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The article provides useful information for devel-
opers of algorithms and programs on the use of
Gray codes for solving combinatorial problems
with pseudo Boolean functions. As an example of
the effectiveness of the use of these codes, the so-
lution on two combinatorial problems with Bool-
ean variables with a full search of the solutions is
considered. The results of an experimental study
are presented, which show that Gray codes can
be practically applied in branching schemes, for
example, in the branch and bound method, when
the number of variables in the branch nodes of the
decision algorithm does not exceed 35.
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SOLVING 0-1 COMBINATORIAL PROBLEMS
OF OPTIMIZATION IN ENVIRONMENTAL AND
ECONOMIC SYSTEMS

Introduction. Environmental and economic problems
are an example of a complex of tasks, the solution of which
is associated with high costs, and the decisions themselves
have a long-term large-term impact on the fate of large so-
cial groups. Any ecological and economic system is a com-
plex, weakly deterministic and evolving research object.
The choice of strategies for making environmental and eco-
nomic decisions in such large-scale systems is associated
with the analysis of a huge number of factors, relations and
interests. This leads to the need of use a modern means of
analysis, forecasting and mathematical modeling of the be-
havior of complex systems based on the information and
computer technologies and decision support systems.

The foundations of mathematical modeling of complex
ecosystems were developed by such scientists as
V. Volterra, B.G. Zaslavsky, A.N. Kolmogorov, G.I. Mar-
chuk, Yu. Odum, R.A. Poluektov, Yu.M. Svirezhev.
A great contribution to the study of environmental and eco-
nomic problems of environmental management was con-
tributed by such scientists as O.F. Balatsky, K.G. Gofman,
V.l. Gurman, A.V. Lotov, V.V. Leontiev, N.N. Olenev,
A.A. Petrov, |.G. Pospelov, R.L. Rayatskas, G.A. Ugolnit-
sky, and others. Among the Ukrainian scientists it should
be noted the works of A.A. Bakaev, A.P. Velikiy,
V.M. Heyets, V.M. Glushkov, V.S. Grigorkiv,
Yu.M. Ermolyev, S.I. Doroguntsov, A.G. lvakhnenko,
V.S. Mikhalevich, B.N. Pshenichnyi, N.Z. Shor.

Despite the deep scientific developments, the processes
of environmental and economic cooperation require further
study in order to develop new and improving the already
existing methods for solving socio-economic problems and
conservation of natural resource potential. The results of
mathematical modeling of the scheme of an ecologically
balanced economy of individual regions, and, in particular,
their dynamic optimal development, can serve as a basis for
making management decisions aimed at improving the ef-
ficiency of environmental and economic systems.
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The tasks of the Boolean programming are played an important role in the study of these systems, and
are the class of problems of discrete optimization, which are widely used at solving the problems of making
schedules and destination, investment planning and placement of enterprises and the nodes of communica-
tion networks, unification and standardization and etc. As a target function in these problems use either the
amount of total costs for the creation and operation of the system, or the total system efficiency, i.e. the
amount of work performed. Numerous monographs [1-6] and articles (see for example [7-12]) are devoted
to studying the problems of Boolean programming. Despite the simplicity of the wording of such tasks,
most of them belong to the class of NP-hard problems [13]. Among the most popular methods for solving a
problems of Boolean programming it is possible to allocate: exact methods - branch and bound method and
dynamic programming and their combination, approximate algorithms with a guaranteed deviation, evolu-
tionary (Genetic Algorithms, Ant Colonies Optimization) and metaheuristic algorithms (Simulated Anneal-
ing, Tabu Search, Greedy Randomized Adaptive Search Procedure - GRASP, Variable Neighborhood
Search and etc.). In practice, the solution of these tasks requires large computational costs, which substan-
tiates the feasibility of applying various ways to reduce the dimension of the problem, for example, using
to reduction of source optimization problem to a problem of optimize the corresponding pseudo-Boolean
function. Recall that the real functions defined on the set of Boolean variables, by analogy with the Boolean
functions, are called pseudo-Boolean [14-17]. Accordingly, the problems of optimization of pseudo-Bool-
ean functions are called the problems of pseudo-Boolean optimization. Any pseudo--Boolean function can
be the only way presented as a multi-polynom type

m

k=1 ieA
where ¢,,C,...,C,, — real coefficients, A, A,..., A, — non-empty subsets N e{1,2,...,n} [16]. In addition,
any pseudo-Boolean function can be represented as

F O ) =+ 2 B ([T % [T %)),

k=1 ieA jeBy
where by, by,....by, — real coefficients, X; =1-x;, j=1n.If b >0, k=1m, then the second expression

is the posi-form of the function F . Any pseudo-Boolean function can be recorded as the posi-form. The
formal statement of the problem of conditional pseudo-Boolean optimization is as follows: F(X) —extr,

where F:Q—R!, and Qc B) — some sub-area of the space of Boolean variables, determined by the

specified system of restrictions.

Many problems in environmental and economic systems lead to the need to solve conventional optimi-
zation problems with Boolean variables.

Another important feature in solving combinatorial problems with Boolean variables is to use Gray
codes and parallel calculations to reduce the time of recalculation of the objective functions and restrictions
in various schemes of branching the decisive algorithm (for example, the method of branches, borders and
cutting, dynamic programming, etc.).

The paper discusses the use of binary-reflected Gray codes to solve combinatorial problems with
pseudo-Boolean functions (polynomials from Boolean variables). The recursive G. Ehrlich algorithm is
given for generate a sequence of strings n - discharge Gray codes, in which each next string differs from
the previous one by one discharge (bit). On the examples of the solution of the 0-1 Knapsack Problems [18]
and the Problems of Choosing the Capacity of Arcs with Constraint on Flow Delay Time [19], it is shown
how these codes can be used to effectively calculate the values of the target function and restrictions.
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The purpose of the article is to show the developers of algorithms and programs how to apply Gray
codes in various branching schemes of the decision algorithm, for example, in the branch and bound method,
when the number of binary (Boolean) variables at the nodes of the tree is small (less than 35).

The research methodology is based on a computational experiment for solving the above problems with
the proposed algorithm of exhaustive search of the solution with partial and full recalculation of the values
of objective function and constraint of the problem. During the experiment, the accuracy of solving the 0-1

Knapsack Problem by a “greedy” heuristic algorithm with time complexity O(nz) was also checked.

1. 0-1 Knapsack Problem and Problem of Choosing the Capacity of Arcs

The mathematical formulation of the first problem is as follows. A set of n items is set, for each of
which the cost ¢; e Z" and weight &, e Z™, i =1,n are known. It is required to load the knapsack with the

items so that the total profit of the selected items is maximized and the total weight does not exceed W e Z*

maxzn:ci X; 1)
i=1
s.t.
S <W 2)
i=1
x €{0,3},i=1,n. 3

- n
It is assumed that a; <W , i=1n and > a >W .
i=1
The second problem is to choose an arcs capacity from a given set of discrete integer values when limited
to the maximum flow delay time, which is relevant for the distribution flows in multicommodity communi-

cation networks. In this problem delays of flows t,, on arcs are defined as t, = f,; /(wy — fy), kl€E,
and the constraint on the delay time of flows t,, in a network has the following form

ty =1/Ug D fig I (Wyy — fiq) T - Here g € Z™ —fixed arc flow value for kl eE, E —set of arcs of
kleE

network, W, € Z" — bandwidth capacity of arc kl e E, T, — the maximum of flows delay time in net-

work, Uy = z Uj — total flow in network, Ujj € Z" —value of the flow from a node i toanode j, S —
ijes
set of pairs of indexes corresponding nodes in the network.

When approaching the magnitude of the flow on the arcs to their carrying capacity, the delay increases
and, therefore, network congestion can occur. The essence of the problem is for fixed flows it is necessary
to choose the throughput capacities of arcs from a given set of integers so that the constraint on the delay
time of flows is fulfilled and the minimum of some objective function is achieved. This problem also arises
in transport networks when distributing flows according to the criterion of the minimum cost of the network
and a given restriction on the delay time of flows [20—22]. By controlling the parameter T,,,, for maximum
delay, the data network administrator or the transport network manager can provide the required reserve for
the bandwidth capacity of the communication channels or the carrying capacity of vehicles at predicted
fluctuations of values of flows on a given time of intervals. A decrease in the parameter T, (increase in

the reserve) leads to a rise in the cost of the network, but reduces the probability of redistribution of flows
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and technical re-equipment of communication channels or fleet of vehicles at increasing flows and a threat
of emergence overloads in the network. An increase in the parameter T, makes it possible to reduce the

capacity of communication channels or the carrying capacity of vehicles and the cost of the network, but
increases the risk of redistributing flows and upgrading the network.

We consider a direct connected network G(N, E) with a set of nodes N, n =| N | and a set of arcs E
e :| E | . In network for each direct arc kl, (k <1 exist back arc Ik, (1 >k). An arc represents a switched

communication line in a data network or a vehicle route, the final nodes of which coincide with the initial
and final node of the arc. The network may contain loops and parallel arcs, since cyclic and repeating com-
munication lines and communication lines with the same final nodes are allowed. An integer flow matrix is

given on the network U = H U Hn . Let wy, kl € E — sought-for a bandwidth capacity of arcs of the net-

work in transport blocks, W, €{w;,Ws,...,w, }, W, i =1, o — ascending positive integers; d,, € R*, kl € E

— arcs lengths; Cy(wy,dy)eR", kleE ~— discrete values cost of arcs, such that
Cig (W, dyg ) SCpy Wiy, dg) . i=La—1; fiy = > uil, kl € E —fixed total flows in transport blocks, a flow-
ijeS

ing along the arcs of the network, where ui‘}' — is the flow of transport blocks from i to j, which passes

along arc kl.
It is required to find the minimum value of the network cost function
”VWVLn kgECm (Wi i) s Wiy €{Wg, Wy, W, 3 4
s.t.
1 #STmax,wkpfk,, vkl €E. (5)

Us dee Wi — i
Note that problem (4), (5) can be represented as a knapsack problem with Boolean variables and multi-
choice (0-1 Multiple-choice Knapsack Problem, 0-1 MCKP). Let ¢;; R*™ — discrete values cost of arcs i

with CapaCIty Wij E{Wl,Wz,...,Wa}E Z+ and Iength di’ jzl,_a, |=:|Te, t” = fi /(WIJ — fi)’ Wij > fi,
j=lo, i=Le —delays of flows on arcs; f; —flow onthearc i, i=1e. Suppose that x; =1, if for the

arc i the capacity w; is selected, j=lo,i=1e,and X;j =0 otherwise. We require to find

min iicijxij (6)

i=1 j=1
s.t.
Uizztu Xij STmaxv (7)

T il j=

> xi=1,i=1e, (8)

j=
Xij G{O,l} (9)

Here, the required throughputs w;; correspond to the optimal solution x;j- to the problem (6)—(9).
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It is easy to see that any individual problem formulated in the form of (4), (5) can be transformed in
time O(ea) into the corresponding instance of problem (6)—(9). To do this, it is necessary to construct two

matrices of size ex o, whose rows correspond to arcs, the columns — to a set of discrete capacities, and the
cost of arcs ¢;; and delays on arcs t; are taken as matrix elements. The converse is also true.

In [19] it has been proven that the optimization problem formulated in the form (4), (5) is NP-hard, and
for its solution two approximate algorithms were proposed on the basis of the approximation of discrete cost
functions by linear ones, and on the method of sequential analysis of options. The first algorithm uses the
Lagrange multiplier method, which allows one to analytically solve a relaxed problem and obtain an exact
continuous solution. The second algorithm enumerates the solutions, narrowing the range of feasible solu-
tions at each iteration, and can be used for any monotonically non-decreasing cost of arcs with an increase
in their throughput. It can be applied both to the initial statement of the problem, and to the statement in the
form (6)-(9). It was shown that both algorithms at the final stage of work narrow the area of permissible

solutions up to two values WWij e{Wj ,Wj+1}, j=k,a-1,i :1,_e , and with complete full-search 2° variants

allow us to obtain an exact solution.

We write the abbreviated problem in the form:
2

min iZcij Xi (10)

i=1 j=1
s.t.
1 e 2
U_ZZtinij < Trnax (11)
T i<l j=1
2 —
inj :1, i=1,e, (12)
j=1
Xij E{O,l} (13)
were ¢, j:1,_2, i=1e — discrete cost of arcs; tij = f; /(vvij - 1), j=1,_, i=le — delays of flows on
arcs; f, —flowonthearc i, i=1e.
Problem (10)—(13) can be converted to 0-1 Knapsack Problem:
[
min Y (Ciy + AGiX;) (14)
i=1
s.t.
1 e
_Z(til - Ati Xi) STmax | (15)
Us g
x {0}, i=1e, (16)
. 13
were AG =Cip—Cy, ty=Ti/(W—F), At="F/(w—F)-Fi/(w-F), i=le, U—Ztu > Trnax
T i=l
1 €
— > 1, <T .
UZ = i2 max

All formulated problem are NP-hard, i.e., in general, there are no exact polynomial algorithms to solve
them [13]. In books [1, 5], you can find a description of the three exact pseudo-polynomial algorithms for
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solving problems (1)—(3) and (14)—(16) based on the methods of branches and bounds and dynamic pro-
gramming with using Lagrangian and LP relaxation. The programs listing of these algorithms (Expknap,
Minknap and Combo) on C ++ are shown on the D. Pisinger page on the Internet (www.diku.dk/~pisinger/).
In the same books, there are also completely polynomial approximate schemes for solving 0-1 KP problem
(FPTAS — Fully Polynomial Time Approximation Scheme). This means that for them there are algorithms
that, polynomial time of the size for the input of the problem and 1/¢ make it possible to obtain a (1—«)

or (1+¢)-guaranteed approximate solution (for maximization or minimization problem, respectively),
where ¢ is an arbitrarily small positive number.

2. Full search algorithm based on the Gray codes

In 1953, physicist Frank Gray received a patent for the invention of binary reflected n-discharge codes,
which were named after it [23]. Initially, these codes were used in code-pulse modulation to control various
electromechanical switches and the method of analog transmission of digital signals. Currently, Gray codes
are used to detect and correct errors in communication systems, control various digital sensors, encode track
numbers in hard drives of computers, etc. In addition, it is known about the use of Gray codes to solve
combinatorial problems "Tower of Hanoi" and "Chinese rings" [24]. More details about Gray codes can be
found in the book by D. Knuth [25].

For a complete enumeration of options for solving problems (1)—(3) and (14)—(16), we will use the
algorithm for generating a sequence of binary-reflected n-digit Gray codes proposed by Ehrlich [26]. The
algorithm makes it possible to efficiently calculate the values of the objective function (1) or (14) and con-
straints (2) or (15) during the solution process. Binary-mirrored (mirrored, reflective) Gray code is defined
according to the following recursive rules:

By =", B,y =0B,1B;, n=0,1,2,3,..., (digits are added to the left) or

By =", B,,; =B,0B/1, n=0,1,2,3,..., (digits are added to the right).
where By =" —empty string, B, — binary Gray sequence of n-bit strings, 0B,, and B,0 — sequence B,

prefixed with 0 at the beginning and end of each string, 1B} and BJ1 —sequence B, in reverse order with

a 1 prefix at the beginning and end of each line. Since the last row in B, is equivalent to the first row in B,
, itis clear that at each step B, ; changes exactly one bit if B, has the same property. With each step, the
length of the strings increases by 1, and their number doubles. Thus, the n-bit Gray code is an ordered
cyclic sequence of 2" n-bit strings, in which successive strings differ only by one bit. In exhaustive search

algorithms for calculating the values of various functions using Gray codes, it is convenient to represent
these codes as an ordered list of bit numbers that change their value to the opposite when moving from the

current line to the next. This sequence of transitions P, can be determined by the following recursive rules:

P =1, P,=P,4,n,P, 4, n=2,34,.... The length of the sequence P, is equal to 2" —1, and the numbering
of the digits in the sequence can be performed from right to left or vice versa. For example, for n=4 and
the initial string 0000, P,=1,2,1,3,1,2,1,4,1,2,1,3,1,2,1, and its length is 2% _1=15. The corresponding
sequence of binary strings when numbering bits from left to right looks like: 0000, 1000, 1100, 0100, 0110,
1110, 1010, 0010, 0011, 1011, 1111, 0111, 0101, 1101, 1001, 0001. By numbering the digits from right to
left, we get an inverted sequence corresponding to the first recursive definition of B ;. It is interesting to
note that if we construct a graph whose vertices correspond to binary sequences of length n, and the edges
connect two vertices that differ only by one digit, then such a graph represents a binary n-dimensional cube.
Moreover, the constructed binary sequence corresponds to a Hamiltonian path in such a graph. To generate
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a sequence of transitions P, ina binary string B =| b; ||, i =1 n+1, we define a vector of pointers P =| p; ||,
i =1,n+2, which simulates a stack for recursive definition of P,. The optimal solution x;, i=1n will be

saved in a vector B =\ boPt H i=1n+1, where: if b =0, then X, =0;if b® =1, then x =1;i=1n.

The dimensions of the vectors P, B and B are increased by two and one units, respectively, due to the
specifics of the algorithm. The " <" sign stands for an assignment operation.

OPT1 algorithm with partial recalculation of the objective function and constraints for problem
(1)-(3)

1. CSUM <-¢;; ASUM <« a; CSUMOPT «0; B« 0; B® «-0.

2.For{i|i=1n+2}do p «i.

30«1,
4. While i <n+1 do steps 5-7.
5.1f b, =0, then CSUM <« CSUM —c¢;; ASUM <« ASUM - &, otherwise

CSUM «CSUM +¢;; ASUM « ASUM + g

6. If ASUM<W, then if CSUM >CSUMOPT do: CSUMOPT «<—CSUM; B «B;
ASUMOPT « ASUM.

7.1 pp; b <1-b; p<1; pj < Pig; Py < i+1.
8. End of the algorithm. Output values: maxzinzlci x; =CSUMOPT ;

> aX =ASUMOPT ; W ; B,
In the variant of solving the problem with a complete recalculation of the objective function and con-
straint (OPT2 algorithm), step 1 will be replaced by

1. CSUMOPT «-0; B<«0; B® «0,
and step 5 will be replaced by

5. CSUM «0; ASUM «-0. For {j ‘jzl,_n} do CSUM «-CSUM +c;j *b; ;
ASUM <« ASUM +a; *b;.

For an algorithm with partial recalculation of the objective function and constraints for problem (14) -
(16), the pseudo code will be as follows:
. Ty <= 0.0; C5 «-0.0; Dy «-0.0.

1

2.For{i|i=Le} do: Ty «Ty+t;; Cy «Cy+Gy; Dy < Dy +AG.

3. Dy <~ Cy +Dy; Ty < Ty XUs; B<=0; B® «~0; Cy <~ Cy +AC; Ty < Ty — Aty

4. For {i \izm}do P <i.

5. While i <e+1 do steps 6-8.

6. If b =0, then Cy <~ Cy —AG; Ty < Ty + At otherwise Cy «—Cs +AG; Ty < Ty —At;.
7.1f Ty <T,, then if Cy <Dy do: Dy <~ Cy; B «B; t,, < Ty /Us.

8. 1¢=py; b« 1-b; pp«1; pj < Piyg; Py < i+1.

9. End of the algorithm. Output values: min Cy =Dy ; t,, ; B®.

av ?
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3. Experimental comparison of OPT1 and OPT2 algorithms

Comparison of the performance of algorithms OPT1 and OPT2 was carried out for problems (1)—(3)
and (14)—(16) using examples generated by a pseudo-random number generator. Here, the results of the
solution are given only for problem (1)—(3), since data similar in characteristics were obtained for problem
(14)—(16). For all dimensions of the problem (1)—(3), which varied from n=5 to n=36, the cost of items
¢; and their weight a; were generated in the range from 5 to 10 and from 1 to 20, respectively. During the

experiment, the accuracy of solving problem (1)—(3) by the "greedy" heuristic algorithm OPT3 with time
complexity was also checked O(nz) . The algorithm is based on the preliminary of ordering of items on not

increasing their specific costs ¢; / &, i =1,n inagiven set with followed by the choice of items in knapsack
until a restriction on size the knapsack W . Is well known, see for example [5, 27], that solutions OPT3 =

maxzi":lci xi* , Obtained by the "greedy" algorithm, may differ from the optimal no more than twice, when
choosing the final cost of the knapsack from the condition maxzrzlci X :{maxzi”:lci x; ,maxc;}, where

maxc;, i =1,n — is the maximum cost of the item in the specified set.

In fig. 1 shows the time to solve problem (1)—(3) (with an accuracy of two signs after the comma) on
the PC with a clock frequency 2.66 GHz for OPT1 and OPT2 algorithms with partial and complete recalcu-
lation of the target function and restrictions. As can be seen from fig. 1, OPT1 algorithm can be used for
practical calculations in branching schemes when the number of variables in branching nodes does not ex-
ceed 35 (calculation time at n=35 is about 8 minutes). OPT1 algorithm for variants 5-10 is faster than
OPT2 algorithm on average in 7 times.

9000

8000 B

7000 B

6000 B

5000 u

4000 =

3000 B

2000 1
1000 -I i ]
0 mh —“ —
1 2 3 4 5 6 7 8 9 10 11
En 5 10 15 20 25 30 32 33 34 35 36
Tl 0 0.02 0.66 14.9 60.89 120.32 248.06 455.18 1751
T2 0 0 0.09 4.37 107.84 462.45 950.97 1964.46 3994.53 8191.27

FIG. 1. The time to solve the problem in seconds with partial (T1, OPT1 algorithm) and full (T2, OPT2 algorithm) recalculation
of the target function and restrictions

In fig. 2 shows the results of the solution of problem (1)—(3) with an exact OPT1 algorithm and the
"greedy" algorithm OPT3 (the results of solutions of the OPT1 and OPT2 algorithms of course coincide).
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350 +

300 1

250 1

200 1

150 H

100 A

50 1

0 -

En

mOPT1 29 54 86 129 149 208 207 222 209 222 237

=OPT3 29 48 86 129 147 208 205 222 208 219 235
DEL% 0 125 0 0 1.36 0 0.98 0 0.48 1.37 0.85

uASUMOPT 29 90 114 147 219 278 207 318 312 270 348

W 30 90 120 150 220 280 210 320 315 270 350

FIG. 2. The results of optimal (OPT1) and approximate (OPT3) solving of problem

Values Zi":lai x; = ASUMOPT are shown for OPT1 algorithm. The values of the target function ob-

tained by the "greedy" algorithm differ from the optimal within DEL% from 0 to 12.5%. The OPT3 algo-
rithm has a polynomial estimate of time complexity and can be applied in practice to solve problems (1)-
(3) of a large dimension, when needs to quickly get the approximate value of the target function with
limited computing resources. For example, the problem (1)—(3) was solved for n=10000 with the same
boundaries of changes in values c¢; and a; in 0.11 seconds. In this case, OPT3 = 70598, ASUMOPT =

103985 at W = 104000.

All programs are written in the Fortran language (see Appendix) in the Microsoft Developer Visual
Studio environment and can be adapted to work in the parallel programming system Intel® Parallel Studio
XE 2020 in which are included the latest versions of C/C++ and Fortran compilers (https://software.in-
tel.com/ru-ru/try-buy-tools). A  video presentation of the work can be found at
https://www.youtube.com/watch?v=4YWRO5QTQYM.

Conclusions

Application of binary-reflected (mirror, reflexive) Gray codes to solve combinatorial problems with
pseudo-Boolean functions (polynomials from Boolean variables) is considered. A recursive Ehrlich algo-
rithm is given for generating a sequence of lines n-bit Gray codes, in which each next line differs from the
previous one by only one bit. On example of the 0-1 Knapsack Problem is shown how these codes can be
used to efficiently compute the values of the objective function and constraints.

The purpose of the article is to show the developers of algorithms and programs how to apply Gray
codes in various branching schemes of the decision algorithm, for example, in the branch and bound method,
when the number of binary (Boolean) variables at the nodes of the tree is small (less than 35).

The research methodology is based on a computational experiment for solving the 0-1 knapsack prob-
lem with the proposed algorithm of exhaustive search the solution with partial and full recalculation of the
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values of objective function and constraint of the problem. During the experiment, the accuracy of solving

the problem by a “greedy” heuristic algorithm with time complexity O(n?) was also checked.

As a result of the experiment, it was found that the algorithm with a partial recalculation of the objective
function and restrictions can be used for practical calculations in branching schemes, when the number of
variables in the nodes of the branching tree does not exceed 35. The algorithm with partial recalculation is
faster than the algorithm with full recalculation on average by 7 times. The heuristic "greedy" algorithm can
be applied in practice to solve the 0-1 problem of a knapsack of large dimension (more than 10,000 items),
when need to obtain an approximate value of the objective function at the limited computing resources.

The novelty of the work lies in the proposed approach to solving combinatorial optimization problems
with pseudo-Boolean functions using Gray codes. The efficiency of the proposed algorithm with a partial
recalculation of the values of the objective function and constraints is shown, and its can be applied in
practice in various branching schemes of the decision algorithm.

Appendix. Text of Program ""Computer program solution 0-1 Knapsack problem using reflexive
Gray codes"

The program is designed for a exact and approximate solution 0-1 Knapsack Problems, 0-1 KP. For an
exact solution (with complete search for solutions), the recursive algorithm of G. Erlich Generation of bi-
nary-reflected (reflexive, mirror) Gray codes is used. For an approximate solution, a "greedy" algorithm was
applied, based on streamlining in descending relations of prices of items to their weights. The program can
be practically used for an approximate decision 0-1 KP of the large dimension (more than 10,000 items) and
for the exact solution when the number of items does not exceed 35. In addition, it can be used in branching
schemes, for example, in the branch and bound algorithm, when the number the variables in the branching
nodes of the decisive algorithm does not exceed 35. The program is designed to familiarize potential users
with the technique of applying Gray codes when solving combinatorial problems with pseudo-Boolean
functions.

The program can be used as a subprogramme to solve a wide range of combinatorial optimization prob-
lems associated with the optimization of resource allocation in various fields of economics, planning and
management of business enterprises, etc.

The program consists of a main module that includes a function procedure for generating source data
and an external module to solve 0-1 KP. The modules are compiled together and combined by the editor of
the links into a single boot module.

In the main module of the program in dialogue mode are input: the dimension of the problem n; the
borders of changing the cost of the items from MINVALC to MAXVALC; the borders of changing weights
of items from MINVALA to MAXVALA,; the parameter controlling the input and output data.

Next, using the pseudo-random number sensor (built-in language function RAND()), are generated
costs and weights in the specified limits, are input the size of the Knapsack, all the arrays needed to solve
the problem are generated. All operational memory for the program is allocated and deallocated in the main
program module. The operation time of the program is fixed by the built-in module cpu _time(T) directly
before the entrance and after exiting the external module for solving the problem.

All output can be displayed on the PC screen and into the OUT1 data set.

The program works in cyclic mode. After receiving a solution for a given dimension of the problem,
you can select new parameters and continue solving the problem.

The program is launched by calling .exe module from the current directory.

program Test Gray codes and 0-1 Knapsack problem

use dflib
integer(4) N, & ! The dimension of the problem and the dimension of the Gray Code
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B, & ! Restriction on the weight of the Knapsack

I, & !Variable

MINVALC, & ! Lower Border of Prices

MINVALA, & ! Lower Border of Weight

MAXVALC, & ! Top Border of the price of the subject
MAXVALA, & ! Top Border of the weight of the subject

MINF, & I The minimum weight of the subject
MAXF, & I The maximum of the subject
SUM I The sum of weights items
real(4) TS TM,T,T1,T2,& ! Problem solving time
RES I Variable

integer(4),allocatable:: C(:), & ! Vector of prices objects (N)
A() ! Vector of weight objects (N)
character(1) REP

print*,'Testing program of solving the 0-1 knapsack problem’

212 print*,'To duplicate output of the data in a set OUT1 ?,reply Y/N'
read*,REP

if (REP/="Y".and.REP/='N'") go to 212

if (REP=="Y") then

open(10,file="out1.txt"

else

open(10,file="nul’)

endif

write(10,'(1x,a/)"), Testing program of solving the 0-1 knapsack problem'
write(6,'(1x,a)"), Enter dimension of problem - N<=40'
write(10,'(1x,a)"),'Enter dimension of problem - N<=40'

read*,N

write(6,'(1x,a,i5)")," N = ',N; write(10,'(1x,a,i5)")," N = ',N
write(6,'(1x,a)"), Enter the boundaries of the price changes of items'
write(10,'(1x,a)"),' Enter the boundaries of the price changes of items'

read*, MINVALC,MAXVALC

write(6,'(1x,a,i5)"), ' MINVALC =" MINVALC,' MAXVALC ="'MAXVALC
write(10,'(1x,a,i5)")," MINVALC =" MINVALC, MAXVALC ="' MAXVALC
write(6,'(1x,a)"),'Enter the boundaries of the weights changes of items'
write(10,'(1x,a)"),'Enter the boundaries of the weights changes of items

read*, MINVALA MAXVALA

write(6,'(1x,a,i5,a,i5)"), MINVALA = 'MINVALA, MAXVALA =" 'MAXVALA
write(10,'(1x,a,i5,a,i5)")," MINVALA ="' MINVALA, MAXVALA ="' MAXVALA

100 continue

allocate (C(N),A(N))

do I1=1,N

C(1)=RND(MINVALC,MAXVALC); A(I)=RND(MINVALA MAXVALA)
enddo

SUM=0

do I=1,N

SUM=SUM+A(I)
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enddo
write(6,'(1x,a,i8)"),'Sum of item weights = ',SUM; write(10,'(1x,a,i8)"),'Sum of item weights = ',SUM
write(6,'(1x,a)"),'Enter the size of the knapsack - B'; write(10,'(1x,a)"),'Enter the size of the knapsack - B'
read*,B; write(6,'(1x,a,i8)"),' B =",B; write(10,'(1x,a,i8)"),'B ="',B
write(6,'(1x,a)")," For start of program, press Enter'; read*
call CBA(N,C,A,B,SUM)
print*, '‘Design successful’
13 write(6,'(1x,a)"), 'Test of program is completed?(Y/N)'; read*,REP
if (REP/="Y'.and.REP/='N") go to 13; if (REP=="Y") goto 50
14 write(6,'(1x,a)"), 'Change N ? (Y/N)'; read*,REP
if (REP/="Y'.and.REP/='N") go to 14
if (REP=="Y") then
write(6,'(1x,a)"), 'Enter N'; read*,N
write(6,'(1x,a,i5)")," N = ',N; write(10,'(1x,a,i5)")," N = ',N
endif
15 write(6,'(1x,a)"), 'Change MINVALC, MAXVALC ? (Y/N)'; read*,REP
if (REP/="Y'.and.REP/='N") go to 15
if (REP=="Y") then
write(6,'(1x,a)"), 'Enter MINVALC, MAXVALC'; read*,MINVALC,MAXVALC
write(6,'(1x,a,i5)"), ' MINVALC ="' MINVALC,' MAXVALC ="' MAXVALC
write(10,'(1x,a,i5)")," MINVALC =" MINVALC, MAXVALC ="' MAXVALC
endif
16 write(6,'(1x,a)’), '‘Change MINVALA, MAXVALA ? (Y/N)'; read*,REP
if (REP/="Y'.and.REP/='N") go to 16
if (REP=="Y") then
write(6,'(1x,a)"), 'Enter MINVALA, MAXVALA'; read*, MINVALA MAXVALA
write(6,'(1x,a,i5,a,i5)")," MINVALA = "'MINVALA,' MAXVALA =" ' MAXVALA
write(10,'(1x,a,i5,a,i5)")," MINVALA =" MINVALA,' MAXVALA ="' MAXVALA
endif
deallocate (C,A)
write(6,'(1x,a)"),’ "
write(10,'(1x,a)"),’ '
go to 100
50 continue
write(6,'(1x,a)"),’ '
write(10,'(1x,a)"),’ ‘
write(6,'(1x,a)"), 'Test of program is successfully completed '
write(10,'(1x,a)"), 'Test of program is successfully completed !"
Write(6,'(1X,8)"), --=-==mmmmmmmmm oo e e '
write(10,'(1x,a)"),' '

contains

integer function RND(MINVAL,MAXVAL)
RES=RAND()

if (ceiling(RES*MAXVAL)< MINVAL) then
RND=MINVAL+ceiling(RES*(MAXVAL-MINVAL))
else
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RND=ceiling(RES*MAXVAL)

endif

end function RND

end program Test Gray codes and 0-1 Knapsack problem

subroutine CBA(N,C,A,B,SUM)

integer(4) N, &
B, &
SUM, &
KLILRMJ K, &

CSUM,ASUM,MSUM,ASUMOPT,CSUMA

integer(4) C(N)

integer(4) A(N)

integer(4), allocatable:: SE(}), &

WU(:)
byte, allocatable:: BI(:), BOPT(:)
real(4), allocatable:: WKL(:), &
VUS(2)

real(4) T1,72,T3,T33,MAX,CM
character(72) DIS
character(1) REP

allocate (WKL(N),VUS(N),SE(N),BOPT(N+1))
if (N<=40) then

allocate (WU(N+2),BI(N+1))

endif

do I=1,N

SE(D=I; WKL(D)=(.1E+01*C(1))/A(1); VUS(1)=WKL(I)
enddo

call cpu_time(T1)

do I=1,N-1

MAX=VUS(I)

do J=1+1,N

if (VUS(J)>MAX) then

CM=VUS(I); RM=SE(I)

VUS()=VUS(J); SE(1)=SE(J)

VUS(J)=CM; SE(J)=RM

endif

enddo

enddo

CSUM=0; ASUM=0; BOPT=0

do I=1,N

if (ASUM+A(SE(1))<=B) then
CSUM=CSUM+C(SE(I)); ASUM=ASUM+A(SE(I)); BOPT(SE(I))=1
else

goto 18

endif
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enddo

18 continue

CSUMA=CSUM

call cpu_time(T2)

write(6,'(5x,a,f10.2)"), TIME of APPROXIMATE SOLUTION ='T2-T1
write(10,'(5%,a,f10.2)"),' TS =" T2-T1

write(6,'(1x,3(a,i8))"), ' CSUM ="',CSUM,' ASUM ="' ASUM,'B ='B
write(10,'(1x,3(a,i8))"), ' CSUM ="',CSUM,' ASUM =" ASUM,'B ='B
write(6,'(1x,a/)"), " '

write(6,'(1x,a,i8)")," APPROXIMATE SOLUTION ="',CSUM
write(10,'(1x,a,i8)"),' APPROXIMATE SOLUTION =',CSUM

11 Algorithm with complete recalculation of the target function and restrictions

if (N>40) go to 5055
write(6,'(1x,a)"), ' '; write(6,'(1x,a/)"), ' OPTIMAL SOLUTION 1"
MSUM=0; BI=0; BOPT=0
do I=1,N+2
WuU()=I
enddo
=1
call cpu_time(T1)
do while (I<N+1)
CSUM=0; ASUM=0
do J=1,N
CSUM=CSUM+C(J)*BI(J); ASUM=ASUM+A(J)*BI(J)
enddo
if (ASUM<=B) then
if (CSUM>MSUM) then
MSUM=CSUM; BOPT=BI; ASUMOPT=ASUM
endif
endif
I=WU(2); BI()=1-BI(l); WU(1)=1; WU(D)=WU(I+1); WU(I+1)=1+1
enddo
call cpu_time(T2)
T3=T2-T1
write(6,'(1x,a/)"), "
write(6,'(1x,a/)"), ' OPTIMAL SOLUTION 1 '; write(10,'(1x,a/)"), ' OPTIMAL SOLUTION 1"
write(6,'(1x,a,i8)"), ' max CSUM =" MSUM; write(10,'(1%,a,i8)"), ' max CSUM ="' MSUM
write(6,'(1x,2(a,i8))", ' ASUM ="' ASUMOPT,' B ='|B;
write(10,'(1x,2(a,i8))"), ' ASUM =" ASUMOPT,'B =',B
T1=((.1E+01*MSUM/CSUMA)-.1E+01)*100
write(6,'(1x,a/)"), "
write(6,'(1x,a,f12.4,a)")," Deviation of the approximate solution from the optimal solution =" T1,' %
write(10,'(1x,a,f12.4,a)"),' Deviation of the approximate solution from the optimal solution="T1,' %"
write(6,'(1x,a,f8.2,a)),' T ="T3, ' Time of the optimal decision 1 of a problem'
write(10,'(1x,a,f8.2,a)),' T ="T3, ' Time of the optimal decision 1 of a problem'
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11 Algorithm with partial recalculation of the target function and restrictions

if (N >40) go to 5055

write(6,'(1x,a/)"), " '; write(6,'(1x,a/)"), ' OPTIMAL SOLUTION 2"
CSUM=C(1); ASUM=A(1); MSUM=0; BI=0; BOPT=0

do I=1,N+2

wu()=I

enddo

I=1

call cpu_time(T1)

do while (I<=N+1)

if (BI(1)==0) then

CSUM=CSUM-C(I); ASUM=ASUM-A(I)

else

CSUM=CSUM+C(l); ASUM=ASUM+A(I)

endif

if (ASUM<=B) then

if (CSUM>MSUM) then

MSUM=CSUM

BOPT=BI

ASUMOPT=ASUM

endif

endif

I=WU(1); BI(1)=1-BI(1); WU(1)=1; WU(1)=WU(I+1); WU(I+1)=I+1
enddo

call cpu_time(T2)

T3=T2-T1

write(6,'(1x,a/)"), '

write(6,'(1x,a/)"), ' OPTIMAL SOLUTION '; write(10,'(1x,a/)"), ' OPTIMAL SOLUTION '
write(6,'(1x,a,i8)"), ' max CSUM =", MSUM; write(10,'(1x,a,i8)"), ' max CSUM = ',MSUM
write(6,'(1x,2(a,i8))), ' ASUM = ASUMOPT,'B =',B
write(10,'(1x,2(a,i8))"), ' ASUM ="' ASUMOPT,' B ="B
T1=((.1E+01*MSUM/CSUMA)-.1E+01)*100

write(6,'(1x,a/)"), " '

write(6,'(1x,a,f12.4,a)")," Deviation of the approximate solution from the optimal solution ="T1,'%"
write(10,'(1x,a,f12.4,a)")," Deviation of the approximate solution from the optimal solution="T1,' %"

g

write(6,'(1x,a,f8.2,a)"),' T=",T3, Time of the optimal decision of a problem'
write(10,'(1x,a,18.2,a)"),' T=",T3,'Time of the optimal decision of a problem’
5055 continue

end subroutine CBA !
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Introduction. The application of binary-reflected (mirror, reflexive) Gray codes for solving combinatorial
problems with pseudo-Boolean functions (polynomials from Boolean variables) is considered. A recursive Ehr-
lich algorithm is given for generating a sequence of lines n-bit Gray codes, in which each subsequent line differs
from the previous one by only one digit (bit). As an example of the effectiveness of the use of these codes, the
solution of two combinatorial problems with Boolean variables with a complete enumeration of solutions is
considered, and it is shown how these codes can be used to efficiently calculate the values of the objective func-
tion and constraints. The results of an experimental study are presented, which show that Gray codes can be
practically applied in branching schemes, for example, in the branch and bound method, when the number of
variables in the branching nodes of the decision algorithm does not exceed 35.

Purpose. The purpose of the article is to show the developers of algorithms and programs how to apply
Gray codes in various branching schemes of the decision algorithm, for example, in the branch and bound
method, when the number of binary (Boolean) variables at the nodes of the tree is small (less than 35).

The technique. The research methodology is based on a computational experiment for solving the 0-1
knapsack problem with the proposed algorithm of exhaustive search the solution with partial and full recalcula-
tion of the values of objective function and constraint of the problem. During the experiment, the accuracy of
solving the problem by a “greedy” heuristic algorithm with time complexity O(n?) was also checked.

Results. As a result of the experiment, it was found that the algorithm with a partial recalculation of the
objective function and restrictions can be used for practical calculations in branching schemes, when the number
of variables in the nodes of the branching tree does not exceed 35. The algorithm with partial recalculation is
faster than the algorithm with full recalculation on average by 7 times. The heuristic "greedy" algorithm can be
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applied in practice to solve the 0-1 problem of a knapsack of large dimension (more than 10,000 items), when
need to obtain an approximate value of the objective function at the limited computing resources.

Scientific novelty and practical significance. The novelty of the work lies in the proposed approach to
solving combinatorial optimization problems with pseudo-Boolean functions using Gray codes. The efficiency
of the proposed algorithm with a partial recalculation of the values of the objective function and constraints is
shown, and its can be applied in practice in various branching schemes of the decision algorithm.
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IIpo Bukopucranus koais I'pest 11 po3B'sa3zyBanns 0-1 koMOiHATOPHUX 3a1a4 onTHUMI3amil
B €KO0JIOI0-eKOHOMIYHHUX CHCTeMax
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Beryn. Posrisinaetbes 3acTocyBaHHS IBIHKOBO-BioOpaxeHNX (I3epKabHUX, pedIeKCUBHUX) KoaiB ['pes
IUISL pO3B’sI3aHHS KOMOIHATOPHUX 3a7a4 3 MCeBI00YIeBUMHU (DYHKINSIMU (TTOJIHOMAMHM Bii OYJI€BUX 3MIHHHX).
HaBonurbest pekypcuBHuii anroputm Epiixa uis reHepaiii mociiioBHOCTI psaKiB N-po3psaHuX Koxis I'pes, B
SIKIi KOYKHUW HACTYITHHUHN PSAIOK BiPi3HAETHCS BiJI MOMEPEIHBOTO TIJIBKH OJJHUM po3psiaoM (0iTom). Sk mpuka
e(eKTUBHOCTI BUKOPUCTAHHS [IUX KOJIB PO3IIITHYTO PO3B’I3aHHS ABOX KOMOIHATOPHUX 3a]a4 3 OyJIeBUMU 3MiH-
HHMH 3 TIOBHUM I1epeOopOM po3B’sI3KiB, MOKa3aHO, SK Li KOJH MOYKHAa BUKOPUCTOBYBATH JUIsl €(pEKTHBHOTO 00-
YUCJICHHS 3HAYeHb L1Ib0BOI QyHKLIT 1 0OMekeHb. HaBeneHo pe3ysbTaTH eKCIepUMEHTAIBHOTO A0CTIKCHHS,
SIKi TIOKa3YIOTh, 10 Koax ['pest MOXKyTh OyTH MPAaKTHYHO 3aCTOCOBAHI y CXeMaX pO3TalyKeHHs, HAPUKIA, Y
METOIi I'JIOK 1 MeX, KOJIM KUIbKICTh 3MIHHUX Y BY3JIaX PO3Taly>K€HHS BUPIIIAIEHOTO QJITOPUTMY HE IIEPEBUILYE
35.

Meta. PoGoTa nossirae y Tomy, 11100 IoKa3aTé po3pOOHUKAM aJITOPUTMIB i IpOrpaMm sIk MO>KHA 3aCTOCYBATH
koxu I'pest y pi3HHX CXeMaxX pPO3Taly)KeHHsI BUPIIAIBHOTO AJITOPUTMY, HAPHUKJIIA], Y METOI T'JIOK 1 MEX, KOJIK
KUJIBKICTh ABIMKOBUX (OyJIEeBHX) 3MIHHHX Y By3JIaX JIepeBa pO3rajyKeHHs HeBenrka (MeHiue 35).

MeToanka. J{ociipKeHHS TPYHTYIOTBCS Ha TPOBEJCHHI 00YNCITIOBAIEHOTO eKCIIEPUMEHTY po3B’si3aHHs 0-
1 3amadi mpo paHenpb 3aIPONOHOBAHUM AITOPUTMOM Iepedopy BapiaHTIB PO3B’A3KY 3 YACTKOBUM i IOBHUM IIe-
pepaxyHKOM 3Ha4YeHb 1iJIb0BOT (QyHKIIIT 1 0OMexxeHHs 3aaui. [Ipu npoBeieHHI eKCIIEPUMEHTY TepeBipsiiacs Ta-
KO TOYHICTB PO3B’A3aHHS 3a/1a4i «KaTiOHMM» eBPUCTHYHIM aJITOPHTMOM 3 4acoBoi cknaanicTio O(n?).

Pe3yabTaT. B Hacnifnok npoBeeHOr0 eKCIIEPUMEHTY BCTAHOBIICHO, 1[0 alTOPUTM 3 YaCTKOBUM Iepepa-
XYHKOM IJTLOBOT (PYHKIIIT i 0OMEKEHHS MOXKE 3aCTOCOBYBATHCS JJISl TPAKTUYHUX PO3PAXYHKIB Y CXEMax po3ra-
Jy>KEHHS, KOJIU KUIBKICTh 3MiHHUX y By3JlaX JepeBa PO3TaTyKeHHS HE IepeBUIlye 35. ANITOpUTM 3 YaCTKOBUM
nepepaxyHKoOM MBHIIIE aJrOPUTMY 3 TIOBHAM IEePEpPaxyHKOM Yy CepeJHhOMY B 7 pasiB. EBpucTHUHHMI «Kami0-
HUI1» QJITOPUTM MOXKHA 3aCTOCOBYBATH Ha MPAKTHUI Al po3B’sa3anHs 0-1 3amadi mpo paHels BEIUKOT po3Mip-
HocTi (Oinbire 10000 mpeaMeTiB), KOJIM TOCTATHBO OTPUMATH HAOJNMKEHe 3HAYSHHS IUTHOBOT (GYHKIIT mpu 00-
MEXKEHHX 00YHCITIOBAILHUX PECypcax.

HaykoBa HoBH3HA i mpakTH4YHA 3HaYuMicTb. HOBU3HA poOOTH MoOJISIrae y 3arpornoHOBaHOMY IMiAXOIi 10
PO3B’s13aHH KOMOIHATOPHUX 3a/jad ONTHUMi3awii 3 IceBRo0yneBUMHU (YHKIISIMU 3 BUKOPUCTaHHAM KoIiB I'pest.
IokazaHa e()eKTUBHICTH 3aIIPOIIOHOBAHOTO AITOPUTMY 3 YaCTKOBHM MEPEPaxyHKOM 3HAUEHb [UTLOBOT QyHKIIIT
1 0OME)XeHb MOJKE 3aCTOCOBYBATHUCS HA IPAKTUIIl B Pi3HUX CXEMaX PO3TayKEHHsI BUPIIIAIBLHOTO aJlTOPUTMY.

Kawuogi cioBa: koau ['pes, 3a1aui KOMOIHATOPHOT ONTHMI3allii, Yac pO3B'sI3aHHS 3a/1ai.
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