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Introduction. Expectile is a characteristic of a random
variable calculated using the asymmetric least square
method [1, 2]. The level of asymmetry is defined by the
parameter in the interval (O, 1) . Expectile as a function of

parameter is considered as a generalization of quantile
(Value-at-Risk or VaR) [1, 3]. On the other hand,
expectile can be compared with Conditional Value-at-
Risk (CVaR) [4] which also depends on parameter
varying in (0,1). VaR, CVaR, and expectile are used as

risk measures in various applications. Which function will
be used depends on the application and the task at hand.
However, expectile has a wider set of advantages than
VaR and CVaR. Expectile is a coherent risk measure on
half of the interval (0,1), i.e. it satisfies the properties of

translation invariance, positive homogeneity, monotoni-
city, and subadditivity [5]. Another advantage of expectile
is the elicitability. This property is important for financial
risk management, forecasting, hypotheses testing.
Comparing expectile with VaR and CVaR, the authors
[5-7] notice that CVaR is a coherent risk measure but
lacks of elicitability; VaR is an elicitable risk measure but
lacks of coherency. It is proved [5] that only elicitable
law-invariant coherent risk measure is expectile.

A popular topic in financial applications is portfolio
optimization. Expectile can be used as an objective in
portfolio optimization problems [6, 7]. In the paper [8] a
portfolio optimization is considered as a problem of
maximization expected portfolio return subject to the risk
of the portfolio expressed by expectile or Omega
functions.

Expectile and its properties have been studied by many
authors (see overview in [9]). As a rule, expectile is
compared with quantile [1, 3]. Our goal is to compare
expectile with CVaR by introducing the same parameter —
confidence level. To do this we first represent expectile
using a sum of mean and CVaR with varying confidence
level and varying coefficient before CVaR.

We then propose some novelties in the definition
of expectile as a function of parameter. Expectile
is equal to mean when its parameter is 0.5 while
CVaR is equal to mean when its parameter is O.
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We suggest changing the dependence of expectile on its parameter so that expecile is also equal to mean
for a zero parameter. This results in the interval (-1, 1) for a new parameter. But, we do not consider the
subinterval (-1, 0). Instead, we calculate expectile on the left-tail of distribution as lower CVaR using a
random variable with changed sign. Then, we add a second parameter that changes the dependence of
expectile on the confidence level. This results in a family of expectiles depending on two parameters.
To demonstrate the usefulness of such novelty we show and compare VaR, CVaR, and expectile curves
for different distributions.

VaR and CVaR are considered as statistics within the framework of the fundamental risk quadrangle
concept [10, 11]. There are regular VaR and CVaR quadrangles. CVaR is a risk function in quantile
guadrangle. We build the regular risk quadrangle with a new error function where expectile is both a risk
and statistic.

Further, we use the following notations.

Let X be arandom variable with a finite expected (mean) value E[X].

The cumulative distribution function is denoted by Fy (X) = prob{X <x}.
Typically, the quantile or VaR,(X) is the inverse function to Fy(x) defined on a<(0,1).

But for cases when VaR is a result of optimization, it is defined as the interval using the lower and upper
VaR [10, 12]. We define the lower and upper VaR as follows:

sup{x, Fx (x) <o} for 0<a <1
inf{x, Fx (x)>a} for a=0

inf{x, Fx (x)>a} for 0<a<1

VaR, (X) :{ sup{x, Fy (X) <o} for a=1

and VaR] (X) ={

The VaR is an interval if the lower and upper quantiles do not coincide:

VaR, (X) =[VaR; (X), VaR (X) ],

otherwise, VaR is a singleton VaR, (X) =VaR, (X)=VaR} (X).
The superquantile or CVaR, (X) [4] with a confidence level a € (0, 1) can be defined in many ways.
In financial applications the most popular definition of CVaR is

1
CVaR, (X) =1LIVaRB(X)dﬁ .
-

We extend the definition of CVaR for o =0 as CVaR,(X) = IimOCVaRS(X) =E[X] and for a=1 as
£+

CVaR;(X)=VaR; (X) if afinite value of VaR; (X) exists.
The functions (z)* >0 and (z)” >0, used below for the scalar variable z, are defined as
(2)" =max{0, z}, (2)~ = max{0, — z}.

The Partial Moment function with a threshold C is defined as E[(X —C)*].

Definitions of VaR, CVaR, Mean, Partial Moment functions used in this paper are the same as
mathematical definitions in the description of the optimization package Portfolio Safeguard [13].

This paper is organized as follows. Section 1 provides different expressions defining expectile. We
start with the standard equations defining expectile, then we propose simple formulas for discrete finite
and continuous distributions that include optimization by one parameter. Section 2 introduces a family of
expectiles depending on two parameters. We compare such expectiles with VaR and CVaR for various
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finite discrete and continuous distributions. Section 3 describes using the expectile in convex optimization
problems and, in particular, using two variants of linearization of expectile. Section 4 introduces three
variants of risk quadrangle where expectile is a statistic. In one of them expectile is both a statistic and
a risk function.

1. Definitions of Expectile

The name "expectile” was introduced in [1] for the minimizer in the asymmetric least square method.
The expectile function can be defined in different ways. We begin with the commonly used definition of
the expectile [14]. The expectile function e, (X) with a scalar parameter 0<q <1 for a random variable

X is defined as

eq(X) =argmin{gE[((X —C)*)*1+ (1 EL(X ~C))’]| (1)
CeR!

or by the first order condition as a solution Cg of the equation
gE[(X —C)"]=(-a)E[(X -C)], )
then e, (X) = Ca. The cases q=0 and =1 need separate consideration.

Taking into account that the solution of equation (2) depends only on the ratio q/(1—q) we can write
a more general equation depending on two positive coefficients g, >q, >0

RE[(X —C)"T=0E[(X -C)]. ®)
The case g, =0, defines the mean value E[X].

To simplify formula (3) we use equality E[(X —C) ]=E[(X —C)*]-E[X —C] and obtain
(g —G2)E[(X =C)"1=-q,E[X]+0,C . 4

Using the coefficient K = qlq_—zqz >0 formula (4) is rewrote as

KC — KE[X]=E[(X -C)*]. (5)

The left and right-hand sides of equation (5) contain two simple functions of a random variable X

and the variable C. The first one is a linear function of C and E[X], the second one is the Partial
Moment function E[(X —C)*] with a variable threshold C . A similar formula was used in [1], where

some properties of this formula were discussed.

The left-hand side of (5) is a linear increasing function of C when the coefficient K is positive, the
right-hand side of (5) is a positive decreasing convex function of the threshold C . Elements of the
subgradients of the right-hand side of (5) are bounded and lie in the interval [-1, 0] . Therefore, equation

(5) has a unique solution C; that defines expectile.

We denote such defined expectile as e, (X) with subscript K, meaning that e, (X) is equal to the

solution of equation (5) for K >0.

There are many variants of expectile representation using equations. See, for example, [2, 3,
9, 15, 16].

Our goal is to derive a formula for calculating expectile without variable C on the right-hand side.
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First, let us consider a finite discrete distribution of a random variable X with N atoms XJ-
and probabilities p;, jeJ ={L...,N}.

In this case, the Partial Moment function on the right-hand side of (5) is equal to the solution
of the following optimization problem

E[(X—C)ﬂ:max{an(xj—C)|an+y=1, O<m; < pj,jeJ} (6)

V| jed jel
Let us denote the feasible set of vectors v =(y,n,...,ty) in (6) as V . Each vector v eV defines a
linear function of C in the right-hand side of (6). Then the Partial Moment (6) is the maximum of these
linear functions.

Each linear function defined by vectors v eV intersects the linear function on the left-hand side
of (5) at the point

Zj:.]nj(xj —E[XD

Cyy = E[X]+ K+(1-7)

()

Since the Partial Moment is a decreasing function, only the maximum value of C;V, where vV eV,
gives the solution of equation (5). Hence, expectile is equal to

Zj:J i (X —E[X]) |
K+@1-7) j=1..N

VT

eK(X)zmabe&v =E[X]+max{ mj+y=10<m; < pj,j=1,...,N}
Ve

Separating variables y and = ; we get

m&X{ZJZJnj(Xj —E[X])lzj:Jﬂj +y=1 0<m; < pj,j=1,...,N}

e (X) = E[X]+ max {
< (X)=E[X] 0<y<1 K+@1-y)

The maximization problem in the numerator corresponds to the dual definition of the CVaR
function for finite distribution. Therefore, we have

e () = ELX ]+ a0 YD), ®

<<t K+(1-v)

- X _ % _1a
where Y =X —E[X] and K_ql—qz >0 (or K 2q_1>0).

Formula (8) is not the easiest way to calculate expectile in the case of a finite discrete distribution.
The optimization problem (6) has an obvious solution: ;= p; for je{l,...N} such that X; >C,
otherwise m; =0. The variable y depends on the variables =;.

The right-hand side in (6) has not greater than N +1 linear pieces. Every linear piece is defined by
the interval of C for which subset Jc ={j e{L..N}[X; >C} is fixed. We can enumerate all pieces
using an ordered set of atoms. Let us sort the atoms X, j=1,..,N in descending order (j;,..., jo»--r in) -
Then t-th linear piece is defined by the first t atoms. The linear function describing t-th linear piece is

22:1 p; (X —C).The N +1-th piece corresponds to Jo =& and has the fixed value E[X].
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Intersections of these linear functions with the linear function on the left-hand side of (5) are
described by a formula like (7). The intersection that has the maximal value C gives the solution for the
equation (5). Hence,

t
(X —E[X
ey (X)~ E[X]+ max 2ot PieXio ZEIXD.
i K+ZG:1pjo‘

We omit the N +1-th linear piece here because it is not needed to calculate the maximum.

Formula (9) is also correct for K =0 in the case of a finite discrete distribution, that corresponds
to g=1in (2) or to g,=0 in (3). In this case, expectile is equal to the maximal atom's value
ex—o(X)=Xj .

In the case of an arbitrary random variable X, we can approximate the Partial Moment on the
right-hand side of (5) with prescribed accuracy by a piecewise linear function with a finite set of pieces.
Such approximation produces corresponding finite discrete distribution and the formula (9) can be used

for approximated calculation of the expectile.
To find the maximum in (8) or (9) it is not necessary to consider the whole domain [0,1] where

CVaR, is defined or all atoms of the distribution. It suffices to consider the interval [Fy (E[X]), 1]
of confidence level y or atoms with a value greater than the mean X; > E[X].
Thus, the following formula gives the exact expectile value in the general case

(1—7)-CVaR, (Y)
X)=E[X Y , 10
e (X)=ELX]+ Fy (ES[L)J(?)<y<l K+(@1-7) 10)

(9)

where Y = X —E[X] and K >0. Formula (10) is transformed Kusuoka representation [17] of expectile.

The general Kusuoka representation for law-invariant coherent risk measures is discussed, for example,
in [18, 19]. Formula (10) has a narrower interval for the variable y and simpler notation (see for

comparison Proposition 9 in [3] and section 3.2.1. in [7]).
The optimal value of the parameter y in (10). To find the optimal value y* in (10) we first find
zero value of the derivative by vy of the fraction in (10) for the points y where CVaR,(Y) is smooth.

In this case, the derivative is equal to zero for the y* such that
a_—Y)*CVaR .(Y)=VaR . (Y).
K+@-v") ¥ ¥
The points y where CVaR is not smooth correspond to the discontinuity of VaR. To deal with such

cases we use VaR defined as an interval VaR, =[VaR ,VaR ] (see for example [11, 20]). Then, general
optimality condition is

@-v")
mCVaRY* (Y) eVaR . (Y).

Combining this relation with (10) we obtain
e (X)eVaR . (X) and 7" =Fy (ek (X)).

ISSN 2707-4501. Cybernetics and Computer Technologies. 2020, No.3 47



V.M. KUZMENKO

This result is intuitively obvious, because the expectile (optimal value C” in (1)) divides the whole
interval of a random variable into two subintervals with different weights. The same division should

produce the optimal value v* in the formula (10) or the optimal t* in the formula (9). The optimal value

v" gives a solution for equations defining expectile through a partial moment and probability in [9, 15].

2. A new family of expectiles

As a rule, expectile is compared with quantile (VaR) on the whole domain of VaR and whole interval
(0,1) of expectile parameter. A comparison for many continuous distributions was made in [7, 14]. But
we deliberately have not considered expecile with parameter values 0<q<0.5 or 0<q; <q, or K<-1,
since our goal is to compare expectile with CVaR. Expectile with parameter in the interval 0.5<g<1 and
CVaR, (X) with confidence level in the interval 0 <o <1 have similar features. They equal to E[X] at

the left endpoint of its intervals and equal to the maximal value of X (if such finite value exists) at the
right endpoint. Expectile changes its properties at the point q=0.5, so we suggest working with expectile
on the left tail of distribution as with lower CVaR. This means using the following simple equalities to
deal with expectile in the left tail of the distribution (see [3, 14]). These relations are

(X)=—-€_q(=X) for 0<gq<05 and e (X)=-€4 «(-X) for K<-1.

Note that K ¢[-1, 0] for positive coefficients q;, g,. If one of these coefficients is equal to zero
expectile can be estimated using limit operation.

To simplify comparison with CVaR we change the parameter in formula (1) on a, where O<a <1
and g=(@Q+a)/2. Then we have

e, (X) =argmin{“7“ EL(X —C)+)2]+1‘T°‘E[((x —C)—)Z]}. (11)
CeR!

We will distinguish expectile defined by formula (11) from expectiles defined by formulas (1) and (5)
by subscript o . Formula (11) "stretches™ expectile (1) as a function of the parameter two times left.
Now we can compare Cvar and expectile writing formulas with the same parameter 0 <o <1

CVaR, (X) = E[X]+CVaR, (Y),

(1-v)-CVaR,(Y)
X)Y=E[X ,
% (X)=El ]+FX(ESEL)1<F]))<7<1 Ko +(L=7)

_l-a
where K, == -
To compare quantile (VaR) with this expectile in the usual manner we will "stretch” VaR twice to the

left using the confidence level B, =1-(1-0a)/2=(1+a)/2
VaRg (X)=E[X]+VaR; ().

These three risk measures are well studied and described in many works [1, 4, 5, 7, 21 — 24]. VaR is
an elicitable risk measure but lacks of coherency and considers only a percentile of the distribution. CVaR
is a coherent risk measure but lacks of elicitability and considers only the right tail (in our interpretation)
of the distribution. Expectile is a coherent and elicitable risk measure that takes into account the whole
distribution and assigns greater weight to the right tail. Expectile the only coherent risk measure that is
elicitable [5].

Our next goal is to consider a new family of expectile functions using a power parameter >0 for the
coefficients in formula (11), namely
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B B
eaB(X)=argmin{G+—°‘j E[((X —c>+)2]+[1‘—°°j E[((X —C)‘)Z]} (12)

CERl 1+ o
Since, the solution in (1), (3), (11), and (12) depends only on the ratio of the coefficients before mean

2B
operators, these formulas give the same solutions if ﬁ:%:(f_aj . So, formulas (11) and (12)

are equivalent for f=0.5.

Now we show four examples with simple uniform discrete distributions to compare CVaR and
expectiles e, (X) for different 8 as functions of a.

Each example contains 5 atoms with the probability 0.2. The minimal atom's value is 30, the maximal is
100. In Fig. 1, a atoms' values vary uniformly from 30 to 100. Fig. 1, b contains three larger atoms in the
middle of the distribution. Fig. 1, ¢ contains four large atoms and one small. Fig. 1, d contains four small
atoms and one large. (The legend entries for the expectiles are arranged in the same order as the curves).

These examples show that the following expectiles are closest to CVaR: in the first case with =1,
in the second and third cases with f=1.5, and in the last case with 3=0.5. Thus, using different § may

be useful in approximation VaR and CVaR function by expectle.
100 100
90 90

80 80

70 70

60 60

—beta=1.5
50 beta=1 50 beta=1
——beta=0.5 ——beta=0.5
40 40
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
a b

100

90

80

0 CvaR 70 S
beta=2

60 —beta=15 60 —beta=15
beta=1 =

50 ki 50 beta=1

—beta=0.5 ——beta=0.5
40 40
0 0.2 04 0.6 0.8 1 0 0.2 0.4 06 0.8 1
c d

FIG. 1, a—atoms 30, 46, 64, 82, 100, mean 64.4; b — atoms 30, 65, 85, 90, 100, mean 74;
¢ —atoms 30, 85, 90, 95, 100, mean 80; d — atoms 30, 34, 37, 40, 100, mean 48.2
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To compare VaR, CVaR, and expectile in continuous case we use Standard Normal, Uniform
on [0,1], and Exponential with A =1 distributions. The first two distributions are symmetric, so we only
show the right tail of distributions (Fig. 2, a, b). Exponential distribution is not symmetric.
We split it into left and right tails (Fig. 3, a, b) in the median and calculate expectiles and CVaR functions
on the left tail as —f (—X). VaR function is stretched on all figures twice to the left of point a=1 to
compare it with other functions as in [7, 14, 16].

(The legend entries for the expectiles on these and other figures are arranged in the same order as the
curves).

4.5 1.2
4 e VaR stretched
1
3.5 ---CVaR
3 0.8
—— beta=1.5
2.5 0.6 - \/aR stretched
2 beta=1
---CVaR
15 —— beta=0.5 04 ——beta=1.5
1
0.2 beta=1
05 eI
........... ——beta=0.5
0 - 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
a b

FIG. 2, a— Standard Normal Distribution; b — Uniform distribution on [0, 1]

1.2 12
--------- VaR stretched
--------- VaR stretched
-=--CVaR ' B
---CVaR
——beta=0.5 08 8
beta=1 T
0.6 6
— 1 beta=1
0.4 4
——beta=0.5

0.2 2

FIG. 3, a— Exponential distribution (A=1) on the left tail; b — Exponential distribution (A=1) on the right tail

These examples show that CVaR function gives the best approximation for VaR (quantile). In the
case of Normal distribution, expectiles with 3=1 and B=0.5 seem to give closer approximations. CVaR

and expectile with B =1 give exact approximations for uniform distribution.

In the case of Exponential distribution, expectile with f=0.5 gives the best approximation on the
right tail and with B=1.5 on the left tail of the distribution. But over the entire interval (0,1), the best
approximation is given by expectile with B=1.
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Bellini and other authors [14, 21] note that for the most common distributions, the expectile is closer
to the center of the distribution than the corresponding quantile, and the two curves typically intersect in a
unique point, which corresponds to the center of symmetry in the case of symmetric distribution.

In the case of asymmetric distribution expectiles with different 8 intersect quantile in different points.

Taking into account that value E[X] is common for different expectiles at the endpoint of the domain and
that confidence level Fy (E[X]) is used in definition (10) of expectile we propose another way for
comparison quantile and expectiles. We split the domain of quantile into two non-equal intervals: left
[0, Fy (E[X])] and right [Fy (E[X]),1]. In this case, quantile and expectile have the same value at the

endpoints of its intervals. Then we compare quantile on these intervals with "left" and "right" expectiles
and CVaRs. Below we compare Exponential distribution with A =1 (Fig. 4, a, b) and Gamma distribution
with shape 3 and scale 1 (Fig. 5, a, b) on its left and right intervals with expectiles.

1.2 12
“““““ VaR stretched
--------- VaR stretched
---CVaR n 1 10
---CVaR
——beta=0.5 08 8
betazl ——beta=1.5
0.6 6
~———beta=1.5 beta=1
0.4 4
——beta=0.5
0.2 2 T
: 0 0
1 0.8 0.6 0.4 0.2 0 0 0.2 0.4 0.6 0.8 1
a b

FIG. 4, a— Exp. distribution (A=1) on the interval (0, 0.6321]; b — Exp. distribution (A=1) on the interval [0.6321, 1)

"""""" VaR stretched 3.5 12
---CVaR 3 e VaR stretched
10
beta=0.5 ===CVaR
2.5
peta=] 8 ——beta=1.5
——beta=1.5 5 betebd
6
1.5 beta=0.5
4
1
0.5 2
0 0
1 0.8 0.6 0.4 0.2 0 0 0.2 0.4 0.6 0.8 1
a b

FIG. 5, a- Gamma distribution (3,1) on the interval (0, 0.577]; b — Gamma distribution (3,1) on the interval [0.577, 1)
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We see that quantile is close to expectile with B =1 in Fig. 4, a and coincides with CVaR in Fig. 4, b.

for Exponential distribution.
For the Gamma distribution, quantile is also close to expectile with =1 in Fig. 5, a and is very

closed to CVaR in Fig. 5, b.

3. Expectile linearization

We consider here a random loss function L(x), where xeR" is a vector of decision variables, and
expectile e, (L(x)) defined by formula (11) for o € (0,1).

Lemma. Expectile e, (L(x)) is a convex function of x if L(x) is a convex.

Proof. To prove lemma we use equation (5) with a random loss function L(x) and K = 12%:‘

KC — KE[L(x)]=E[(L(x)-C)"]. (13)
Consider two arbitrary points x; and x,. Let's denote values of expectile corresponding to these
points as C; and C,, values of means as E; =E[L(x)] and E, =E[L(x,)], random variables as
L, =L(x) and L, =L(x,). Then
KC, = KE; + E[(L4 —C;)*] and KC, = KE, + E[(L, —-C,)"].
The linear combination of these two equalities for A €[0,1] is

K(ACy +(1-1)Cp) = K(ME; + (L- 1)Ep) + AE[(Ly — C)) "]+ (1- ME[(L, —Cy)*]. (14)
Since the mean E[L(X)] is a convex function of x then
A +(A-2)E, = E[L(AX + (1—A)X,)]- (15)

The following inequality is true for any realization L®(x) of a loss function
ML ~C)* +(@L-2)(L5 —Cp)" 2 (ALY + (L-2)Lg ~ACy — (L-2)C, )+.
Then following inequalities are true for Partial Moment function on the right-hand side of (13)
ME[(L - C) 1+ A= NE[(L, —C,) 1> E[(M_1 L (L=AW)L, —AC, —(1-N)C, )*}z

> E[(l_(xxl+(1—x)x2)—xc1—(1—x)c2 )*]. (16)
Then substituting (15) and (16) into (14) we have
K(\C,+ (1-1)Cy) > KE; + E [(L3 _AC, —(1-W)C, )*] , (17)

where xg =Ax +(1—A)X,, Ly=L(X3), E3=E[L;].
Expectile for the point x; is defined by equation KC;=KE;+E[(L;—C3)"]. Comparing this
equation with (17) and taking into account that K >0 and Partial Moment E[(X —C)"] is decreasing

function of C we derive that C; <AC, +(1-X)C,. Hence, expectile e, (L(x)) is a convex function of x.

Lemma is proved.
Since expectile of a convex loss function is convex it can be linearized in a convex optimization
problem when the loss function is linear with a finite set of scenarios j=1,...,N. Each scenario j

is a linear function Lj(x). Different variants of expectile linearization are shown in papers [6, 7, 25].
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We propose variants corresponding to our representation (9) that contain the minimum number of
additional variables and can be used in linear optimization problems.
The Partial Moment function on the right-hand side of (13) can be expressed in a way dual to (6) as

E[(L(x)—C)*]:mir&{iuj pjlu; = (x)-C,j =1,...,N}.
u; > =1

J

Then expectile e, (L(x)) for K >0 is calculated as

eK(L(x))erT1inC, (18)
CZE[L(X)]+%Z'J.\I_1pjuJ—, (19)
uj>L'(x)-C, u; 20, j=1,..,N. (20)

To solve a linear optimization problem with expectile using linear programming methods expectile is
replaced with the variable C . The variables C, u; and constraints (19), (20) are added to the optimization

problem. After solving the optimization problem value of expectile should be calculated since the optimal

value C” may be greater than expectile at the optimal point. For example, in case if expectile enters in a
constraint that is not active at the optimal point.

It can be helpful to use a linear maximization problem to calculate expectile. Such problem can be
obtained by reducing the linear-fractional problem (9) to a linear problem or by transforming a problem
dual to (18) — (20). We formulate a linear maximization problem as

N
e (L(X)) = ELLOOT+ max (L) ()~ ELL(]) pjw;,
ij=1
Kwj + 3" pw <1, j=1..,N,
w; >0, j=1..N.

If we know the optimal value e, (L(x)) of the objective then the optimal values of variables are
restored as follows. Let J, be a subset of J={1..N} such that L (x)>ex (L(x)) for jed,
and Lj(x)SeK(L(x)) for jeJ\J,. Then w;=1/(K +1-v") for jeJ, and w; =0 for jeJ\J,,
where 7" :1—ZJ.EJ+ p;. This result corresponds to the formulation of the optimization problem in (9)

and y" is the optimal confidence level in (8).

The LP formulation in [6] is derived from the dual representation of expectile [3] for continuous
distribution using Radon — Nikodym derivatives. Comparing our result with the result in [6] we can say

that discrete analogs ¢; of Radon — Nikodym derivatives are equal to @; =1+ w; —Zi’\il p;w; . Taking

into account that the optimal values of w;, j=1..,N have two variants, we can specify
that @;=(K+1)/(K+1-y*) for jeJ, and @;=K/(K+1-y") for jeJ\J,. Variable m in

[6, section 2.2] equals to the sum of these values m = (2K +1)/(K +1-v").
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4. The fundamental risk quadrangle and expectile
The definition of the fundamental risk quadrangle was given in the paper Rockafellar and Uryasev
[10]. This concept links together four functions of a random variable X : risk R(X), deviation D(X),

regret V(X), and error €(X) . These functions are related using mean value E[X] and the optimal value
of some scalar parameter called statistic S(X). This value estimates certain characteristic of a random

variable. The concept of the fundamental risk quadrangle combines estimation and optimization tasks for
random value. To estimate different characteristics of a random variable different risk quadrangles are
used. For example, there are mean (average-based) quadrangle, quantile (VaR) quadrangle, superquantile
(CVaR) quadrangle, and so on.

The paper [10] focuses on the regular risk quadrangles. The four functions to be elements of the
regular risk quadrangle should be regular measures of risk, deviation, regret, and error. The regular risk
guadrangles may be scaled, mixed, reverted, and so on according to theorems from [10]. The regular risk
guadrangle has a set of "good" properties for estimation and optimization.

According to [10] a regular measure of risk is closed convex functional with values in (—o,] such

that R(X)>E[X] for nonconstant X and R(X)=X for constant X, i.e. X having one value with

probability 1.
A regular measure of deviation is closed convex functional with values in [0,o0] such that D(X) >0

for nonconstant X and D(X)=0 for constant X.
A regular measure of error is closed convex functional with values in [0,00] such that €(0)=0

for constant X =0, otherwise &(X)>0, satisfying the convergence condition: if kIim 8(Xk)=0
—>a0

then I(Iim E[X k] =0, where {X I‘} is a sequence of random variables.
—0

And a regular measure of regret is closed convex functional with values in (—oo,0] such that
V(0)=0 for constant X =0, otherwise V(X)>E[X], satisfying the convergence condition:

if Iim(V(Xk)—E[Xk])zo then lim E[X*]=0.
k—o0 k—o

For the regular risk quadrangle risk, deviation, regret, error, and statistic are related as follows:

V(X)=€(X)+E[X], (21)
R(X) =(|;n€i£11{c +V(X -C)}= gweiFgS(X —C)+E[X]=D(X)+E[X], (22)
S(X)=argmin{C +V (X —C)}=argminE (X - C). (23)

CeR! CeR!

Our goal is to build quadrangles with expectile function and to analyze its properties.
The first risk quadrangle is prompted by the definition (1) of expectile function.

We define an error function with parameter g as €,(X) = qE[((X) )1+ @-q)E[((X)7)?].
Expectile function is a statistic in such quadrangle S(X)=¢e,(X).
The deviation is equal to Dy (X) =qE[((X — e, (X))")*]+@-q)E[((X —e4(X)))?].

The regularity property holds for this quadrangle but it seems that deviation and risk functions do not
have attractive expressions and properties.

The second risk quadrangle can be constructed using equation (7). As shown above, equation (7)
has a unique solution that is equal to expectile. The equation (7) is equivalent to

0=E[X —eK(X)]+§E[(x e (X)'].
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The last equation prompts formulas which define possible error functions

2
SK(X)=[E[XJ+%E[(X)+]j or sK(X>=‘E[X]+%E[(X)*]

Expectile is a statistic in this quadrangle, but the quadrangle is not regular because it has zero
deviation.
The third risk quadrangle is constructed as a solution of equation (7) for K >0 in the form

eK(X):giQLmM{C,E[X]+%E[(X —C)+]}J. (24)

Since equation (7) has a unique solution, and the minimization problem in (24) is convex, it has
a single solution. The optimization problem in (24) can be reformulated as

e (X) =(r:TliFg(max{—(E[X —C]),%E[(X —C)+]B+ E[X]. (25)

This notation coincides with the definition of risk through the deviation plus the mean in (22).
The error and regret functions in this quadrangle are equal to

SK(X)zmax{—E[X],%E[(X)*]} and VK(X):(E[X]+%E[(X)+]) . (26)

Expectile in this quadrangle is both a risk and statistic. The regularity property holds for functions
of this quadrangle, so this quadrangle is regular.

5. Conclusions

After considering different definitions and representations of expectile, we can divide them into two
types. The first defines expectile as the solution of an equation. Such equations cannot be solved
analytically; therefore, effective procedures are needed to solve these equations. The second defines
expectile as a solution of an optimization problem with one variable parameter. Expectile is equal to the
optimal value of objective or the optimal parameter value. We formulated two new representations of
expectile of the second type. In the first representation, an expression is maximized by the confidence
level of CVaR. This representation is related to other known representations through a transformation but
has a simpler formulation and a narrower interval for the variable confidence level. The second
representation defines expectile as a risk function of the new risk quadrangle. Expectile, in this case, is a
result of minimization of the error function.

The next conclusion is the follows. The dependence of expectile on its parameter can be formulated in
different ways. Moreover, the two parameters can be used. This is equivalent to changing variables in
equation defining expectile. The two parameters of expectile and unequal partition of quantile domain on
the left and right tail allow approximate quantiles by expectiles with more accuracy.
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YVIK 519.2
B.M. Ky3smenko
HoBe ciMelicTBO eKCIIEKTHJIIB TA HOr0 BJaCTHBOCTI

Inemumym xibepuemuxu imeni B.M. I'nywkoea HAH Yxpainu, Kuie
Jlucmysanns: kvn_ukr@yahoo.com

BeTyn. V cTaTTi po3misAacThesl Mipa PU3UKY, IO HA3UBAETHCS SKCIIEKTHIb. EKCIIEKTHITh — 1Ie XapaKTepH-
CTHKA BUIAIKOBOi BEIMYMHHM, KA OOPaXOBYETbCS 3 BHKOPUCTAHHSAM acHMETPUYHOTO METONY HaiMEHIIHX
KBajlpaTiB. PiBeHb acuMeTpii 3afaeThCsl HapaMeTpoM, IO 3MiHIOeThCcsl B iHTepBami (0, 1). Excnexrunb
BUKOPHUCTOBYETBCS y (iHAHCOBOMY aHami3i, MOpTQenbHid ONTHUMi3allii, B IHIIAX 3aJadaX OLIHKH TaK CaMo,
sk kBaHTHWIb (Value-at-Risk a6o VaR) Ta cynepkBanTminbs (Conditional Value-at-Risk a6o CVaR).
AJle eKCIIeKTHIIb Ma€ s/l TepeBar. EKCIIeKTIIIb — 11e OAHOPA30BO i KOIepeHTHa, i cnpuiHaTInBa (elicitable)
Mipa pHU3HKY, 10 BPaXOBY€E BECh PO3MO/ILI BUIIAJKOBOT BEIMYMHH, ajie Halae OiNbIly Bary MpaBOMy XBOCTY.

MeTa po6oTH. SIk MpaBHIIO, EKCIICKTHIIb TIOPIBHIOETHCS i3 KBaHTWIeM. Hallla MeTa — MOpiBHATH €KCIIeK-
Tk 13 cynepkBanTiieM (CVaR), BUKOPHUCTOBYIOYM OJHAKOBHH TapamMeTp — piBeHb JOBipu. s 1poro
CIIOYATKY JA€ThCS HOBE MPEICTABICHHS CKCIEKTWIIS depe3 3BakeHy cymy cepeanboro ta CVaR. Ilortim
PO3IIAIAEThCST HOBE CIMEHCTBO eKCHEKTHIICH, sKe 3amaeThCs JBOMa MapamMeTpaMu. Taki eKCHeKTHI
MOPIBHIOIOTHCA 3 KBaHTWIeM Ta CVaR [yt pi3HUX HemepepBHHUX Ta CKIHYCHHX TUCKpETHHX po3moxaiie. Ille
0JIHa MeTa — To0YIyBaTH PEryJIsipHUN PH3UK-KBAAPAT, JIe eKCIEKTHIIb € (QYHKI[€I0 PU3HKY.

Pe3yabTaTn. 3aponoHOBaHO Ta OOTPYHTYBAHO JBa HOBI BUPAa3H, 1[0 BU3HAYAIOTh CKCICKTHIIb. [lepuiuii
BHpa3 BUKOPHCTOBYE MaKCHMI3allilo, B sKiii 3MiHIOEThCS piBeHb noBipm CVaR Ta koedimient nepen CVaR.
Ileli Bupa3 KOHKPETH30BAaHO IS HEMEPEPBHUX Ta CKIHUYCHHHMX JUCKPETHHX pO3MOAiNiB. Jpyruil Bupas
BUKOPUCTOBYE MIHIMI3aI[if0 HOBOi (YHKIII MOMHUJIOK y HOBOMY pH3HK-KBaapaTi. BUKOPHUCTAHHS JIBOX
[apaMeTpiB y BU3HAUCHHI €KCIIEKTUIA 3MiHIOE HOTrO 3alIeXXHICTh Bijl piBHS IOBIpU Ta T€HEpye HOBE CIMEHCTBO
excreKkTwIiB. [IOpiBHAHHS HOBUX EKCIEKTHIIB 3 kBaHTwIeM Ta CVaR mns psay posmoniiiB MOKasye, Mo
3alpONIOHOBaHI €KCHEeKTHWJII MOXYTb OyTH ONWK4i JO KBaHTWIS, HDK CTaHIAPTHUH EKCIEKTUIIb.
3anponoHOBaHO J[Ba BapiaHTH JliHeapu3alii eKCHEeKTHJIs Ta MOKa3aHO, SK iX BUKOPUCTOBYBATH 3 JIiHIIHOIO
(hyHKIIIEO BTpAT.

KniouoBi cioBa: excrnextunb, EVaR, kBantuns, cynepkBantuib, CVaR, mpencrasnenns Kycyoxi,
(dhyHIaMeHTanbHUN pU3KK KBajapart, naket Portfolio Safeguard.

VK 519.2
B.H. Ky3bmeHKo0
HoBoe ceMelicTBO DKCIIEKTHJIEH U ero CBOHCTBa

Hucmumym kubepremuxu umenu B.M. I'nywxosa HAH Yrkpaunul, Kueg
Iepenucka: kvn_ukr@yahoo.com

BBenenne. B crathe paccmarpuBaeTcs Mepa pUCKa, KOTOPask Ha3bIBACTCS HKCIEKTHIb. DKCIEKTHIb — 3TO
XapaKTEepUCTHKA CIy9alHOH BENMYHMHBI, BEYHCISIEMas C HCHONB30BAHHEM AaCHMMETPHYHOTO MeTola
HaMMEHBIIUX KBAJPaTOB. YPOBEHb aCHMMETPHH 33JaeTCs TapaMeTpoM, u3MeHsommmMes B uarepsaie (0, 1).
OKCIEKTUIIb UCTIONB3yeTCs B (DMHAHCOBOM aHaNM3e, MOPTHETbHOI ONTHMH3AIUY, B JPYTUX 3aJa49aX OICHKH
Tak xe, kak kBaHTwiIb (Value-at-Risk i VaR) u cynepkBanTuns (Conditional Value-at-Risk nioun CVaR). Ho
OKCIEKTUJIb HUMECT pPAd NPECUMYIICCTB. DKCIEKTUIL  SIBJISETCS OJHOBPEMCHHO H KOFGpeHTHOﬁ, u
BocIpurMunBOH (elicitable) Mepoil pucka, YUUTHIBAIOIIEH BCe paclpe/ieNieHHe CIydaiHOH BEIMYHUHEI, HO HaeT
GoJIbILINIA BeC IPABOMY XBOCTY.
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Hens pabGorbl. Kak mpaBmio, SKCHEKTWIb CpaBHHBaeTCs ¢ KBaHTwieM. Hama 3amada — cpaBHUTH
sKcneKTWwib ¢ cynepkBantuwieM (CVaR), ucnosp3ys 0JJMHAKOBBIN TapaMeTp — YpOBEHb JIoBepHs. JlJ1sl 5TOro Mbl
CHavaja JlaéM HOBOE IIpEeACTaBIIiCHHE OJKCIIEKTHJIS depe3 B3BemeHHy0 cymmy cpensHero u CVaR. Ilorom
paccMaTpuBaeM HOBOE CEMEIHCTBO HKCIIEKTHIICH, KOTOpPOe 3aJaeTcst IByMs MapaMeTpamu. Takue SKCHEeKTHIIH
CpaBHUBAIOTCS ¢ KBaHTWIEM B CVaR Ui pasHBIX HENPEphIBHBIX U KOHEUHBIX AWCKPETHBIX paclpeeNieHui.
Emie onHa nenp — mocTpOUTh PeryssipHBIA PUCK-KBAApaT, I1ie S9KCIEKTHIIb ABIsIeTcs pyHKIUeH pucka.

PesyabTaThl. [IpennoxeHo 1 000CHOBAHO /IBa HOBBIX BBIPAXKEHUS, OINPECIISIOIINe IKCIIEKTUIb. [lepBoe
BEIp@XEHHE  HCIIONB3YeT  MAaKCHUMH3AIMio, B  KOTOpOH  MeHsietcs  ypoBeHb  goBepusi CVaR
u kxodpounment mnepen CVaR. DT1o BbIpaKeHHE KOHKPETU3UPOBAHO JUIS HENPEPHIBHBIX M KOHEYHBIX
JUCKPETHBIX pacrpejiesieHnid. BTopoe BblpaskeHHE HCIOJIb3yeT MUHHMHU3ALUIO HOBOH (YHKIHMH OIIMOKH
B HOBOM pHCK-KBajgpaTe. lIcmonp3oBaHHE ABYX IapaMeTPOB B OMNPENENICHUH ODKCIEKTWII MEHSET ero
3aBHCUMOCTb OT YPOBHSA JIOBEpHUs U TI'eHEPHpPYeT HOBOE CEMEWCTBO »sKcrekTwield. CpaBHEHHE HOBBIX
skcriektuieil ¢ kBantwieM u CVaR g psina pacmpeneneHnil MOKas3bIBaeT, YTO MPEATIOKEHHbBIE IKCIIEKTIITN
MOTYT OBITh OJIM)KE K KBaHTHIIIO, Y€M CTaHAApPTHBIA AKCIEKTWIb. [IpeanoxkeHo ABa BapHaHTa JIMHEAPU3allUK
SKCHEKTWIA U IM0Ka3aHO, KaK UX UCIOJIb30BaTh C IMHEWHOW (YHKIUEH NOTEPb.

KumioueBble cioBa: sxcnextwnb, EVaR, kBantums, cynmepkBantmib, CVaR, npencrasnenne Kycyoku,
(yHnaMeHTaNIbHBIN pUcK-KBaapart, naket Portfolio Safeguard.
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