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The models of gas movement in pipelines and gas filtration processes in complex porous
media are considered in entire and fractional derivatives. The method for linearization of
equations, which are included in the mathematical model of mass transfer, is suggested as
well as an iterative scheme for solving initial systems of nonlinear differential equations is
constructed. The finite-element model of the problem with the use of the Petrov-Galerkin
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1. Introduction

A gas transportation system as a unit of gas mains also includes gas storage facilities. Gas is transported
through pipelines at high rates and under great pressures. Gas movement is influenced by the state of
the internal walls (roughness), the change of flow direction (pipe bends) and the variation of pipeline
cross-sections. At current rates of the gas transportation, vorticity flows detach from the pipe walls,
get in to the inner area of the flow, and constantly change the velocity distribution in the cross-section
that is turbulent processes take a place.

Gas storage is conducted in depleted deposits. Layers, which are collectors of deposits, are porous
formations in sandstone and exist (it can be considered so) in fractal media. In fractal media, as
opposed to a continuous one, a random wandering part moves away from the start base slower, as
not all directions of movement are available for it. Hindering of filtration and diffusion processes in
fractal media, as well as reducing the velocity of the gas in pipelines are so essential, that the physical
quantities begin to change slower than the first derivative and accounting for this effect is possible only
in the integral-differential equation containing derivative with respect to time of the fractional order.

The data mentioned above make us develop the theory and methods of mathematical and computer
modeling of processes and systems in view of the mentioned effects.

In classical mathematical models, integro-differential equations and systems of ordinary and partial
derivatives, integrals and derivatives have the order that is expressed in whole numbers [1-4]. Currently,
the widespread use of fractional integrals and fractional derivatives is constrained by the lack of their
clear physical interpretation, which, for example, the ordinary integral or ordinary derivative has [5-7].

One of the goals of this work is to show the degree of adequacy of models with fractional derivatives.
A construction of a model of any physical process is associated with certain assumptions as for physical
processes, so for the construction of mathematical tools. In particular, to simplify the mathematical
model of the gas flow in pipelines, it is assumed that the change in gas density in time can be neglected.
It is obvious that for slow process this is permissible. However, in the rapid change of the process,
such assumption can lead to the loss of the adequacy over some space-time intervals. Further, in terms
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of computational mathematics, some problems arise due to the fact that the calculation involves large
and small numbers that results in loss of significant value precision.

The aim of this paper is a construction and study of models of mass transfer in complex media,
methods of linearization of equations, which are included in the mathematical model, and the con-
struction of iterative schemes for solving the initial system of nonlinear differential equations, as well
as testing the results obtained.

2. Definition of fractional derivatives

Derivatives of entire orders are local characteristics of functions that describe the physical process.
If a course of the process is described in some space-time neighbourhood only, then with the help of
derivatives of entire orders, the process under study can be quite adequately and accurately described.
However, in nature, behaviour of many physical processes depends on their history. Then the use of
derivatives of entire orders requires the construction of certain iterative procedures that in a sense
would take into account the history of this process. This leads to the complication of the correspond-
ing mathematical model and algorithms of necessary calculations. A solution to this problem is to
build models using fractional calculus. Derivatives of fractional order are non-local characteristics
of functions: they depend not only on the function behaviour in the neighbourhood of the point in
question.

In the literature, it is known many ways to introduce the fractional calculus. In particular, the
most commonly used is the fractional derivative operators in terms of Caputo and Riemann-Lowville.
Operator of fractional derivative in terms of Caputo is determined as follows [5-7]:

T 8m+1
caa 1 8§m-&-l 80(5)
‘DY = = d 1
T 870‘('0(7) I‘(m—i—l—a)/(T—f)o‘ m g ()
0
where m = [a], [] is an integer part of a real number, and in terms of Riemann-Lowville
“0° R B3
DY = = d¢. 2
= Gtl) = F T e | e 2
0

Between the Caputo’s and Riemann-Lowville’s derivatives the following relationship has a place [12]

6k
“p D2
=t Z T(k—a+t1)ork” 3)

As it is seen from the last correlations, operators of fractional derivatives depend on the values of
functions right from the reference point.

3. Modelling gas flow process in pipelines

3.1. Case of integer differentiation

In these times, an enough common model of the gas movement process in pipelines in unsteady non-
isothermal mode is an interconnected system of differential equations in partial derivatives [3,4,8]

d(pv) 0 0 v |v] dh
ot —|—8m(p+pv)— p(?D T )
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dp 0 B

o oz (pv) =0, (4)
) ) p\ 4T, -T)  dh

p (pE) + 5"’ (E + p> =——p5 TP

In the equation (4) we denote: p,v, p are the density, the velocity and the pressure of gas respectively; A
is the coefficient of hydraulic resistance; k is the coefficient of heat transfer from the pipe to the ground;
Ty, is the temperature of the ground; 7' is the gas temperature; g is the acceleration of gravity; D is
the diameter of the pipe; h is the difference of pipeline height marks; ¢ is time; x is current coordinate,
x € [0,1];  is the length of the pipeline; E is the total energy of the unit of mass;

2
_,_P_ Y.
E=i ,0+ 5 (5)
. 0t 0i 1 a(1/p)
= —dI'+ —dp = T --T :
di 8Td —i—apdp CpdT + p ( 5T , dp; o

0i
= (o)

In formulae (5) and (6), 7 is the change in internal energy; C,, is the specific heat at constant pressure.
For closing of the system of equations, the gas law is used [3]

p = pxRT.

To calculate the compressibility factor y, which describes the difference between natural gas and ideal
one, a considerable amount of empirical dependences are constructed, in particular [10]

1

X:Tfp’

where p is measured in atmospheres, f = (24 — 0.21t°C) - 1074, t°C is the gas temperature Celsius
scale; R is the gas constant.
In the isothermal case, a common mathematical model of gas flow in the pipeline is the following

op  Apv? 9 (pv)

dx 2D ' ot

I(pv) 10p _
Ox ot

0.

The first equation of the last formula is obtained under assumption that the change in gas density in
time can be neglected. Otherwise, the system has the form

o " 20 TP =0 @
Opv)  10p _
Ozx 2ot

where ¢ is the speed of sound in the gas. In practice, values of the pressure p is of the 108 order,
and the value of speed is about of ten orders. To ensure the stability of numerical methods, in the
algorithm for solving the system (7) is beneficial to make replacements that should level the order of
numbers. Using a real gas law, and denoting f = In(p) and v = xRT, the system (6) can be written
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as follows
of At dv
Yor ToD Tt —

0f [ Ov  20f_

U@x or 2ot

3.2. Modelling the process of gas movement in the pipeline in fractional derivatives

Consider the problem formulated above with the neglect of the Coriolis force at the constant value of
the compressibility factor x using Caputo’s fractional derivative of the order o with respect to time.
Under these assumptions, the system (2) is written

0
Dy w(x,t) + 8—i + aw — bp = O(z, 1),
Ow
— +
x

1 o
P 2 Do_,’_p(.’L',t) = \I’(.’L',t)

c
The process of gas movement in a horizontal pipeline of the length [ is considered under given
boundary conditions on the function of the pressure

p(O,t) :pok(t)v p(lvt) :pkk(t)7

or gas consumptions
W(O’ t) = Wok(t)’ w(la t) = wkk(t)’

As the initial condition there is taken the known stationary pressure distribution

p(.%', 0) - pom(x)

or gas consumptions
w(z,0) = wom ().

which are derived from the original system. Otherwise, we may get inconsistent boundary conditions.
If the boundary-initial conditions are constant, i.e. pok(t) = pox = const, pri(t) = prr = const and

Wok (t) = wer = const, wik(t) = wrr = const, then instead of the functions p and w, it is expedient to

introduce into consideration the following functions

x

X
lhp_pOk;) wHw-'—_hw_ka‘)

p<pt I

where
hy = pok — Pkk, hw = Wok — Wik-

In this case, the boundary conditions are zero. Under these conditions, it is advisable to carry out the
separation of variables based on Fourier series with respect to sine, i.e.

(Lo -2 {ul) b ”

Under such boundary conditions, the coefficients of the series (5), which describes the pressure distri-
bution, are calculated according to the formula

5u(0) = —(5) - drcin(t) + daosan ) + dsssn()] — (5) un(t) + 1)
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Here the following denotations are introduced
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Since the originals of coefficients of series of the pressure function decomposition in the series (9) are
found, then on the basis of the additive property of the Laplace-Carson transform, it can be considered
that the found solution is the solution of the formulated problem with respect to the pressure.

4. Modelling the gas filtration process in complex porous media

4.1. The use of partial derivatives of entire orders

To describe the filtration of gas and liquid in complex porous medium, there are used equations in
partial derivatives [3]

0 (khop 0 (khop 0 (khop o (p
—————————z2h—(—)2a. 10
ox (uz 8m>+8y1 <uz8y1>+8y2 (,uzayg " ot \z + 24Pat (10)
In the last equation, j = 2 for gas and j = 1 for incompressible liquid; k = k (z,y1,y2,t), m =
=m (z,y1,y2) and h = h(z,y1,y2) are coefficients of permeability, porosity, and the thickness of the

medium, respectively; u is the dynamic viscosity of substance; py: is the atmospheric pressure; ¢ is the
density of withdrawing.

Mathematical Modeling and Computing, Vol. 1, No. 1, pp.84-96 (2014)



Models of mass transfer in gas transmission systems 89

Gas is withdrawn out of porous media through I wells, which are located in the points (m?,y?)
over some period of time ¢ € [t1;,t2;], (¢ = 1,I). Then the density of the withdrawing is determined
according to the formula

I
1
q= VZQZ (z,y,t) 0 (x — ) (y — 7)) [n (¢t = trs) — (¢ — t2:)] -
i=1
Here ¢; is the gas withdrawing out of the i—th gas well in the instant of time ¢; §(x) is Dirac delta
function; n (¢ — t;;) is Heaviside unit function.

4.2. The use of derivatives of fractional order

From the practice it is well known that the process of mass transfer in porous media at the absence
of sources strongly depends on the history of the process. In particular, this takes place during the
extraction of fluids. A special place takes the process of storing gas in underground storages. To
describe such processes it is expedient to apply the fractional calculus. In particular, the process of
gas and liquid filtration is described by means of equation with a fractional derivative with respect to
the time variable as follows:

0 (khop 0 (khop 9 (khop oY (p

— | ——= — [ ——= — [ —= ] =2 — (= 2 . 11

Oz (ux 856) "oy (ux 8y> "o (MX 82) mh <3t°‘ (x P (1)
Here « is the order of the fractional derivative.

4.3. The main problem

The main problem is to find the solution p(z,y1,ys2,t) of equation (11) using the known values of
the pressure p(x;,y1i,Y2i,t0) at the given points of the medium. Herewith it is necessary that the
condition of substance mass balance in the storage should be executed

M:/pdv,

\%4

where the integration is performed with respect to the volume of the storage V'; M is the mass of gas
in the storage; p is the gas density related to the pressure of the equation of the gas state.

5. Methods for solving formulated problems

Methods for solving problems of mathematical physics can be divided into several major classes: ana-
lytical, numerical, asymptotic, iterative.

5.1. Analytical methods are based mainly on the use of integral transforms with respect to some
chosen variable. Integral transformations allow us to reduce the order of differential equation, which
significantly facilitates the finding its solution.

5.2. Numerical methods are based on the replacement of differential or integral operators for the
corresponding discrete analogue. In such cases, the problem is reduced to solving algebraic equations.

5.3. Asymptotic methods are used in a case where it is necessary to have a sufficiently exact solution
of the problem in the space-time neighborhood of a point, and finding the complete solution either
impossible or associated with considerable mathematical difficulties. Asymptotic methods of problem
solving to some extent can be referred to analytical methods.

5.4.In the basis of iterative methods there lie assignments by appropriate means the initial ap-
proximation of the desired solution and the construction of algorithm of its specification. It should
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be noted that the accuracy and the convergence of the iterative procedure are significantly influenced
by an initial approximation. Therefore, as an initial solution is desirable to choose the solution of a
corresponding simplified problem.

6. Numerical experiments

6.1. Testing of the application of fractional calculus is performed for the following model prob-
lem.
Find the solution of the differential equation

f 1,
@—gl)tf(t)zo

under the zero initial condition and f(0,t) = /@/avt, lim f(z,t) = 0. Here D is fractional
T—r00

derivative in terms of Riemann-Lowville [1, 2|. In the case @ = 1 Riemann-Lowville fractional derivative

transforms into the normal derivative with respect to time and the equation (1) takes the form

Under imposed boundary conditions, the solution of the last equation is a function

2
flx,t) = %exp <—&) .

An analytical solution of the problem in terms of Riemann-Lowville fractional derivatives has the form
[e.e]
1 1 z, 9 an T « aT
) == [ e tre—Ep? cos(F) [_ 2 si (_)] dp.
f@) a/\/ﬁe e cos | —p2 sin { = p
0

The function f (x,t) values calculated for different values of the fractional derivative are given in Tab-
lel.

Table 1. Values of the solution of formulated problem for different values of the order of fractional derivative
with respect to dimensionless coordinates and time.

t t = 0.001 t =0.01 t=0.1

/o 1.00 0.80 0.90 0.99 1.00 0.80 0.90 0.99 1.00 0.80 0.90 0.99

0.001 | 1230.08 | 2692.70 | 754.77 | 1019.02 | 1057.37 | 1995.54 | 943.19 | 954.30 | 369.54 | 475.12 | 434.64 | 377.35

0.002 43.88 75.55 238.33 | -161.79 757.64 778.89 850.72 | 676.83 | 357.42 | 503.27 | 430.20 | 363.75

0.003 0.17 111.54 -118.4 | -159.65 434.70 568.96 459.45 | 375.76 | 338.11 | 455.35 | 384.77 | 341.04

0.004 0.00 -63.76 -98.40 | -110.12 199.71 298.88 226.18 | 158.08 | 312.81 | 395.37 | 339.94 | 314.01

0.005 0.00 -72.54 -46.30 -65.34 73.47 147.66 93.29 46.30 283.04 | 340.41 | 299.42 | 283.54

Analysis of the results presented in Table 1 shows that the order of the fractional derivative has a
significant impact on the solution of the original problem. Hence a need for additional research and
the use of prior information to determine the order of the fractional derivative in physical processes
simulation appears.

6.2. Numerical experiment to determine the pressure distribution along the pipe according
to the system (8) is carried out in the pipeline of the length of 100 km, of the (#1.388 m for the following
values of parameters: A = 0.009, py = 0.682kg/m3, T = 313K, R = 506.7J/(kg - K), z = 0.87.
Boundary conditions are imposed on the gas pressure, which varies in time from 60 to 70 bar on the
left edge of the pipeline and from 44.37 to 50 bar on the right side. The step with respect to time
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dt = 10s, a number of discrete with respect to coordinate k, = 8. Numerical results are presented in
tabular form.

Table 2. Values of the pressure for different values of time and coordinates.
0 12.5 25 37.5 50 62.5 75 87.5 100
0 60.000 | 57.929 | 55.893 | 53.891 | 51.923 | 49.987 | 48.084 | 46.213 | 44.374
100 | 60.496 | 58.391 | 56.273 | 54.286 | 52.289 | 50.336 | 48.375 | 46.476 | 44.573
200 | 60.996 | 58.774 | 56.541 | 54.483 | 52.417 | 50.463 | 48.503 | 46.634 | 44.761
300 | 61.496 | 59.193 | 56.879 | 54.764 | 52.644 | 50.667 | 48.686 | 46.818 | 44.948
400 | 61.996 | 59.630 | 57.253 | 55.090 | 52.923 | 50.915 | 48.907 | 47.020 | 45.136
500 | 62.496 | 60.077 | 57.646 | 55.439 | 53.229 | 51.186 | 49.146 | 47.232 | 45.324
600 | 62.996 | 60.529 | 58.051 | 55.801 | 53.549 | 51.470 | 49.395 | 47.449 | 45.511
700 | 63.496 | 60.983 | 58.461 | 56.169 | 53.877 | 51.760 | 49.650 | 47.668 | 45.699
800 | 63.996 | 61.439 | 58.874 | 56.540 | 54.209 | 52.053 | 49.907 | 47.889 | 45.886
900 | 64.496 | 61.895 | 59.289 | 56.913 | 54.542 | 52.348 | 50.165 | 48.111 | 46.074
1000 | 64.996 | 62.351 | 59.704 | 57.287 | 54.877 | 52.644 | 50.424 | 48.333 | 46.261
2000 | 69.996 | 66.916 | 63.858 | 61.027 | 58.226 | 55.602 | 53.012 | 50.555 | 48.137
3000 | 69.996 | 67.439 | 64.879 | 62.331 | 59.788 | 57.292 | 54.807 | 52.401 | 50.013
4000 | 69.996 | 67.516 | 65.035 | 62.529 | 60.027 | 57.512 | 55.008 | 52.500 | 50.013
5000 | 69.996 | 67.516 | 65.035 | 62.529 | 60.028 | 57.512 | 55.008 | 52.501 | 50.013

Table 3. Values of the velocity for different values of time and coordinates.
0 12.5 25 37.5 50 62.5 75 87.5 100
0 11.300 | 11.798 | 12.317 | 12.860 | 13.426 | 14.017 | 14.635 | 15.279 | 15.952
100 | 12.808 | 12.515 | 12.784 | 13.063 | 13.504 | 13.970 | 14.408 | 14.867 | 15.027
200 | 13.443 | 13.166 | 13.264 | 13.360 | 13.648 | 13.954 | 14.265 | 14.588 | 14.796
300 | 13.901 | 13.648 | 13.657 | 13.654 | 13.824 | 14.002 | 14.228 | 14.460 | 14.666
400 | 14.234 | 14.001 | 13.966 | 13.912 | 14.008 | 14.103 | 14.276 | 14.450 | 14.658
500 | 14.486 | 14.270 | 14.214 | 14.135 | 14.190 | 14.237 | 14.380 | 14.520 | 14.734
600 | 14.687 | 14.486 | 14.423 | 14.332 | 14.368 | 14.390 | 14.519 | 14.641 | 14.863
700 | 14.857 | 14.669 | 14.606 | 14.514 | 14.542 | 14.553 | 14.678 | 14.794 | 15.025
800 | 15.006 | 14.832 | 14.773 | 14.684 | 14.713 | 14.721 | 14.849 | 14.965 | 15.206
900 | 15.143 | 14.981 | 14.930 | 14.847 | 14.880 | 14.892 | 15.025 | 15.147 | 15.396
1000 | 15.272 | 15.122 | 15.079 | 15.004 | 15.045 | 15.063 | 15.204 | 15.333 | 15.592
2000 | 16.402 | 16.362 | 16.417 | 16.448 | 16.584 | 16.704 | 16.940 | 17.170 | 17.526
3000 | 13.048 | 13.621 | 14.130 | 14.659 | 15.120 | 15.595 | 15.998 | 16.409 | 16.743
4000 | 12.581 | 13.137 | 13.713 | 14.316 | 14.944 | 15.601 | 16.285 | 17.002 | 17.749
5000 | 12.577 | 13.133 | 13.709 | 14.314 | 14.943 | 15.602 | 16.288 | 17.006 | 17.754
6000 | 12.577 | 13.133 | 13.709 | 14.314 | 14.943 | 15.602 | 16.288 | 17.006 | 17.754

The conducted numerical experiments show that for stable calculation of the gas-dynamic parame-
ters (gas store, pressure distribution etc.) the accuracy of setting the boundary conditions must be
harmonized with the precision required in solving the particular practical problems.

The deviation of values of the obtained results when using different input models of the process
takes place over certain finite space-time intervals. The resulting difference can have a significant
impact on the calculation of some gas-dynamic parameters, including the change in store of natural
gas in the pipeline.

On a choice of the numerical method to determine the pressure distribution and mass velocity in
the pipeline, of special importance are the computational process parameters such as the resistance to
fatal errors, errors of sampling, time of calculation, the variation of the boundary conditions.
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6.3. Numerical model of gas filtration in a complex porous medium (Fig. 1) is based on the finite
element method combined with the iterative procedure, which acts over some time subinterval [2,8,9,10].
The 2-D region is divided into elementary triangular elements.

Fig. 1.

Partition of the field is made so that the coordinates of the known values of the pressure (x;,y;)
coincide with the coordinates of the vertices of triangles, and (Z;, ;) are nodes of the apices of the
triangles, the values of which must be found.

In general, the differential equation of second order partial derivatives with respect to the unknown
function p is written in the form

2

O (@22 4 gp— )
Z-le Iz (a”(x)ax) togp=1Ff zelp C R (12)

Here p is the desired function; a;j, g, f are continuous functions in their domains.
Based on the variational approach, from Equation (12) we obtain a system of linear algebraic
equations with respect to unknown values of the function

J

We can go further in two ways:

1) since the original equation is nonlinear, in the result of the variational approach we obtain a
nonlinear algebraic system of equations, the solution of which should be found by means of the
approximate or numerical methods;

2) the original equation is linearized and a linear system of algebraic equations is obtained.
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In practice, it is more expedient to use the second approach, coupled with the procedure of iteration
of the coefficients and the desired solution.
Linearization of the left-hand side of Equation (5) is carried out as follows:

o (kh Op? khaap o (kh .\ 0
a—<a a—c) ~ 2 Pac (6_<)+28<< p)'a—c“’)’ (13)

here ¢ € {x,y} is the spatial coordinate. In the right-hand side of the equation, we take the parameter
x outside the derivative as a constant

0% (p\ _ 19%

ot \x )~ x ot

and expand the fractional derivative % according to the Grunwald-Letnikov scheme [11]:

[r/At]

“EDop:= lim (At)™* Y (-1) ( j‘ >p(T—jAt). (14)

At—0 -
Jj=0

Grunwald-Letnikov operator (11) is approximated over the interval [0, 7] with the subinterval step At

as follows
[r/At]

SLpep(ry~ Y dp(r —jAr) (15)
=0
(c)

where ¢ s Grunwald-Letnikov coefficients, defined as

A = (At (~1) ( jo‘ ) . (16)

Using the recurrence relation [6]

« — o 1 o
c§ ) = (At)~7, c§ ) = <1 - —;—a) cg-_)l (17)
we can calculate the coefficients CE»O[). For j = 1 we have cga) = —a(At)™“

Using the linearization (13) and the discretization scheme for the fractional derivative (14)—(17) we
transform equation (11) to the form:

_kh O (Op _kh 0 (Op 1 0%
o O (833) +pu><8y <ay) mh— NG (p) + 2mhapst + F (B, k. hy p, ) (18)
where
o f o) m k «
%p(t) Jgoc p(ts—;) Z —a—i— 1 p(tr),

i 9 (kh N\ 95 0 (kh 1\ 0p
Fp,k,h,p,x) = agg(ﬂxm) e ay( p> 9

To bring the linear equation (18) to the form (12), we use the sampling scheme with respect to time
under assumption that p is the iterative approximated value of the solution p at the previous iteration
step. Then the parameters in Equation (12) will be as follows

h
4= Qmh
P X
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Jj=1

FEM scheme is iteratively applied to the linear equation (18) for each instant of time t = iAt,
i = 1,...,1, clarifying the compressibility factors, the coefficients of permeability k = ulAQ/SAp,
and the approximate solution p = p.

The scheme for solving the differential equation is tested in the numerical experiment on the basis
of the data on porous medium of the area S = 16 mln.m?, for the following input parameters: u =
= 0.000011 Pa-s, h = 18.2m, R =506.7J/(kg - K), T = 293K, z = 0.87, m = 0.31, k = 1.8 — 12m?.

The input information is provided by the pressure values of control, metering and operating wells
in a neutral period and by withdrawn gas volumes during gas withdrawing out of the gas storage.

Figures 2-5 show the calculated values of the gas pressure in the zone of the well (Fig.2), in the
adjacent zone of the bed (Fig.3), in the middle of the bed (Fig.4) and the middle-layer pressures
(Fig.5) for different values of the order of the fractional derivative a.
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Fig. 2. Values of the gas pressure in the zone of the Fig. 3. Values of the gas pressure in the adjacent

well for different values of the order of the fractional zone of the bed for different values of the order of the
derivative . fractional derivative a.
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Fig. 4. Values of the gas pressure in the middle of the Fig. 5. Values of the middle-layer preassures for dif-
bed for different values of the order of the fractional ferent values of the order of the fractional derivative a.
derivative .
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The numerical model of the gas filtration process in complex porous media uses the finite ele-
ment method combined with the iterative procedure, which acts over each time subinterval and the
Grunwald-Letnikov scheme.

7. Conclusions

Analysis of the results of numerical experiment shows that the value of the order of the time derivative
« does not affect the dynamics of the middle-layer pressures.

In the well zone and the adjacent zones of the bed, behaviours of the pressure depend on the
parameter of the derivative a. The less the parameter « is, the greater the difference between the
values of the pressure in the wells and the adjacent zones of the bed is. The experimental results
confirm the behavior of the gas pressure in the porous medium in the presence of atypical filtration. If
the parameter = 1, then the values of calculated middle-layer pressures coincide with experimental
data.

The analysis of Figures2-4 confirms the physical picture of the pressure distribution in porous
medium, namely the depression of the pressure decreases with increasing distance from the outlet.

Conducting numerical experiments on the basis of a real facility and real metering data has shown
the effectiveness of suggested in this article approaches of numerical modelling of mass transfer in
porous media of complex structure.
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Mopeni maconepeHoCy B ra3oTpaHCNOPTHUX cUcTemMax

[Tsanuo 4. 1., lpuryna M. I, Tlpuryna H. M., Jlonyx H. B.

Lernmp mamemamuurozo modearo8arus Incmumymy npukiadHUT Npodaem METAHIKY | MAMEMATMUKY

im. 5. C. [Tidempuezavwa HAH Yxpainu
eyn. otwc. dydaesa 15, 79005, Jlvsis, Yxpaina

PosrisiyTo Mmozeni pyxy rasy B TpybompoBomax Ta (isbTpariii ra3y B CKIIHAX TOPUCTUX
CepeIOBUINAX Y IJINX Ta JIPOOOBUX MOXITHIX. 3AIIPOIIOHOBAHO METO/IUKY JIHeApU3aIlil pis-
HSHb, IKi BXOJIATh B MATEMATUYIHY MO/IE/Ib MACOIIEPEHOCY Ta, MOOYI0BAHO iTepalliiiny cxe-
My PO3B’si3yBaHHSI BUXITHUX CHUCTEM HEJIHIHHUX JudepeHiiiaJbHuX PiBHSHB. PeasiizoBaHO
CKIHYEHHO-eJIEMEHTHY MOJIeJIb 3ajadi i3 Bukopucraunusam merony Ilerposa-lanmpopkina Ta
cxemy [I'pronBasibia-JlerHikoBa cTocoBHO mOXimHUX J1poboBOTO TOpsiaKy. llpoBemeno mo-
CJIITPKEHHST MO/IeJIell Ta MOPIBHSJILHUN aHaJ i3 OTPUMAHUX UHUCJIOBUX PE3Y/IHTATIB.

Kntouosi cnoBa: mamemamuuna modeas, Hecmauionaphull pyx 2a3y, noriohi 0pobo-
UL NOPAJKIS, NIHEAPU3AULA, YUCA08T MeMOodu
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