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THEORETICAL MODELS
OF LATTICE THERMAL CONDUCTIVITY
OF SINGLE-CRYSTAL
BISMUTH TELLURIDE

In the isotropic approximation, the effect of the real density of phonon states on the lattice
thermal conductivity of single-crystal bismuth telluride is taken into account within the
framework of two model approaches. First, the problem is considered in the isotropic
approximation, and then the layered structure and anisotropy are roughly taken into account. It
is shown that the real density of phonon states almost does not change the temperature
dependence of the lattice thermal conductivity of bismuth telluride both in the plane of the
layers (cleavage) and perpendicular to it compared to the Debye density of phonon states. This
weakness is explained by the fact that the change in the differential heat capacity contribution to
thermal conductivity caused directly by the density of phonon states is compensated by the effect
of this density on scattering, which is caused by the nonlinear dependence of the wave vector on
the frequency, the difference between the group velocity of sound and the phase velocity, and a
significant increase in the Umklapp coefficient. The obtained results are not only in qualitative,
but also in satisfactory quantitative agreement with the theoretical studies of previous authors
and the experiment. This allows us to hope that the real density of phonon states will not have a
significant effect on the thermomechanical deformations of thermoelectric legs in comparison
with the Debye density of phonon states. Bibl. 7, Fig. 2.
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Introduction

The efforts of material scientists today are mainly aimed at increasing the thermoelectric
figure of merit and efficiency of thermoelectric materials. At the same time, one of the main ways of
such an increase is considered to be a decrease in thermal conductivity, in particular its lattice
component. But such a way is in a certain contradiction with the considerations of mechanical
reliability of thermoelectric materials. This contradiction can be explained on the basis of the physical

model depicted in Fig. 1.
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Fig.1. Physical model of temperature deformation of thermoelectric leg

If there is no temperature gradient, then thermomechanical stresses do not occur. But in the
presence of a temperature gradient, stresses do not arise only when a thermoelectric leg expands
freely. But in reality, it is attached by the end faces to the anti-diffusion layer, interconnect and
ceramic plates. If the fastening is absolutely rigid, then in accordance with Hooke's generalized law
[1], there is a bending stress equal to:

G Eo, AT ’ )

I-v
where E, or, v are Young’s modulus, coefficient of linear expansion and Poisson’s ratio of
thermoelectric material, respectively, AT is temperature difference on the leg. This bending stress
should not exceed the cracking strength of the crystal 6, [2]. On the other hand, for the same heat flow,
the temperature difference is the smaller, the higher the thermal conductivity k. Therefore, the so-
called thermal shock resistance criterion [2] is introduced, which is equal to:
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It is believed that it should be as small as possible. On the other hand, high figure of merit of a
thermoelectric material implies a low value of «x, that is, a high value of R. This explains the
contradiction mentioned at the beginning of the article, which determines the relevance and the very
setting of this study, because the task of finding ways to achieve a safe "compromise" value of k
arises. From this follows the object and subject of research.

The object of research is single-crystal bismuth telluride. The subject of research is the
influence of the real density of phonon states and the anisotropy of the phonon spectrum on its lattice
thermal conductivity.

Results of research and their discussion

In this work, research was carried out for single-crystal bismuth telluride, and when
calculating the lattice thermal conductivity, the influence of normal scattering and scattering with
mutual phonon Umklapp was taken into account. The latter is important because it is what provides
the finite value of thermal conductivity. In the case of purely normal scattering, the total energy and
total quasi-momentum of each triplet of phonons, and, consequently, the momentum of the phonon
subsystem of the crystal as a whole are preserved. Thus, a kind of "super thermal conductivity" takes
place, which is to some extent analogous to superconductivity, and hence the lattice thermal
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conductivity will be infinite if there are no other phonon scattering mechanisms. In the presence of
Umklapp processes, the energy is preserved, and the quasi-momentum is preserved, as is customary to
say, with the accuracy of the inverted lattice vector. But the very concept of an inverted lattice has
meaning only when taking into account the atomic structure of matter. In a "truly" continuous
medium, the phonon thermal conductivity should be infinite if there are no other phonon scattering
mechanisms.

The article [3] gives general formulae for the thermal conductivity of a crystal lattice in the
case when the law of dispersion of acoustic phonons is linear, and the isofrequency surface of
phonons is a sphere, and therefore the density of phonon states is described by the Debye model,
that is, it is a quadratic function of frequency. At the same time, they were derived for a simple
cubic lattice with one atom in the unit cell. We need to modify these formulae for the case of an
arbitrary structure of the crystal lattice, an arbitrary energy spectrum of phonons, and, therefore, an
arbitrary frequency dependence of the density of phonon states. At the same time, having
information not about the phonon spectrum as a whole, but only about the frequency dependence of
the density of phonon states, we can do this in the isotropic approximation. This approximation,
despite the anisotropy of the bismuth telluride crystal, is quite often used in calculating its
thermoelectric characteristics. We are forced to do this also because the correspondence between the
phonon spectrum of a crystal and the corresponding density of phonon states is not one-to-one. This
means that, knowing the phonon spectrum of a crystal, you can always find the corresponding
density of phonon states. But in the general case it is impossible to unambiguously perform the
reverse operation. But it can be implemented in the isotropic case, when the is of requency surface is
a sphere.

So, we will start the modification of the corresponding formulay by restoring the energy
spectrum according to its density of states. In the isotropic case, the following formula for the radius
of the isofrequency surface corresponding to the frequency @ follows from the requirement of
conservation of the number of phonon states:

ko (@)= 3/%;‘-&,1 (0)do. 3)

In the so-called normalized form, this ratio can be presented as follows:

X

K(x)=33[ £ (»)dy, (4)

0

where x — is the phonon frequency normalized to their maximum frequency, f{x) — is the density of
phonon states normalized to their maximum value according to the Debye model, K(x) — is the phonon
quasimomentum normalized to its value corresponding to the maximum phonon frequency according
to the Debye model. In addition, let us take into account that both in the general formula for lattice
thermal conductivity and in the formulae given in the article [3] for the probabilities of normal
scattering of phonons and their scattering with Umklapp, not only the frequency and wave vector of
phonons appear, but also the velocity of sound in the crystal, which, is obviously the group velocity.
On the other hand, it is not the group but the phase velocity of sound that is directly related to the
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elastic constants of the crystal. Therefore, we still need the group velocity of sound normalized to the
phase velocity of sound in the Debye model for the real phonon spectrum. From relation (2), it is not
difficult to obtain the following expression for the normalized group velocity of sound:

v (x)=L2L 5)

Taking into account the above and modifying accordingly the formulae known from [3] for the
probabilities of normal scattering of phonons and their Umklapp scattering, we obtain the following
formula for the thermal conductivity of a single crystal with a real phonon spectrum in the isotropic
approximation:

hpsto

o ot A (x)x7 exp(x/0) [ 1 2 jdx
, 16ykT3 I K () exp(w/0)1] (&) 00" ©

where p, §, ®max, ¥, T the crystal density, the phase velocity of sound, the maximum phonon frequency,

the Gruneisen parameter and the temperature 0 = 7/Tp, Tpo — the Debye temperature, the rest of
notations are explained above, or they are generally accepted. Moreover:

2

0, (X)=f(x)K2(x)+um, 7
0, (x)=3.1256° []; j ((’;; +qu(2x), (8)

u — the Umklapp coefficient, which is selected so that the theory coincides with experiment, since its
theoretical estimate, made only for a simple cubic lattice with one atom in the unit cell, is not even
suitable for all substances with such a lattice. This coefficient was also selected by the authors of work
[4]. In this case, expressions (5) and (6) describe mutual scattering of longitudinal and transverse
phonons, inherent in a single-crystal material, due to the anharmonicity of thermal vibrations of the
lattice, and the terms in them that do not contain the Umklapp coefficient describe normal processes.
They influence the overall thermal conductivity due to the renormalization of the time between
phonon collisions.
In the Debye model, formula (4) will acquire the form:

1
hpsto

. x'exp(x/0) 1 2
K,: L j + . X 9)
16y°k*T 0 exp x/e 1:| x4 px (3.1256 +p)x

The real [5] and Debye densities of phonon states for bismuth telluride and the corresponding
dependence of the wave vector on the frequency in accordance with (2) are shown in Fig. 1.
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Fig.1. a) real (curve 1) and Debye (curve 2) densities of phonon states in bismuth telluride;
b) the corresponding dependences of the wave vector on frequency

But there is another question, which phase velocity of sound should appear in formulae (4) and
(7). The answer to this question is as follows. Since the Debye temperature is experimentally
determined on the basis of calorimetric measurements and is a scalar, the velocity that makes sense to
be called calorimetric should appear as the phase velocity of sound. It does not necessarily have to be
related by any one-to-one relationship to crystal elastic constants, but must be unambiguously related
to the number of phonon states in the Debye model. Let's establish this relationship for bismuth
telluride.

If the calorimetric Debye temperature is equal to 7p, then ®ma = 27kTp/ h, and, hence, the
radius of the Debye sphere is equal to

2nkT,,

k, = . 10
D=0 (10)

Then the volume of this sphere should be equal to the number of phonon states per unit volume of the
crystal. And this number is the number of degrees of freedom per unit volume of the crystal. Given the
fact that the bismuth telluride molecule consists of five atoms, it has 6 degrees of freedom. Thus, we
obtain the following relation for determination of s :

i£2nkTD f _6Np (an

3 hs M

where M is a molecular mass of bismuth telluride, other notations are explained above or they are

S=2TckTD3 M ‘ (12)
h 4.5N ,p

The temperature dependences of the lattice thermal conductivity of bismuth telluride

generally accepted. Therefore,

corresponding to the two considered models in cleavage planes and perpendicular to them are shown
in Fig. 2.
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Fig. 2. Temperature dependences of lattice thermal conductivity in the isotropic approximation:
a) in cleavage planes, b) perpendicular to them: 1 — in the Debye model; 2 — for the real phonon spectrum,
with regard to its influence only on the heat capacity differential contribution to thermal conductivity;
3 — for the real phonon spectrum, with regard to its influence both on the heat capacity
differential contribution and on mutual phonon scattering due
to the anharmonicity of lattice thermal vibrations

It can be seen from the figure that for both models of the density of phonon states, one of
which, namely, shown by curve 1 in Fig. 1, was determined experimentally, the thermal conductivities
both in the cleavage planes and perpendicular to them in the entire investigated temperature interval
are weakly different from each other, although in the Debye model, at low temperatures, both
components of the thermal conductivity tensor are somewhat smaller, and at high temperatures, they
are somewhat larger than for the real phonon spectrum. But these differences are so insignificant that
they cannot have a significant impact on thermomechanical stresses in thermoelectric legs. At first
glance, such minor differences may seem incomprehensible. But it should be borne in mind that the
difference in the differential heat capacity contributions to the thermal conductivity for the specified
models is compensated by the difference in the manifestations of mutual phonon scattering, which is
caused by: 1) the nonlinear relationship between the frequency and the wave vector for the real model
of the density of phonon states; 2) the difference between the group sound velocity and the phase
velocity for a real model of the density of phonon states; 3) the difference in Umklapp coefficients in
the real and Debye models of the density of phonon states. This can be seen from the comparison of
curves 1 and 3 with curve 2 in each of the figures. On the other hand, if the real density of phonon
states affected only the heat capacity differential contribution to the thermal conductivity, then the
thermal conductivity would be approximately 1.27 - 1.5 times higher than in the Debye model. And
this would allow us to hope for a certain reduction of thermomechanical stresses in thermoelectric
legs, albeit at the expense of some loss of thermoelectric figure of merit and the efficiency of material.

Note that when constructing the graphs, we used the following values of Bi>Te; parameters:
p=7850 kg/m*, M =801, Tp=155 K, y = 1.4. The anisotropy of thermal conductivity at 300 K was
assumed equal to [6] and for both models of the density of phonon states it was taken into account
solely due to the anisotropy of Umklapp coefficient.

Regarding a more complete comparison of the results of our calculations with experiment, we
note that the calculated value of the thermal conductivity of bismuth telluride at 200 K that we
obtained differs from the experimental value, which, in accordance with the data of [6, 7] is
2.1 W/(m K), by approximately 5.7 % upward, which can be considered satisfactory. However, on this
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occasion it is appropriate to make the following remark. There is no direct experimental technique for
separating the lattice part of thermal conductivity from the thermal conductivity caused by free charge
carriers. Therefore, this separation is performed purely by calculation on the basis of certain
assumptions about the band spectrum of the material and the mechanisms of scattering of free charge
carriers in it. We did not analyze the reliability of this kind of assumptions made in paper [7].

Conclusions

1. In the isotropic approximation, it is shown that the real density of phonon states, compared to
the Debye density, has a weak effect on the lattice thermal conductivity of single-crystal
bismuth telluride in the temperature range between 200 and 500 K both in the cleavage planes
and perpendicular to them. Small differences between the Debye and real densities of phonon
states from the point of view of their influence on thermal conductivity can be explained by the
fact that the differences in the differential heat capacity contributions to thermal conductivity
due to the considered densities of phonon states are compensated by differences in the group
sound velocities and the characteristics of mutual phonon scattering, both normal and Umklapp.

2. The Umklapp parameter is anisotropic and depends on the form of the density of phonon states,
but does not depend on temperature.

3. When calculating thermal conductivity, the phase velocity of sound, which is determined by the
Debye temperature and the number of degrees of freedom of the phonon subsystem, should be
taken into account.

4. Differences in the densities of phonon states between the real and Debye models cannot lead to
significant differences in the expected values of thermomechanical stresses in thermoelectric
legs.

5. The results of calculations are not only in qualitative, but also in satisfactory quantitative

agreement with experimental data.
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TEOPETHUYHI MOJEJII TPATKOBOI TEILIOITPOBITHOCTI
MOHOKPUCTAJIIYHOT' O TEJAYPUAY BICMYTY

B isomponnomy nabaudicenti 6paxo8ano 6naué peanbHoi eycmuny GOHOHHUX CMAHIE HA 2PAMKO8Y
MenyionpogioHicms MOHOKPUCMANIUHO20 MENYPUOY BICMYMY Y PAMKAX 080X MOOENbHUX Ni0X00is.
Cnouamky 3a0auy po32isiHymo y I30MpONnHOMY HAOAUICEHHI, A NOMIM HAOAUICEHO BPAXOBAHO
wapyeamy cmpykmypy ma anizomponiio. Iloxazano, wo peanvbHa 2ycmund QOHOHHUX CMAHIG
Maiidice He 3MIHIOE MEeMNepamypHOl 3aledCHOCmI 2pamKogoi MmenIonpo8iOHOCmI merypuoy
gicMymy AK 6 NIOWUHI wapig(cnaunocmi) max i nepneHOUKyIApHO OO0 Hei NOPIGHAHO 3
Hebaiscvroro eycmunoo gononnux cmauie. s crabkicmv ROACHIOEMbCS MUM, WO 3YMOBIEHA
0e3nocepedHbO WINbHICMIO YOHOHHUX CIAHIE 3MIHA OUpePeHYiaTbHO20 MENLOEMHICHO20 GHECKY Y
MenionpogIOHICMb KOMNEHCYEMbCA 8NIUBOM YIEl WINIbHOCMI HA PO3CIIO6AHHS, AKUU 3YMOGIEHUN
HENIHINIHOI0 3ANedHCHICNIO XBUbOBO2O 8eKMOpa 6i0 Yacmomu, GiOMIHHICIMIO 2pYyNnosoi weuoKocmi
36yKy 6I0 a3z080i ma ICMOMHUM 3PDOCMAHHAM Koegiyienma nepekuoanus. Ompumani
pe3yibmamu nepedysaromv He Juwie y AKICHiN, a U Y 3a008iNbHiU KIIbKICHINI 32000 3
meopemuyHuMU  OOCHIONCEHHAMU NONepeOHix aemopie ma excnepumenmom. Lle doszeonse
Cnooieamucy, w0 pearbHa 2yCMUHA (OHOHHUX CMAMIE He CHpAGIsMUMe ICMOMHO20 6NIUEY HA
mepmomexaHiuti deghopmayii mepmoeneKmpuyHux 2iioK y nopieHAHHI 3 [lebaigcvkoo 2ycmuHow
¢ononnux cmanis. bion. 7, Man. 2.

KuarouoBi cioBa: yuxniuna cmitikicms mepmoenemenmis, HAOIHICMb MepMOeNeKMPUUHUX 2II0K,
MepMOMEXaHIUHI Hanpyau, MenIonpPosiOHICMb, peaibHa i Jlebaiscoka winbHOCMI (POHOHHUX CMAHIE,
HOpMAnbHI npoyecu, npoyecu nepeKuOaHHs.
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