
 
THEORY 

ISSN 1607-88292015                      Journal of Thermoelectricity №6, 2016 21 

P. V. Gorskiy 

Institute of Thermoelectricity of the NAS and MES  
Ukraine, 1 Nauky str., Chernivtsi, 58029, Ukraine 

THE CORRELATION BETWEEN THE  
LATTICE THERMAL CONDCTIVITY OF  

THERMOELECTRIC MATERIALS BASED  
ON Zn-Cd-Sb AND THE PHASE DIAGRAM  

OF THE SYSTEM 

Based on the analysis of phase diagrams of Zn-Sb, Cd-Sb and Zn-Cd-Sb systems, a correlation 
between the features of these diagrams and the lattice thermal conductivity of crystalline 
compounds existing in these systems was established. This correlation was analyzed with 
considerations of symmetry. Only those compounds and their modifications were considered which 
exist in crystalline state in the “generation” temperature range of 300-650 K which is relevant for 
thermoelectric application. Formulae for the components of lattice thermal conductivity tensors of 
all considered phases were derived with regard to symmetry elements which enter spatial groups 
to which the respective crystals belong. The lattice thermal conductivity was calculated with the 
use of the Boltzmann equation for phonons in relaxation time approximation. The relaxation time 
is determined with regard to normal processes of phonon-phonon scattering, as well as umklapp 
processes, taking into account different correlation between the frequency of interphonon 
collisions determined by these processes and phonon frequency. In this case, the symmetry 
elements determine the number of independent components of the velocity of longitudinal and 
transverse sound waves, the Gruneisen tensor, and the umklapp coefficient tensor characterizing 
the dependence of the frequency of umklapp collisions on the phonon frequency. In this way, the 
number of independent components of the lattice thermal conductivity tensor is determined for 
each phase. In the Zn-Cd-Sb system, phases with rhombic (including orthorhombic), hexagonal 
and cubic symmetry are possible. This means that the lattice thermal conductivity tensor can have 
three, two or only one independent component, respectively. In each case, analytical expressions 
for these components were obtained. In addition, analysis of the influence of point structural 
defects on the lattice thermal conductivity of Cd-Sb system was made. 
Key words: phase diagram, lattice thermal conductivity, spatial symmetry, umklapp parameters, 
scattering by interstitial atoms 

Introduction 

Phase diagrams are known to reflect the equilibrium between different phases in a particular 
multicomponent system and determine the temperature and concentration intervals of their existence, 
since, as a rule, they are constructed by experimental or calculated methods in the "temperature-
composition" coordinates. In so doing, the corresponding equilibrium curves in these diagrams reflect 
both the equilibrium between the liquid and solid states, for instance, with the same composition, and 
the equilibrium between the solid phases of different composition and crystal structure. The "liquid-
crystal" equilibrium is decisive when choosing a technology for the production of semiconductor 
thermoelectric materials, for example, by growing single crystals from melts. The "crystal-crystal" 
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equilibrium, in turn, determines the composition and crystalline structure of the material that exists in 
the solid state in a particular temperature range. And since the crystal structure determines the group 
of spatial symmetry to which the material belongs (at least in the form of a single crystal), then it also 
determines the characteristics of the tensors of the kinetic coefficients of the material, namely, the 
thermal conductivity, the electrical conductivity, and the thermoelectric power. And these features 
determine the sphere of application of the material for thermoelectric energy conversion. 

In turn, phase transitions between different solid phases in a system of two or more components 
are associated not only with a change in composition, but also with a change in the spatial symmetry 
of the material, even if the composition does not change. The investigation of the effect of such 
transitions on the lattice thermal conductivity of the Zn-Cd-Sb system is the purpose of this article. 

The correlation between the components of the lattice thermal conductivity 
tensor of the Zn-Cd-Sb system and the features of its phase diagram 

To date, the phase diagram of the Zn-Cd-Sb system has been studied most extensively in 
two sections of CdSb-ZnSb and Cd4Sb3-Zn4Sb3 [1]. Both these sections are not quasibinary, 
since Cd4Sb3 is a metastable phase, and ZnSb melts with decomposition. In themselves, ZnSb 
and CdSb are orthorhombic crystals of D2h

15 group and, apparently, have the lowest 
symmetry.The first Brillouin zone of these crystals is a rectangular parallelepiped, so that the 
tensors of the kinetic coefficients of these crystals in the absence of a magnetic field are 
diagonal, and each of them has, generally speaking, three independent and different 
components, characterizing the degree of influence of deformations, and consequently 
anharmonicity. The same symmetry property is possessed by the velocity of sound 
propagation in these crystals, the Grüneisen parameter, which characterizes the degree of 
influence of deformations, and, consequently, the anharmonicity of the lattice vibrations, on 
the phonon energy spectrum, as well as the umklapp parameter characterizing the dependence 
of the probability of interphonon collisions with the umklapp on the phonon frequency [2 ].At 
the same time, the Debye temperature determined by the temperature dependence of specific 
heat, just as the specific heat of crystal itself, is a scalar. 

Therefore, in the case of the lowest symmetry the following expressions hold true for the 
components of lattice thermal conductivity tensor [3]: 
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In these formulae, γ11, γ22, γ33 – are used to denote the components of the Gruneisen tensor, and 
μ11, μ22, μ33, – the components of tensor of umkapp coefficients. Indices l,t refer to the longitudinal and 
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transverse legs, the components of tensors of the Gruneisen parameter and umklapp coefficients are 
considered to be independent of polarization of phonons. Moreover, TD is the Debye temperature 
determined by the specific heat, θ = T/TD. 

At high temperatures, when the Peierls law and the Leibfried-Schlemmann formula are valid, 
formulae (1) – (3) go over into the following: 
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Function F(μ) is determined as follows: 
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In accordance with the phase diagram of the ternary system Zn-Cd-Sb constructed in [4], 
formulae of the form (1) – (6) with the corresponding parameters are valid for ZnSb, CdSb, an 
orthorhombic solid solution or the so-called triple ω phase ZnxCd1 - xSb, a monoclinic modification of  
β-Zn4Sb3 into which the γ-Zn4Sb3 compound transforms at 766 K, as well as for orthorhombic 
antimony and the high-temperature orthorhombic modification of η-Zn3Sb2 at a temperature below  
720 K. These formulae are also formally valid for β-Cd4Sb3 and η-Cd3Sb2 though the above 
compounds are metastable. 

However, in the Zn-Cd-Sb system, even higher-symmetry compounds are possible, for example, 
hexagonal or cubic. In the case of hexagonal symmetry, two axes lying in a plane perpendicular to the 
hexagonal axis are equivalent. Therefore, for the velocities of longitudinal and transverse phonons, as 
well as the components of the tensors that appear in formulas (1) – (6), the following relations hold: 
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Taking them into account, we obtain the following expressions for independent components of 
lattice thermal conductivity tensor of the hexagonal phases of Zn-Cd-Sb system: 
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When the Peierls law and the Leibfried-Schlemmann formula are valid, formulae (9) and (10) 
go over into the following: 
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For single-crystal materials with a hexagonal symmetry, and, consequently, layered, and 
therefore superlattice, as a rule, inequality κl > κlǁ is valid. This inequality holds mainly because sound 
propagation speed in the direction perpendicular to hexagonal axis is higher than along the hexagonal 
axis, i.e. perpendicular to layers. 

Formulae (9) – (12) are valid for hexagonal limited solid solutions of cadmium and zinc, as well 
as for hexagonal modifications β-Zn4Sb3 and β-Cd4Sb3, though the latter of said compounds is 
metastable. 

For phases with cubic symmetry the following relations are valid: 
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Consequently, for these phases the components of the lattice thermal conductivity tensor are 
compared to each other, and it turns into a scalar: 

 
    

1 4 4 4

11 22 33 22 3 2 4 3
0

exp 2

32 3.125exp 1
l t

l l l l
B D

x x dx v v

k T x x xx

 
                




. (14) 

When the Peierls law and the Leibfried-Schlemmann formula are valid, formula (14) goes over 
into the following: 
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Temperature dependences of the components of the lattice thermal conductivity tensors of 
cadmium and zinc antimonides obtained with the use of the derived relationships are given in  
Fig. 1а –b. 

It can be seen from the plots that the approach used, in contrast to traditional approaches, makes 
it possible to obtain estimates of the components of the lattice thermal conductivity tensors of ZnSb 
and CdSb, consistent with the experimental data, and the degree of its anisotropy, which was 
mentioned in [3] (without citing specific temperature dependences). However, it should be borne in 
mind that total thermal conductivity of a single crystal, consisting of lattice and electron or hole 
components, is always determined experimentally. 
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These components in a variety of thermoelectric materials, in particular in cadmium and zinc 
antimonides, can be comparable. Therefore, in order to estimate the microscopic characteristics of 
phonon-phonon scattering, in particular, the umklapp coefficient, a preliminary separation of these 
components from each other is required. This separation is carried out exceptionally by calculation on 
the basis of experimental data on electrical conductivity, the Hall effect, and thermoEMF using the 
Wiedemann-Franz relation. 

And temperature dependences of its anisotropy – in Fig.2а – b. 

 
а) 

 

b) 
Fig. 1. Temperature dependences of the components of the lattice thermal conductivity  

tensors of zinc antimonide ZnSb (а) and cadmium antimonide CdSb  

 
а) 
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b) 

Fig. 2. Temperature dependences of thermal conductivity anisotropy  
of zinc antimonide ZnSb (а) and cadmium antimonide CdSb 

The influence of point defects on the lattice thermal conductivity of Zn-Cd-Sb system 

As long as [5] deals with the possibility of increasing the thermoelectric figure of merit of zinc 
antimonide due to introduction into its composition of a certain atomic fraction of cadmium isovalent 
impurity, it is of certain interest to study the influence of such impurities on the lattice thermal 
conductivity of zinc antimonide. The authors of [5] note that cadmium isovalent impurity sufficiently 
strongly reduces the lattice thermal conductivity of zinc antimonide. Presumably, this decrease may be 
due to the fact that the presence of such an impurity leads to the appearance of an additional mechanism 
for scattering of phonons due to the difference in the masses of cadmium and zinc atoms. We consider 
this effect in the isotropic approximation, assuming that the impurity atoms are randomly distributed in 
the bulk of a single crystal. In this case, in accordance with the approach described in [6], the relaxation 
time due to scattering by impurity atoms can be represented as: 
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In this formula, Ni – volumetric concentration of impurity atoms, ΔM = MCd – MZn – mass 
difference of cadmium and zinc atoms. The density of crystal ρ in this case should be understood to 
mean its density in the presence of isovalent impurity. In turn, for CdxZn1 - xSb composition Ni can be 
determined as follows: 
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In this formula, NA – Avogadro number, ACd, AZn, ASb – tabular atomic masses of cadmium, zinc 
and antimony, respectively, other notations are explained above. 

Therefore, (16) can be finally rewritten as: 
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Thus, in the most general form with regard to the contribution of transverse phonon legs, the 
lattice thermal conductivity can be represented as: 
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In these formulae, additional dimensionless parameters related to phonon scattering by 
impurities have the following values: 
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In formulae (22) – (27), R is a universal gas constant, other notations are explained above. 
Let us estimate, for instance, μil11. At v1l = 3.803·103 m/s, v2l = 4.034·103 m/s, v3l = 3.834·103 m/s, 

ACd = 112.41, AZn = 65.39, ASb = 121.75, γ11 = 1.5, x  = 10–3,T = 300 K we get μil11 = 7.463·10–4, which is 

almost four orders of magnitude less than umklapp parameter [3]. Even if we assume x = 0.5, i.e. 
consider the composition Cd0.5Zn0.5Sb, still we will have μil11 = 0.332, which is more than an order of 
magnitude less than umklapp parameter. Moreover, scattering by point defects alone, without the action 
of other scattering mechanisms, in particular scattering with umklapp, in itself does not provide a finite 
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value of the lattice thermal conductivity, since the frequency dependence of the phonon scattering 
intensity on these defects is the same as for normal phonon-phonon scattering. Thus, the decrease in the 
lattice thermal conductivity during the transition from ZnSb to the ternary system CdxZn1 - xSb [5] cannot 
be explained by the presence of the "foreign" cadmium atoms themselves in the initial zinc antimonide 
lattice. It should be associated, on the one hand, with the rearrangement of this lattice, which leads to an 
increase in umklapp parameter, and on the other, to the appearance or increase in the concentration of 
such structural defects the phonon scattering intensity at which varies with a frequency more slowly than 
ω4. These can include, for instance, phase inclusions (inhomogeneities), dislocations and packing 
defects. Formulae for the relaxation time of phonons during scattering by these defects are given in [6] 
for the case of a crystal with a simple cubic lattice with one atom in the unit cell. The generalization of 
these formulae for the case of lattices of cadmium and zinc antimonides is far from being trivial and is 
not the purpose of this article. 

Conclusions 

1. The correlation between the lattice thermal conductivity of materials of the Zn-Cd-Sb system 
and its phase diagram is due to the existence in this system of solid phases with different spatial 
symmetry. 

2. Since phases with orthorhombic (including orthorhombic), hexagonal and cubic symmetries can 
exist in the Zn-Cd-Sb system, the lattice thermal conductivity tensor for these phases can have 
three, two and one independent components, respectively. 

3. In itself, the presence of "foreign" cadmium atoms in the ternary compound CdxZn1 - xSb at small 
x cannot explain the observed decrease in the lattice thermal conductivity of this compound in 
comparison with the lattice thermal conductivity of the initial ZnSb. Such a reduction is possible 
only if the addition of an isovalent cadmium impurity leads to reconstruction of the lattice, and, 
hence, to an increase in umklapp parameter, and also to an increase in the concentration of 
structural defects, the phonon scattering intensity at which increases with frequency more slowly 
than ω4, namely phase inclusions (inhomogeneities), dislocations and packing defects. 

The author considers it his pleasant duty to express gratitude to academician L.I.Anatychuk for 
the formulation of the problem. 
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