <7 (\F—i-

and taking into account Proposition 3.1, for o < m™"/“ we have

_ 2
A1 f || s, = I(EEN 2BV flln < ym™ 4 log™* Sl

Using (2.7) we find
182f|., = 1(EE") 2 ga(Emn) (Cl — Cir) flln

<N (Em&n)?9a(En&rn) (Cl — Cr ) f 1
HI(EEN? = (Emi) )90 (Ené) (Cly = Cp") fllm

~log? ol 7log? Y0
< 1/25 fufumTj 1f -

Hence, for a < m~Y2 it holds

2
12 fll2s,, < ym~1ogh1 2.
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Summing up the estimates for ||A1f|z,,, [[A2f][L,, we get the assertion of Theorem. O

Remark 4.1. Asit has been already mentioned in the introduction, some particular cases of the
general regularization scheme (3.1) have been studied in the context of approximate representation of
the Koopman operators in RKHS. For example, in [6] the accuracy of an approximate representation
of the Koopman operators by means of the Tikhonov regularization corresponding to g, = (a+t)~*
has been proven to be of the order O(m~'/2a~2) that is worse than the bound given by Theorem
4.1. Note also that in our terms the accuracy of an approximate representation of the Koopman
operators by means of the spectral cut-off regularization (2.6) has been proven to be of order not
better than O(y/a +m~'/2a~"), which is still worse than the bound of Theorem 4.1. Thus, if no
additional assumptions are made concerning the spectrum of the Koopman operators, such as the
ones in [9], then the order of accuracy obtained in Theorem 4.1 is the best among the reported in
literature.
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