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1. Introduction

A gas transportation system as a unit of gas mains also includes gas storage facilities. Gas is transported
through pipelines at high rates and under great pressures. Gas movement is influenced by the state of
the internal walls (roughness), the change of flow direction (pipe bends) and the variation of pipeline
cross-sections. At current rates of the gas transportation, vorticity flows detach from the pipe walls,
get in to the inner area of the flow, and constantly change the velocity distribution in the cross-section
that is turbulent processes take a place.

Gas storage is conducted in depleted deposits. Layers, which are collectors of deposits, are porous
formations in sandstone and exist (it can be considered so) in fractal media. In fractal media, as
opposed to a continuous one, a random wandering part moves away from the start base slower, as
not all directions of movement are available for it. Hindering of filtration and diffusion processes in
fractal media, as well as reducing the velocity of the gas in pipelines are so essential, that the physical
quantities begin to change slower than the first derivative and accounting for this effect is possible only
in the integral-differential equation containing derivative with respect to time of the fractional order.

The data mentioned above make us develop the theory and methods of mathematical and computer
modeling of processes and systems in view of the mentioned effects.

In classical mathematical models, integro-differential equations and systems of ordinary and partial
derivatives, integrals and derivatives have the order that is expressed in whole numbers [1–4]. Currently,
the widespread use of fractional integrals and fractional derivatives is constrained by the lack of their
clear physical interpretation, which, for example, the ordinary integral or ordinary derivative has [5–7].

One of the goals of this work is to show the degree of adequacy of models with fractional derivatives.
A construction of a model of any physical process is associated with certain assumptions as for physical
processes, so for the construction of mathematical tools. In particular, to simplify the mathematical
model of the gas flow in pipelines, it is assumed that the change in gas density in time can be neglected.
It is obvious that for slow process this is permissible. However, in the rapid change of the process,
such assumption can lead to the loss of the adequacy over some space-time intervals. Further, in terms
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of computational mathematics, some problems arise due to the fact that the calculation involves large
and small numbers that results in loss of significant value precision.

The aim of this paper is a construction and study of models of mass transfer in complex media,
methods of linearization of equations, which are included in the mathematical model, and the con-
struction of iterative schemes for solving the initial system of nonlinear differential equations, as well
as testing the results obtained.

2. Definition of fractional derivatives

Derivatives of entire orders are local characteristics of functions that describe the physical process.
If a course of the process is described in some space-time neighbourhood only, then with the help of
derivatives of entire orders, the process under study can be quite adequately and accurately described.
However, in nature, behaviour of many physical processes depends on their history. Then the use of
derivatives of entire orders requires the construction of certain iterative procedures that in a sense
would take into account the history of this process. This leads to the complication of the correspond-
ing mathematical model and algorithms of necessary calculations. A solution to this problem is to
build models using fractional calculus. Derivatives of fractional order are non-local characteristics
of functions: they depend not only on the function behaviour in the neighbourhood of the point in
question.

In the literature, it is known many ways to introduce the fractional calculus. In particular, the
most commonly used is the fractional derivative operators in terms of Caputo and Riemann-Lowville.
Operator of fractional derivative in terms of Caputo is determined as follows [5–7]:

cDα
τ =

c∂α

∂τα
ϕ(τ) :=

1

Γ(m+ 1− α)

τ
∫

0

∂m+1

∂ξ
m+1ϕ(ξ)

(τ − ξ)α−m
dξ (1)

where m = [α], [·] is an integer part of a real number, and in terms of Riemann-Lowville

Dα
τ =

c∂α

∂τα
ϕ(τ) :=

1

Γ(m+ 1− α)

∂m+1

∂ξm+1

τ
∫

0

ϕ(ξ)

(τ − ξ)α−m
dξ. (2)

Between the Caputo’s and Riemann-Lowville’s derivatives the following relationship has a place [12]

CDα
τ ϕ = Dα

τ ϕ−
m
∑

k=0

τk−α

Γ (k − α+ 1)

∂k

∂τk
ϕ. (3)

As it is seen from the last correlations, operators of fractional derivatives depend on the values of
functions right from the reference point.

3. Modelling gas flow process in pipelines

3.1. Case of integer differentiation

In these times, an enough common model of the gas movement process in pipelines in unsteady non-
isothermal mode is an interconnected system of differential equations in partial derivatives [3,4,8]

∂(ρυ)

∂t
+

∂

∂x

(

p+ ρυ2
)

= −ρ
(

λυ |υ|
2D

+ g
dh

dx

)

,
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∂ρ

∂t
+

∂

∂x
(ρυ) = 0, (4)

∂

∂t
(ρE) +

∂

∂x
ρυ

(

E +
p

ρ

)

=
4k(Tgr − T )

D
− ρυg

dh

dx
.

In the equation (4) we denote: ρ, υ, p are the density, the velocity and the pressure of gas respectively; λ
is the coefficient of hydraulic resistance; k is the coefficient of heat transfer from the pipe to the ground;
Tgr is the temperature of the ground; T is the gas temperature; g is the acceleration of gravity; D is
the diameter of the pipe; h is the difference of pipeline height marks; t is time; x is current coordinate,
x ∈ [0, l]; l is the length of the pipeline; E is the total energy of the unit of mass;

E = i− p

ρ
+
υ2

2
; (5)

di =
∂i

∂T
dT +

∂i

∂p
dp = CpdT +

[

1

ρ
− T

(

∂(1/ρ)

∂T

)

p

]

dp;

Cp =

(

∂i

∂T

)

ρ.

(6)

In formulae (5) and (6), i is the change in internal energy; Cp is the specific heat at constant pressure.
For closing of the system of equations, the gas law is used [3]

p = ρχRT.

To calculate the compressibility factor χ, which describes the difference between natural gas and ideal
one, a considerable amount of empirical dependences are constructed, in particular [10]

χ =
1

1 + fp
,

where p is measured in atmospheres, f = (24− 0.21t◦C) · 10−4, t◦C is the gas temperature Celsius
scale; R is the gas constant.

In the isothermal case, a common mathematical model of gas flow in the pipeline is the following















∂p

∂x
+
λρυ2

2D
+
∂ (ρυ)

∂t
= 0;

∂(ρυ)

∂x
+

1

c2
∂p

∂t
= 0.

The first equation of the last formula is obtained under assumption that the change in gas density in
time can be neglected. Otherwise, the system has the form















∂p

∂x
+
λρυ2

2D
+ ρ

∂υ

∂t
= 0;

∂(ρυ)

∂x
+

1

c2
∂p

∂t
= 0,

(7)

where c is the speed of sound in the gas. In practice, values of the pressure p is of the 106 order,
and the value of speed is about of ten orders. To ensure the stability of numerical methods, in the
algorithm for solving the system (7) is beneficial to make replacements that should level the order of
numbers. Using a real gas law, and denoting f = ln(p) and γ = χRT , the system (6) can be written
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as follows














γ
∂f

∂x
+
λυ2

2D
+
∂υ

∂t
= 0,

υ
∂f

∂x
+
∂υ

∂x
+
γ

c2
∂f

∂t
= 0.

(8)

3.2. Modelling the process of gas movement in the pipeline in fractional derivatives

Consider the problem formulated above with the neglect of the Coriolis force at the constant value of
the compressibility factor χ using Caputo’s fractional derivative of the order α with respect to time.
Under these assumptions, the system (2) is written











Dα
0+ω (x, t) +

∂p

∂x
+ aω − bp = Θ(x, t),

∂ω

∂x
+

1

c2
Dα

0+p (x, t) = Ψ(x, t).

The process of gas movement in a horizontal pipeline of the length l is considered under given
boundary conditions on the function of the pressure

p(0, t) = pok(t), p(l, t) = pkk(t),

or gas consumptions
ω(o, t) = ωok(t), ω(l, t) = ωkk(t).

As the initial condition there is taken the known stationary pressure distribution

p(x, 0) = pom(x)

or gas consumptions
ω(x, 0) = ωom(x).

which are derived from the original system. Otherwise, we may get inconsistent boundary conditions.
If the boundary-initial conditions are constant, i.e. pok(t) = pok ≡ const, pkk(t) = pkk ≡ const and

ωok(t) = ωok ≡ const, ωkk(t) = ωkk ≡ const, then instead of the functions p and ω, it is expedient to
introduce into consideration the following functions

p↔ p+
x

l
hp − p0k, ω ↔ ω +

x

l
hω − ω0k,

where
hp = p0k − pkk, hω = ω0k − ωkk.

In this case, the boundary conditions are zero. Under these conditions, it is advisable to carry out the
separation of variables based on Fourier series with respect to sine, i.e.

{

p(x, t)
ω(x, t)

}

=

∞
∑

n=1

{

pn(t)
ωn(t)

}

sin
nπx

l
. (9)

Under such boundary conditions, the coefficients of the series (5), which describes the pressure distri-
bution, are calculated according to the formula

p̃n(t) = −
(c

l

)2 l

νn

[

d1ς1n(t) + d2ς2n(t) + d3ς3n(t)
]

−
(c

l

)2 l

νn
ς4n(t) + c2ς5n(t).
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Here the following denotations are introduced

νn =
1

nπi
, s1 =

1

2

(

−a−
√

a2 − 4κn

)

, s2 =
1

2

(

−a+
√

a2 − 4κn

)

,

d1 = ˆ̂νn (ahω − bhp) + ν̂n

(

1

l
hp + bpok − aωok

)

− aνn ν̂n hω,

d2 = ˆ̂νnhω + ν̂n (ωom − ωok)− νnl

(

1

l
pν̂n hω +

a

c2

(

ˆ̂νn hp + ν̂n (pom − pok)
)

)

,

d3 = −νnl
1

c2

(
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)

, κn =
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,

ζ1n =
1
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s1(s2 − s1)
+

es2τ

s2(s2 − s1)
, ζ2n =

es2 τ − es1 τ

(s2 − s1)
, ζ3n =

s2 e
s2 τ − s1 e

s1 τ

(s2 − s1)
,

ξ4n(t) =
1

l

I
∑

i=1

pst,ie
−
xi
νn l

[{

0, t < t1i
H1n(t− t1i), t > t1i

−
{

0, t < t2i
H1n(t− t2i), t > t2i

]

,

ξ5n(t) =
1

l

J
∑

j=1

qj
F
e
−
xj
νn l

[{

0, t < t1j
H2n(t− t1j) + aH1n(t− t1j), t > t1j

−

−
{

0, t < t2j
H2n(t− t2j) + aH1n(t− t2j), t > t2j

]

.
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∞
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0
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1
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]


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∞
∫
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1
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e−tυ
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sin (τυ) dυ



 dτ,
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∞
∫

0
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es2 τ − es1 τ

(s2 − s1)

]



1− 1
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∞
∫

0

1

υ
e−tυ

1/α
sin (τυ) dυ



 dτ,

H3n(t) =

∞
∫

0

[

s2 e
s2 τ − s1 e

s1 τ

(s2 − s1)

]



1− 1
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∞
∫

0

1

υ
e−tυ

1/α
sin (τυ) dυ



 dτ.

Since the originals of coefficients of series of the pressure function decomposition in the series (9) are
found, then on the basis of the additive property of the Laplace-Carson transform, it can be considered
that the found solution is the solution of the formulated problem with respect to the pressure.

4. Modelling the gas filtration process in complex porous media

4.1. The use of partial derivatives of entire orders

To describe the filtration of gas and liquid in complex porous medium, there are used equations in
partial derivatives [3]

∂

∂x

(

kh

µz

∂pj

∂x

)

+
∂

∂y1

(

kh

µz

∂pj

∂y1

)

+
∂

∂y2

(

kh

µz

∂pj

∂y2

)

= 2mh

(

∂

∂t

(p

z

)

+ 2qpat

)

. (10)

In the last equation, j = 2 for gas and j = 1 for incompressible liquid; k = k (x, y1, y2, t), m =
= m (x, y1, y2) and h = h (x, y1, y2) are coefficients of permeability, porosity, and the thickness of the
medium, respectively; µ is the dynamic viscosity of substance; pat is the atmospheric pressure; q is the
density of withdrawing.
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Gas is withdrawn out of porous media through I wells, which are located in the points (x0i , y
0
i )

over some period of time t ∈ [t1i, t2i], (i = 1, I). Then the density of the withdrawing is determined
according to the formula

q =
1

V

I
∑

i=1

qi (x, y, t) δ
(

x− x0i
) (

y − y0i
)

[η (t− t1i)− (t− t2i)] .

Here qi is the gas withdrawing out of the i−th gas well in the instant of time t; δ(x) is Dirac delta
function; η (t− tji) is Heaviside unit function.

4.2. The use of derivatives of fractional order

From the practice it is well known that the process of mass transfer in porous media at the absence
of sources strongly depends on the history of the process. In particular, this takes place during the
extraction of fluids. A special place takes the process of storing gas in underground storages. To
describe such processes it is expedient to apply the fractional calculus. In particular, the process of
gas and liquid filtration is described by means of equation with a fractional derivative with respect to
the time variable as follows:

∂

∂x

(

kh

µχ

∂pj

∂x

)

+
∂

∂y

(

kh

µχ

∂pj

∂y

)

+
∂

∂z

(

kh

µχ

∂pj

∂z

)

= 2mh

(

∂α

∂tα

(

p

χ

)

+ 2qpat

)

. (11)

Here α is the order of the fractional derivative.

4.3. The main problem

The main problem is to find the solution p(x, y1, y2, t) of equation (11) using the known values of
the pressure p(xi, y1 i, y2 i, t0) at the given points of the medium. Herewith it is necessary that the
condition of substance mass balance in the storage should be executed

M =

∫

V

ρdv,

where the integration is performed with respect to the volume of the storage V ; M is the mass of gas
in the storage; ρ is the gas density related to the pressure of the equation of the gas state.

5. Methods for solving formulated problems

Methods for solving problems of mathematical physics can be divided into several major classes: ana-
lytical, numerical, asymptotic, iterative.

5.1.Analytical methods are based mainly on the use of integral transforms with respect to some
chosen variable. Integral transformations allow us to reduce the order of differential equation, which
significantly facilitates the finding its solution.

5.2.Numerical methods are based on the replacement of differential or integral operators for the
corresponding discrete analogue. In such cases, the problem is reduced to solving algebraic equations.

5.3.Asymptotic methods are used in a case where it is necessary to have a sufficiently exact solution
of the problem in the space-time neighborhood of a point, and finding the complete solution either
impossible or associated with considerable mathematical difficulties. Asymptotic methods of problem
solving to some extent can be referred to analytical methods.

5.4. In the basis of iterative methods there lie assignments by appropriate means the initial ap-
proximation of the desired solution and the construction of algorithm of its specification. It should
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be noted that the accuracy and the convergence of the iterative procedure are significantly influenced
by an initial approximation. Therefore, as an initial solution is desirable to choose the solution of a
corresponding simplified problem.

6. Numerical experiments

6.1. Testing of the application of fractional calculus is performed for the following model prob-
lem.

Find the solution of the differential equation

∂2f

∂x2
− 1

a2
Dα
t f(t) = 0

under the zero initial condition and f(0, t) =
√
π
/

a
√
t, lim

x→∞
f(x, t) = 0. Here Dα

t is fractional

derivative in terms of Riemann-Lowville [1, 2]. In the case α = 1 Riemann-Lowville fractional derivative
transforms into the normal derivative with respect to time and the equation (1) takes the form

∂2f

∂x2
− 1

a2
∂f

∂t
= 0.

Under imposed boundary conditions, the solution of the last equation is a function

f(x, t) =

√
π

a
√
t
exp

(

− x2

4a2t

)

.

An analytical solution of the problem in terms of Riemann-Lowville fractional derivatives has the form

f(t) =
1

a

∞
∫

0

1√
ρ
e−tρe−

x
a
ρ
α
2 cos(απ

2 ) cos
[x

a
ρ

α
2 sin

(απ

2

)]

dρ.

The function f (x, t) values calculated for different values of the fractional derivative are given in Tab-
le 1.

Table 1. Values of the solution of formulated problem for different values of the order of fractional derivative
with respect to dimensionless coordinates and time.

t t = 0.001 t = 0.01 t = 0.1
x/α 1.00 0.80 0.90 0.99 1.00 0.80 0.90 0.99 1.00 0.80 0.90 0.99

0.001 1230.08 2692.70 754.77 1019.02 1057.37 1995.54 943.19 954.30 369.54 475.12 434.64 377.35

0.002 43.88 75.55 238.33 -161.79 757.64 778.89 850.72 676.83 357.42 503.27 430.20 363.75

0.003 0.17 111.54 -118.4 -159.65 434.70 568.96 459.45 375.76 338.11 455.35 384.77 341.04

0.004 0.00 -63.76 -98.40 -110.12 199.71 298.88 226.18 158.08 312.81 395.37 339.94 314.01

0.005 0.00 -72.54 -46.30 -65.34 73.47 147.66 93.29 46.30 283.04 340.41 299.42 283.54

Analysis of the results presented in Table 1 shows that the order of the fractional derivative has a
significant impact on the solution of the original problem. Hence a need for additional research and
the use of prior information to determine the order of the fractional derivative in physical processes
simulation appears.

6.2.Numerical experiment to determine the pressure distribution along the pipe according
to the system (8) is carried out in the pipeline of the length of 100 km, of the Ø1.388 m for the following
values of parameters: λ = 0.009, ρ0 = 0.682 kg/m3, T = 313K, R = 506.7 J/(kg ·K), z = 0.87.
Boundary conditions are imposed on the gas pressure, which varies in time from 60 to 70 bar on the
left edge of the pipeline and from 44.37 to 50 bar on the right side. The step with respect to time
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dt = 10 s, a number of discrete with respect to coordinate kx = 8. Numerical results are presented in
tabular form.

Table 2. Values of the pressure for different values of time and coordinates.
0 12.5 25 37.5 50 62.5 75 87.5 100

0 60.000 57.929 55.893 53.891 51.923 49.987 48.084 46.213 44.374
100 60.496 58.391 56.273 54.286 52.289 50.336 48.375 46.476 44.573
200 60.996 58.774 56.541 54.483 52.417 50.463 48.503 46.634 44.761
300 61.496 59.193 56.879 54.764 52.644 50.667 48.686 46.818 44.948
400 61.996 59.630 57.253 55.090 52.923 50.915 48.907 47.020 45.136
500 62.496 60.077 57.646 55.439 53.229 51.186 49.146 47.232 45.324
600 62.996 60.529 58.051 55.801 53.549 51.470 49.395 47.449 45.511
700 63.496 60.983 58.461 56.169 53.877 51.760 49.650 47.668 45.699
800 63.996 61.439 58.874 56.540 54.209 52.053 49.907 47.889 45.886
900 64.496 61.895 59.289 56.913 54.542 52.348 50.165 48.111 46.074
1000 64.996 62.351 59.704 57.287 54.877 52.644 50.424 48.333 46.261
2000 69.996 66.916 63.858 61.027 58.226 55.602 53.012 50.555 48.137
3000 69.996 67.439 64.879 62.331 59.788 57.292 54.807 52.401 50.013
4000 69.996 67.516 65.035 62.529 60.027 57.512 55.008 52.500 50.013
5000 69.996 67.516 65.035 62.529 60.028 57.512 55.008 52.501 50.013

Table 3. Values of the velocity for different values of time and coordinates.
0 12.5 25 37.5 50 62.5 75 87.5 100

0 11.300 11.798 12.317 12.860 13.426 14.017 14.635 15.279 15.952
100 12.808 12.515 12.784 13.063 13.504 13.970 14.408 14.867 15.027
200 13.443 13.166 13.264 13.360 13.648 13.954 14.265 14.588 14.796
300 13.901 13.648 13.657 13.654 13.824 14.002 14.228 14.460 14.666
400 14.234 14.001 13.966 13.912 14.008 14.103 14.276 14.450 14.658
500 14.486 14.270 14.214 14.135 14.190 14.237 14.380 14.520 14.734
600 14.687 14.486 14.423 14.332 14.368 14.390 14.519 14.641 14.863
700 14.857 14.669 14.606 14.514 14.542 14.553 14.678 14.794 15.025
800 15.006 14.832 14.773 14.684 14.713 14.721 14.849 14.965 15.206
900 15.143 14.981 14.930 14.847 14.880 14.892 15.025 15.147 15.396
1000 15.272 15.122 15.079 15.004 15.045 15.063 15.204 15.333 15.592
2000 16.402 16.362 16.417 16.448 16.584 16.704 16.940 17.170 17.526
3000 13.048 13.621 14.130 14.659 15.120 15.595 15.998 16.409 16.743
4000 12.581 13.137 13.713 14.316 14.944 15.601 16.285 17.002 17.749
5000 12.577 13.133 13.709 14.314 14.943 15.602 16.288 17.006 17.754
6000 12.577 13.133 13.709 14.314 14.943 15.602 16.288 17.006 17.754

The conducted numerical experiments show that for stable calculation of the gas-dynamic parame-
ters (gas store, pressure distribution etc.) the accuracy of setting the boundary conditions must be
harmonized with the precision required in solving the particular practical problems.

The deviation of values of the obtained results when using different input models of the process
takes place over certain finite space-time intervals. The resulting difference can have a significant
impact on the calculation of some gas-dynamic parameters, including the change in store of natural
gas in the pipeline.

On a choice of the numerical method to determine the pressure distribution and mass velocity in
the pipeline, of special importance are the computational process parameters such as the resistance to
fatal errors, errors of sampling, time of calculation, the variation of the boundary conditions.
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6.3.Numerical model of gas filtration in a complex porous medium (Fig. 1) is based on the finite
element method combined with the iterative procedure, which acts over some time subinterval [2,8,9,10].
The 2-D region is divided into elementary triangular elements.

Fig. 1.

Partition of the field is made so that the coordinates of the known values of the pressure (xi, yi)
coincide with the coordinates of the vertices of triangles, and (x̃i, ỹi) are nodes of the apices of the
triangles, the values of which must be found.

In general, the differential equation of second order partial derivatives with respect to the unknown
function p is written in the form

−
2
∑

i,j=1

∂

∂xi

(

aij(x)
∂p

∂xj

)

+ gp = f, x ∈ Ω2 ⊂ R2. (12)

Here p is the desired function; aij , g, f are continuous functions in their domains.
Based on the variational approach, from Equation (12) we obtain a system of linear algebraic

equations with respect to unknown values of the function

∑

j

uj(Aϕi, ϕj) = (f, ϕj), i, j = 1..n.

We can go further in two ways:

1) since the original equation is nonlinear, in the result of the variational approach we obtain a
nonlinear algebraic system of equations, the solution of which should be found by means of the
approximate or numerical methods;

2) the original equation is linearized and a linear system of algebraic equations is obtained.
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In practice, it is more expedient to use the second approach, coupled with the procedure of iteration
of the coefficients and the desired solution.

Linearization of the left-hand side of Equation (5) is carried out as follows:

∂

∂x

(

kh

µχ

∂p2

∂ζ

)

≈ 2
kh

µχ
p̃
∂

∂ζ

(

∂p

∂ζ

)

+ 2
∂

∂ζ

(

kh

µχ
· p̃
)

· ∂
∂ζ

(p̃) , (13)

here ζ ∈ {x, y} is the spatial coordinate. In the right-hand side of the equation, we take the parameter
χ outside the derivative as a constant

∂α

∂tα

(

p

χ

)

≈ 1

χ

∂αp

∂tα
,

and expand the fractional derivative ∂αp
∂tα according to the Grunwald-Letnikov scheme [11]:

GLDα
τ p := lim

∆t→0
(∆t)−α

[τ/∆t]
∑

j=0

(−1)j
(

α
j

)

p (τ − j∆t) . (14)

Grunwald-Letnikov operator (11) is approximated over the interval [0, τ ] with the subinterval step ∆t
as follows

GLDα
τ p (τ) ≈

[τ/∆t]
∑

j=0

c
(α)
j p (τ − j∆t) (15)

where c
(α)
j is Grunwald-Letnikov coefficients, defined as

A
(α)
j = (∆t)−α(−1)j

(

α
j

)

. (16)

Using the recurrence relation [6]

c
(α)
j = (∆t)−α, c

(α)
j =

(

1− 1 + α

j

)

c
(α)
j−1 (17)

we can calculate the coefficients c
(α)
j . For j = 1 we have c

(α)
1 = −α(∆t)−α.

Using the linearization (13) and the discretization scheme for the fractional derivative (14)–(17) we
transform equation (11) to the form:

p̃
kh

µχ

∂

∂x

(

∂p

∂x

)

+ p̃
kh

µχ

∂

∂y

(

∂p

∂y

)

= mh
1

χ

∂α

∂tα
(p) + 2mhqpst + F (p̃, k, h, µ, χ) , (18)

where

∂α

∂tα
p(t) =

f
∑

j=0

c
(α)
j p(tf−j)−

m
∑

k=0

(tf )
k−α

(k − α+ 1)
p(tk),

F (p̃, k, h, µ, χ) = − ∂

∂x

(

kh

µχ
· p̃
)

· ∂p̃
∂x

− ∂

∂y

(

kh

µχ
· p̃
)

· ∂p̃
∂y
.

To bring the linear equation (18) to the form (12), we use the sampling scheme with respect to time
under assumption that p̃ is the iterative approximated value of the solution p at the previous iteration
step. Then the parameters in Equation (12) will be as follows

d =
c0
p̃

mh

χ
,
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f =

(

− 2mhpstq + F (p̃, k, h, µ, χ) +
mh

χ

(

i
∑

j=1

cjp(tj − j∆t)− t−α

Γ(1− α)
p(t0)

)

)/

p̃.

FEM scheme is iteratively applied to the linear equation (18) for each instant of time t = i∆t,
i = 1, . . . , I, clarifying the compressibility factors, the coefficients of permeability k = µl∆Q/S∆p,
and the approximate solution p̃ = p.

The scheme for solving the differential equation is tested in the numerical experiment on the basis
of the data on porous medium of the area S = 16mln.m2, for the following input parameters: µ =
= 0.000011Pa·s, h = 18.2m, R = 506.7 J/(kg ·K), T = 293K, z = 0.87, m = 0.31, k = 1.8e − 12m2.

The input information is provided by the pressure values of control, metering and operating wells
in a neutral period and by withdrawn gas volumes during gas withdrawing out of the gas storage.

Figures 2–5 show the calculated values of the gas pressure in the zone of the well (Fig. 2), in the
adjacent zone of the bed (Fig. 3), in the middle of the bed (Fig. 4) and the middle-layer pressures
(Fig. 5) for different values of the order of the fractional derivative α.

Fig. 2. Values of the gas pressure in the zone of the
well for different values of the order of the fractional
derivative α.

Fig. 3. Values of the gas pressure in the adjacent
zone of the bed for different values of the order of the
fractional derivative α.

Fig. 4. Values of the gas pressure in the middle of the
bed for different values of the order of the fractional
derivative α.

Fig. 5. Values of the middle-layer preassures for dif-
ferent values of the order of the fractional derivative α.
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The numerical model of the gas filtration process in complex porous media uses the finite ele-
ment method combined with the iterative procedure, which acts over each time subinterval and the
Grunwald-Letnikov scheme.

7. Conclusions

Analysis of the results of numerical experiment shows that the value of the order of the time derivative
α does not affect the dynamics of the middle-layer pressures.

In the well zone and the adjacent zones of the bed, behaviours of the pressure depend on the
parameter of the derivative α. The less the parameter α is, the greater the difference between the
values of the pressure in the wells and the adjacent zones of the bed is. The experimental results
confirm the behavior of the gas pressure in the porous medium in the presence of atypical filtration. If
the parameter α = 1, then the values of calculated middle-layer pressures coincide with experimental
data.

The analysis of Figures 2–4 confirms the physical picture of the pressure distribution in porous
medium, namely the depression of the pressure decreases with increasing distance from the outlet.

Conducting numerical experiments on the basis of a real facility and real metering data has shown
the effectiveness of suggested in this article approaches of numerical modelling of mass transfer in
porous media of complex structure.
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Моделi масопереносу в газотранспортних системах

П’янилоЯ.Д., ПритулаМ.Г., ПритулаН.М., Лопух Н.Б.

Центр математичного моделювання Iнституту прикладних проблем механiки i математики

iм.Я.С.Пiдстригача НАН України

вул. Дж. Дудаєва 15, 79005, Львiв, Україна

Розглянуто моделi руху газу в трубопроводах та фiльтрацiї газу в складних пористих
середовищах у цiлих та дробових похiдних. Запропоновано методику лiнеаризацiї рiв-
нянь, якi входять в математичну модель масопереносу та побудовано iтерацiйну схе-
му розв’язування вихiдних систем нелiнiйних диференцiальних рiвнянь. Реалiзовано
скiнченно-елементну модель задачi iз використанням методу Петрова-Гальоркiна та
схему Грюнвальда-Летнiкова стосовно похiдних дробового порядку. Проведено до-
слiдження моделей та порiвняльний аналiз отриманих числових результатiв.

Ключовi слова: математична модель, нестацiонарний рух газу, похiднi дробо-

вих порядкiв, лiнеаризацiя, числовi методи
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