S.1. Menshikova cand. phys. - math. sciences
E.I. Rogacheva doc. phys. - math. sciences

National Technical University ‘“Kharkiv
Polytechnic Institute”, 2, Kyrpychova Str.,
Kharkiv, 61002, Ukraine

S.1. Menshikova EFFECT OF DEVIATION FROM E.I Rogacheva
STOICHIOMETRY ON
THERMAL CONDUCTIVITY OF Bi2Ses POLYCRYSTALS

The dependences of electronic and lattice thermal conductivity on the composition (59.9 - 60.0) at.
% Se of Bi,Ses polycrystals subjected to a long-term annealing at 650 K. A non-monotonic
behavior of these concentration dependences, associated with a change in the phase composition
and defect structure under the deviation from stoichiometry, was observed. The boundaries of the
Bi»Sesz homogeneity region were estimated. The results of the present work confirm those obtained
earlier in our study of the effect of deviation from stoichiometry (59.9 - 60.0 at.% Se) on the
electrical conductivity, Hall coefficient, Seebeck coefficient and microhardness of Bi>Ses
polycrystals after a similar preparation technology. Bibl. 33. Fig. 3.
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Introduction

Solid solutions based on the bismuth selenide are the well-known n-type thermoelectric (TE)
materials for cooling devices [1]. Bi;Se; belongs to a narrow-gap semiconductor group and
demonstrates the unique properties of topological insulator (material which is dielectric in the bulk
with a metallic layer on the surface) [2]. The efficiency of a TE energy convertor depends on the value
of TE figure of merit Z of a TE material (Z = S? 6/, where ¢ and 4 are the electrical and thermal
conductivities, respectively, S is the Seebeck coefficient).

Bi,Se; is a bertollide [3-5] with the homogeneity region (HR) shifted to the Bi-rich side at T >
675 K [6]. Bi;Ses melts congruently with an open maximum at 979 K [3,7,8], which is deviated from
stoichiometry and located at (59.98 = 0.01) at. % Se [3-6,9].

Bi,Sez always exhibits n-type conductivity which is commonly associated with the presence of a
large number of Se vacancies (Vse1) [5,6,10-21] acting as donors. The existence of Vs.: was confirmed
by a number of authors [6,12,15-18,22-24] with the help of different experimental and theoretical
methods (scanning tunneling microscopy, measurements of the Hall coefficient in the temperature
range 80-330 K, calculation of the formation energies of various types of defects etc.). Later [24-26],
the coexistence of Vse: and antisite defects (AD) — bismuth atoms that occupy positions of selenium
ones (Bise), in the n-Bi,Ses; was suggested.

The deviation from stoichiometry in chemical compound leads to the appearance of intrinsic
defects, the concentration of which varies within the HR of the compound which determines the
properties of the TE material. Analysis of the literature showed, that the HR boundaries of the Bi,Ses
were determined just for temperatures above 675 K [6], and the boundaries of the maximal HR are
(59.984 - 59.997) at.% Se at 900 K. Despite the fact that Bi.Ses is used for TE applications at
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temperatures close to room temperature, the investigation of the HR boundaries at these temperatures
are not available in the literature. In our previous work [27], based on the study of the electrical
conductivity, Hall coefficient, Seebeck coefficient and microhardness of Bi.Ses; polycrystals with
deviation from stoichiometry to the Bi-rich side after a long-term annealing at 670 K with subsequent
cooling to the room temperature, the HR boundaries were estimated. The investigation of the thermal
properties of such crystals could expand the range of research, supplement and/or confirm the results
of [27]. As far as we know, no study of the thermal properties of Bi.Ses polycrystals under the
deviation from stoichiometry has been performed yet.

The typical values of A for Bi,Ses single crystals lie within 2.5-3.1 W-m™*-K* [12,28,29] and for
pressed polycrystals — within 1.0-1.3 W-m™*-K* [30-32]. It is also known, that usually electronic
component of thermal conductivity is comparable to the lattice one in single [28] and pressed [33]
crystals. The values of Z=5-10% K* [29] and Z = 1.6-10* K'* [33] at a room temperature are typical
for single and polycrystals Bi,Ses, respectively.

The purpose of the work was to study the effect of deviation from stoichiometry on the thermal
conductivity and TE figure of merit of Bi,Ses polycrystals at a room temperature.

Experimental

Bi-Se polycrystals with different Se concentrations (59.9 - 60.0) at. % were prepared by fusing
high-purity (99.999 at. % of the main component) Bi and Se in evacuated quartz ampoules at a
temperature of T = (980 + 10) K. The melt was kept at this temperature for 3 h with vibrational
stirring. After that the alloys were annealed for 200 h at T = 820 K with subsequent cooling to room
temperature in the turned-off furnace. The synthesized alloys were used for subsequent preparing of
powders for pressing with particle size of 200 pm. Pressed samples were prepared by cold-pressed
method at a fixed load of 400 MPa for 60 s with subsequent homogenizing annealing in evacuated
guartz ampoules at 650 K for 250 h with subsequent cooling to room temperature.

The thermal conductivity A was measured by the dynamic A-calorimeter method in monotonic
heating regime with help of I1T-A-400 experimental facility. The errors of A measurement did not
exceed £ 5 %. The measurements were carried out at a room temperature.

The determination of the lattice component Zpn of thermal conductivity was determined by
subtracting the electronic component Aq from the total thermal conductivity. The A values were
calculated with the help of the Wiedemann-Franz law:

Ay =LoT,

where L is the Lorenz number (L=2.44-10® V?/K? for degenerate statistics), T is the
temperature. The values of o obtained in our previous work [27] for Bi,Ses polycrystals with a deviation
towards the excess of Bi after a similar preparation technology were used for calculation of Ae.

Experimental results and discussion

The investigated polycrystals were homogeneous in its chemical composition and
properties [27].

The obtained room-temperature dependence of 4 on the composition of the Bi-Se pressed
crystals is shown in Fig. 1.
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Fig. 1. Room-temperature dependence of thermal conductivity /. on Se content in Bi-Se polycrystals

The results of calculation of 1e and Apn for Bi-Se polycrystals with different composition are
shown in Fig. 2.
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Fig. 2. The dependences of electronic A (@) and lattice thermal conductivity
Zpn (b) on Se content in Bi-Se polycrystals

The calculation of the value of the TE figure of merit of Bi,Ses crystals with an excess
of Bi for different composition was made using the values of o and S, obtained in our previous
work [27], and 4, obtained in the present work (Fig. 3).

Z{10*K")
-/}

4 M 1 1 M
55598 59,92 55,54 5556 55,53 60,00
Se {at. %)

Fig. 3. The dependence of the TE figure of merit Z on Se content in Bi-Se polycrystals
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As can be seen from Fig. 1 and Fig. 2, under the deviation from the stoichiometry of Bi,Ses to
the Bi-rich side, general trends of increasing in 1« and decreasing in A and Aph are observed. Starting
from ~ 59.95 at.% Se, the values of Ze, 4 and Apn practically do not change. In the composition range
(59.95-60 at.% Se) the concentration dependences of the thermal conductivity and its components are
non-monotonic and exhibit an oscillating behavior. From Fig. 1 and Fig. 2 one can identify five
regions with different dependence behaviors of properties on Se content:

1) 60.0 - 59.998 at.% Se, where Z¢ tends to decrease, and 4 and Aph tend to increase;
2) 59.998- 59.985 at.% Se, where e increases, 4 and Ap, decrease;

3) 59.985- 59.98 at.% Se, where ¢ decreases, 4 and Apn increase again;

4) 59.98 - 59.95 at.% Se, where increase in Ae and decrease in A and A,n are observed,
5) 59.95 - 59.90 at.% Se, where /e, 2 and Asn do not change.

It should be noted that behavior of o (see [27]) and A« (Fig. 2) on concentration coincide. This is
logical, because /e is determined by the values of ¢. The dependences of e and Apn 0n the composition
have an opposite character: the positions of observed maxima of the Ae correspond to the positions of
the minima of Zpn.

A complicated behavior of the concentration dependences of compound properties under the
deviation from stoichiometry indicates the crossing of the phase boundary. But within the HR, which
is a single-phase region, such a behavior can indicate the self-organization processes in the compound
and be determined by the redistribution of atoms and non-stoichiometric defects. Taking into account
the long-term isothermal annealing at 650 K carried out for Bi-Se polycrystals after its pressing, one
can assume that a phase state close to the equilibrium state at 650 K was reached and the subsequent
cooling in the turned-off furnace to room temperature does not change this state.

According to the phase diagram of Bi-Se [3,4,6], a two-phase region (Bi,Ses + Se) under the
deviation from stoichiometry to the Bi-rich side should exist at a temperature T > 675 K. At
temperature decrease below 675 K, the phase boundary may be shifted. Taking into account the trend
of the boundary shifting with temperature decrease from 900 K to 675 K [3,6], the shift of phase
boundary is most likely to occur at a lower Se concentration. So, it assumed that the first concentration
range 60.0-59.998 at.% Se corresponds to the two-phase region (Bi;Se; + Se), which is in the state of
decomposition of the solid solution. In this region, many different factors affect the character of the
composition dependences of properties (for example, the number and size of precipitated particles,
cooling rate, etc.).

In the second region (59.998 - 59.985 at.% Se) we could expect the reaching of the HR
boundary of Bi2Se; from the Se-rich side. We can assume that subsequent deviation from
stoichiometry towards the Bi excess in this region leads to Vse1 increase, which are electrically active
defects and cause an increase in electron concentration (Ae increases) and creates additional centers of
phonon scattering in the lattice (4o decreases).

The further deviation from stoichiometry (region 59.985 - 59.980 at.% Se) should result in
further increase in the concentration of non-stoichiometric defects. It can be assumed, that the
formation of an another type of non-stoichiometric defects — acceptor type AD (Bise) [18,24] —
becomes thermodynamically favorable. The appearance of Bi atoms at Se positions can lead to an
increase in Apn. Taking into account that Bise defects provide acceptor effect [18,23,24], these defects
can partially compensate the donor action of Vse: and lead to the decrease in A in this region.

The next concentration region 59.98 - 59.95 at. % Se (le increases, 4 and Ay decrease)
presumably corresponds to the reaching of the boundary of the Bi.Ses HR from the Bi-rich side.
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Further practically unvaried values of thermal properties of crystals in the range 59.95 - 59.90 at.% Se,
most probably, indicate the precipitation of a second phase BiSe [3] upon crossing the solidus line.

Thus, based on the analysis of the obtained experimental data (Fig. 1, Fig. 2) we assumed that
the boundary of the Bi.Ses HR on the Bi-rich side lies in the range 59.98 - 59.95 at.% Se, and on the
Se-rich side corresponds to ~ 59.998 at% Se. It should be noted that the HR boundaries of the Bi,Ses
and the character of change in the defect structure, experimentally determined in the present work,
coincide and add further confirmation of the results of our earlier work [27].

Analysis of calculated electronic and lattice components of 1 shows that the contribution of
electronic component for all investigated samples is close to the lattice one. It should be also noted
that under the deviation from stoichiometry to the Bi-rich side the contribution of A to the total
thermal conductivity becomes smaller (see Fig. 2b). It is logical to associate this tendency with
creation of different types of crystal defects. The latter indicates that phonons scatter strongly on
defects (presumably, Bise and Vse1).

It should be noted that the value of /g for the stoichiometric crystal (Ao = 0.85 W-m™-K) was
slightly lower than the data available in the literature (i;n = 1.07 W-m™*-K [32]) for pressed crystals.
This difference in the values of Ay could be explained by a different method of preparing samples
(spark-plasma sintering at a temperature of 593 K for 5 min at a uniaxial pressure of 40 MPa was used
in [32]).

As can be seen from Fig. 3, the value of Z also exhibits a non-monotonic type of dependence on
the Se content in Bi-Se polycrystals. It can be seen that the largest value of Z = 8-10* K is inherent in
a crystal with the stoichiometric composition, and even under a slight deviation from the stoichiometry
towards the Bi excess (59,998 at.% Se), the value of Z drops sharply (Z = 4.2-10* K1), which is
important from a practical point of view. It should be noted that the values of Z obtained here for Bi-
Se crystals at a room temperature were slightly higher than those known in the literature for pressed
stoichiometric Bi,Ses [29,33]. This gain in the value of Z is a consequence of the lower value of A and
the higher value of S [27] of the crystal, which was subjected to a long-term annealing at 650 K with
subsequent cooling to room temperature in the turned-off furnace in the present work, compared with
the literature data [29,33] for the pressed crystals.

Conclusions

The effect of the deviation from stoichiometry to the Bi-rich side (59.9-60.0) at. % Se on the
electronic and lattice components of thermal conductivity of the Bi.Ses; polycrystals was studied. The
boundaries of the Bi.Se; homogeneity region (on the Se-rich side — 59.998 at. % Se, and on the Bi-rich
side — in the interval of 59.98-59.95 at. % Se) after a long-term annealing at 650 K with subsequent
cooling to the room temperature were estimated.

The estimated HR boundaries of Bi.Ses; confirm the previous results [27] in the analysis of the
concentration dependences of the electrical conductivity, Hall coefficient, Seebeck coefficient and
microhardness.

The non-monotonic behavior of the concentration dependences of the electronic and phonon
thermal conductivities at a room temperature attributed to a change in the phase composition and
defect structure under the deviation from stoichiometry of Bi.Ses was observed. It is supposed that
within the homogeneity region with the dominant type of non-stoichiometric defects (selenium
vacancies) the formation of antisite defects Bise occurs.

This work was supported by the Ministry of Education and Science of Ukraine (Project No.
M0625).
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