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1. Introduction

Photoelasticity is widely used for non-destructive determination of 2-d strain-stressed state of isotropic
dielectric solids [1]. Application of the method is based on the simple relation, knowing as stress-optic
law:

(σI − σII) =
1

Ch
δ. (1)

It connects the difference of the first σI and the second σII principal stresses with the phase retarda-
tion δ of polarized light propagating in the object in the direction normal to the both principal axes I
and II. Here C is the stress-optic coefficient, h is the dimension of the object in the direction of light
propagation.

The formula (1) was obtained in assumption of homogeneous strain-stressed state. So, the method
based on it is applicable only for cases when the stress components are non-changeable in the directions
of light propagation. That takes place for objects being in plane stress state.

There is a case of inhomogeneous strain-stressed state, when we can obtain a posteriori information
about it, sounding the object by polarized light. It is the case when the principal axes of stress tensor
are non-changeable in the direction of light propagation. Then we have integral stress-optic law:

h∫

0

(σ1 − σ2) dz =
1

C
δ. (2)

where σ1 and σ2 are the projections of the principal axes on the plane normal to direction of light
propagation.

It is a very spatial case. It is realized when the object, being in a plane strain state, is sounded in
the directions lying in the plane of translation symmetry. So, in this case, as in the previous one, the
stress-optic law can be used for determination of 2-d stress-strained state.

The relations (1) and (2) represent mathematical models for polarized light interaction with strained
solids for the two special cases. The methods for non-destructive determination of 2-d stress fields can
be implemented on this basis with the use of polarized-optical measurement. This technique is very
precise can be automated [2–4].
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Integral photoelasticity relations for inhomogeneously strained dielectrics 145

That encourages researchers to search for possibilities to apply the photoelasticity phenomenon for

determination parameters of arbitrary 3-d strain-stressed state [5–9]. In aggregate with a tomographic

approach it would to enable creation of a powerful method for nondestructive testing of stress-strained

state of dielectric solids.

The paper deals with mathematical model for interaction of polarized light with strain fields in

solids. An isotropic and homogeneous non-magnetizable lossless dielectric body B is considered. The

body occupies a 1-connected area V ⊂ R
3 bounded by sufficiently smooth surface ∂V. The body is

in inhomogeneous elastic stress-strained state and possesses features of optic anisotropy and inhomo-

geneity induced by strain. The body is subjected to sounding in different directions K ⊂ V by narrow

parallel beams of polarized light in order to gather a posteriori information about its stress-strained

state. The polarization of incident light beams are known; polarization of emerging light beams can

be measured by polarized-optical methods. The objective is to establish integral relations connecting

distributions of strain tensor’s e components eij(r), r ∈ K, i, j = 1, 2, 3 along the directions K of

light’s propagation to measurable parameters of polarization of emerging light beams.

2. Optical anisotropy and inhomogeneity of strained body

Light propagation in the body is defined by the two pairs of vector parameters [10] — electric field

intensity E = {Ei} and displacement D = {Di}, magnetic field intensity H = {Hi} and magnetic

induction B = {Bi}, which, in the general case, are functions of spatial coordinate r ∈ V and time

t ∈ R
+:

E = E (r, t) , D = D (r, t) , H = H (r, t) , B = B (r, t) . (3)

Here Ei, Di, Bi and Hi stand for components of the vectors E, D, B and H in the orthonormal basis

of a global Cartesian coordinate system (x1, x2, x3).

The field vectors (3) satisfy in V four Maxwell macroscopic equations [10]. In the absence of

volumetric charges and currents they look like

∇×E = −∂B
∂t
, ∇ ·D = 0,

∇×H =
∂D

∂t
, ∇ ·B = 0.

(4)

For electromagnetic fields of low intensity, when external electric field is small enough in compar-

ison with molecular fields of medium, linear material equations, expressing the electric displacement

vector D in term of electric field E and magnetic induction vector B in terms of magnetic field H, can

be used

D = ε · E, B = µ0H. (5)

Here ε = {εij} is a dielectric permittivity tensor in current configuration of body, µ0 is the vacuum

magnetic permeability; in SI units µ0 = 4π · 10−7N/m.

We introduce a relative permittivity tensor
⌢
ε and its disturbance ε̃ caused by strain, in terms of

which the permittivity tensor ε can be expressed as

ε = ε
⌢
ε= ε (I+ ε̃) , (6)

where ε is the scalar dielectric permittivity of body in its initial (unstrained) state; I is the unit tensor

of rank two.

As the optical anisotropy and inhomogeneity induced by elastic strain are small, in linear approxi-

mation we can take

ε̃ = P · ·e. (7)
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146 ChekurinV. F.

Here P = {Pijkl} stands for photoelasticity tensor of rank four, e = {eij} stands for linear strain

tensor.

As in its initial unstrained state the medium is isotropic, the components Pijkl of photoelasticity

tensor can be expressed in two independent dimensionless material constants Pe and P̂e:

Pijkl = Peδijδkl + P̂e (δikδjl + δilδjk) , (8)

where δij is Kronecker delta.

In view of (8), the relation (7) can be rewritten as

ε̃ = PeTr (e) I+ P̂ee. (9)

If to decompose tensor ε̃ into the isotropic ε̃ and deviatoric ε̂ = {ε̂ij} parts:

ε̃ = ε̃ I+ ε̂, (10)

where ε̃ ≡ 1/3Trace (ε̃), ε̂ ≡ ε̃− ε̃ I, we can use instead of (9) the relations

ε̃ = Pee, ε̂ = 2P̂eê. (11)

Here we used denotation Pe = 1/3(3P1 + 2P̂e), e = Tr(e), ê = e− 1/3e I, where e is volumetric strain

(dilatation), ê is strain deviator.

When the strain is elastic, strain tensor e can be explicitly termed via the Cauchy stress tensor

σ = {σij} and we can rewrite relationships (11) in the form

ε̃ = Pσσ, ε̂ = 2P̂σσ̂. (12)

Here we used denotation Pσ = Pe/K = (3P1 + 2P̂e)/(3K), P̂σ = P̂e/G, σ = −1/3Tr(σ), σ̂ = σ + σI,

where K and G are dilatation and shear modules of medium [11]; σ and σ̂ = {σ̂ij} are isotropic and

deviatoric parts of stress tensor σ.

If the components eij of strain tensor are given as functions specified in area V:

eij = eij(r), r ∈ V (13)

we can determine, with the using the relations (6), (9), the distributions of components εij of permit-

tivity tensor in the area V
εij = εij(r), r ∈ V (14)

To introduce a quantitative measure for optical inhomogeneity of medium, induced by the strain,

we consider a unit vector k = {k1, k2, k3} and a point M(ξ1, ξ2, ξ3) ∈ V. The pair K = {k,M} deter-

mines a unique line passing through the body. We can consider a directional permittivity component

distributions:
⌢
ε ij (z) =

⌢
ε ij (k1z + ξ1, k2z + ξ2, k3z + ξ3), where z is a coordinate on K.

Let ‖∂ ⌢
ε ij /∂z‖ be a scalar norm of tensor-valued function ∂

⌢
ε ij /∂z. Then the length

lK = ‖∂⌢ε ij/∂z‖−1 is a characteristic parameter of medium’s optical inhomogeneity in the direction

K. We say that optical inhomogeneity of the medium in direction K is week if the wavelength λ of

sounding light is small as compared to the length lK.

Introducing the dimensionless parameter µK = λ/lK, we can express this definition in the form:

inhomogeneity in the direction K is week if µK ≪ 1. Similarly, we say that the body B is slightly

inhomogeneous if µ≪ 1, where µ = max
K∈K

(µK), K stands for the set of straights crossing the domain V.
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Integral photoelasticity relations for inhomogeneously strained dielectrics 147

3. Model of interaction of polarized light with strained solid

Let the body B is sounded in the direction K by a parallel light beam which falls on the boundary ∂V
from external homogeneous isotropic lossless medium with permittivity εout. Electromagnetic field of
a light beam refracted into the body’s volume V satisfies the system (4), (5).

Since the body is non-magnetizable, it is convenient to reduce the system (4), using relations (5),
to one vector wave equation in electric field E or to equivalent linear system of three coupled scalar
wave equations in Cartesian components Ei, i = 1, 2, 3 of electric field

1

c2
⌢
ε ij

∂2Ej
∂t2

= ∆Ei −
∂

∂xi

∂Ej
∂xj

. (15)

Here c = 1/
√
εµ0 is velocity of light in unstrained medium.

Monochromatic light is harmonic in time electromagnetic wave:

E (r, t) = Re
(
Ė (r) exp (−iωt)

)
, (16)

where Ė (r) is complex wave amplitude (phasor); i stands for imaginary unit; ω is a real constant
(circular frequency).

Substituting (16) into equations (15), we come to time-independent wave equations for the pha-
sors Ėj :

−ω
2

c2
⌢
ε ij Ėj = ∆Ėi −

∂

∂xi

∂Ėj
∂xj

, i, j = 1, 2, 3. (17)

The functions Ėj satisfies on the boundary ∂V the conditions

(
Ėi + Ėouti − ĖIi

)∣∣∣
SK

(δij − ninj) = 0,
(
ε
⌢
ε ij Ėj + εoutĖ

out
i − εoutĖ

I
i

)∣∣∣
SK

ni = 0,

(
Ėj + Ėoutj

)∣∣∣
∂V/SK

· (δij − ninj) = 0,
(
ε
⌢
ε ij Ėj + εoutE

out
i

)∣∣∣
∂V/SK

ni = 0.
(18)

Here ĖI =
{
ĖIi

}
stands for phasor of incident light beam, SK is the domain of intersection of the

incident beam and the boundary ∂V, Ėout =
{
Ėouti

}
stand for the electric phasor of the field arising

outside the boundary ∂V. It satisfy the equation

∆Ėouti +
ω2

c2out
Ėouti = 0, cout = 1/

√
εoutµ0. (19)

We can consider ĖI in conditions (16) as a given vector-function specified in the domain SK:

ĖI = ĖI (r) , r ∈ SK (20)

The equations (17), (19) with boundary conditions (18) and given functions (14), (20) specify the
correct direct problem for determination of the parameters Ė (r) and Ėout (r) of electromagnetic field
the body’s volume V and outside its boundary ∂V. We will consider this problem as a mathematical
model for sounding of the body with polarized light.
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4. Simplification of the model

The model is too complicated to use it for developing the methods of tensor field tomography. But the
model can be simplified if to take into account the typical conditions of implementation of polarized-
optical measurements and characteristic features of the body B. Let consider them.

1. To prevent reflection and refraction of light on the boundary ∂V, the object is immersed in
transparent optically isotropic and homogeneous liquid, permittivity εout of which is very close to
permittivity of object in its actual state. Due to that the intensity of reflected by the boundary ∂V
in the area SKwave is very small and we can neglect by reflection and refraction of the light waves on
the boundary ∂V.

2. Sounding of body is carried out by parallel beams of monochromatic light. The beam’s diameter
is much larger than the wavelength λ and smaller than the characteristic length l = λ/µ. So, in
some approximation we can consider the sounding beam as a plane harmonic wave falling on the body
surface.

3. Optical inhomogeneity of the body induced by its strain-stressed state is very small. This means
that on distances about several wavelengths the medium permittivity is practically invariable. Due to
this and taking into account the conditions 1 and 2, we can:

• neglect by light refraction in the body’s volume V and its surface ∂V and consider the light rays
as straight line,

• neglect by light reflection in the body volume V and its surface ∂V and consider only direct wave
initiated by incident wave,

• neglect by gradients of permittivity in directions normal to the light ray on its polarization state.

Under these assumptions, the system (17) is reduced to system of two second-order ordinary equa-
tions with regard to the transversal components Ė1, Ė2 of complex amplitude Ė of direct refracted
wave:

d2Ek
dz2

+
ω2

c2
⌢
ε
K

kl El = 0, k, l = 1, 2 (21)

and the conditions, given on the part of boundary, on which the incident falls:

Ek|z=0 = E0
k, (22)

Here E0
1 and E0

2 are given complex constants — the components of complex amplitude Ė0 of the incident

wave,
⌢
ε
K

kl (k, l = 1, 2) stands for components of relative permittivity
⌢
ε . In Cartesian coordinate system

{x, y, z} associated with the direction K (z axis is directed along K) we have:

⌢
ε
K

kl= AK
knA

K
lm

⌢
ε nm, k, l = 1, 2, m, n = 1, 2, 3, (23)

where
⌢
ε kl stands for the components of tensor

⌢
ε in the global system {x1, x2, x3}; AK

ik is the matrix
for coordinates transformation from the global system to {x, y, z}.

System with variable coefficients (21) describes evolution of polarization state of monochromatic
light beam on the way of its propagation in the direction K in the body volume.

Introducing Jones vector — 2 × 1-matrix E = (E1, E2)
T — and 2 × 2-matrix composed of relative

permittivity components:

⌢
EK=




⌢
ε
K

11
⌢
ε
K

12

⌢
ε
K

21
⌢
ε
K

22


 , (24)

we can rewrite system (21) in the matrix form

d2E

dz2
+
ω2

c2
⌢
EK ·E = 0. (25)
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Taking into account relation (6), we can shape (21) into

d2Ek
dz2

+
ω2

c2
Ek +

ω2

c2
ε̃KklEl = 0 (26)

where ε̃Kij , i, j = 1, 2 stands for Cartesian components of relative permittivity tensor disturbance ε̃ in
Cartesian coordinate system associated with K.

In the case of unstrained medium ε̃ij = 0 and (26) turn into

d2Ek
dz2

+
ω2

c2
Ek = 0 (27)

This system describes plane waves propagation in homogeneous isotropic medium with permittiv-
ity ε. It has a solution in the form of linearly polarized plane wave:

E0
k(z) = Ak exp (−iCz) , k = 1, 2, (28)

where Ak are constants, C ≡ ω/c.
Let Ekt(z) be a solutions of system (21), then functions Ek(z)/E

0
k(z), k = 1, 2 define the deviation

of the wave, propagating in the strained medium, with respect to the plane wave (28), propagating in
this medium when strain vanishes. Introducing the new variables

Ẽk(z) = Ek(z) exp(−iCz), k = 1, 2 (29)

we reduce the system (26) to the next form

d2Ẽk
dz2

− 2i
ω

c

dẼk
dz

+
ω2

c2
ε̃KklẼl = 0 (30)

If to use the dimensionless coordinate ζ = z/lK, we can rewrite (30) in the form

µ2K
d2Ẽk
dζ2

− 4iµKπ
dẼk
dζ

+ 4π2ε̃KklẼl = 0. (31)

As µ2K ≪ 1, system (31) is a singularly disturbed one, because it contains the small parameter µ2K
as coefficients at the second (higher) derivatives. Solutions of such systems, as it is known [12], contain
two components —fast and slowly changing ones. The fast component is localized near the boundary
and quickly decays with the distance from it. It is a so called boundary layer. This component describes
the wave reflected in the volume and it is not interesting for further consideration.

To solve the system (31) we can apply an asymptotic expansion method [13]. In zero order expansion
we come to the next system for the slow component

dẼk
dz

+ i
1

2
Cε̃KklẼ2 = 0. (32)

System (32) represents the mathematical model for polarized light propagation in sligtly inhomo-
geneous anisotropic medium in terms of complex amplitudes Ẽ1, Ẽ2. Introducing Jones vector [14]
Ẽ = (Ẽ1, Ẽ2)

T, we can rewrite it in the matrix form:

dẼ

dz
+ iCẼK · Ẽ = 0. (33)

where ẼK is 2× 2-matrix:

ẼK =

(
ε̃K11 ε̃K12

ε̃K21 ε̃K22

)
(34)
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If to decompose tensor ε̃K into the isotropic ε̃K and deviatoric ε̂K = {ε̂Kkl} parts, we can rewrite
system (32) in the form

dẼk
dz

+ iCε̃KẼk + iCε̂KklẼl = 0, (35)

where ε̂Kkl , k, l = 1, 2 stands for components of deviatoric part ε̂K of permittivity tensor disturbance ε̃

in the coordinate system {x1, x2, z} associated with K.
If strain is isotropic ε̂K = 0, and system (35) is braked up into two independent equations:

dẼk
dz

+ iCε̃KẼk = 0. (36)

Their solutions describe the wave:

Ẽ0
j = B exp


−iC

z∫

0

ε̃Kdz


 , (37)

which phase is changing along coordinate due to directional dependence of isotropic part ε̃(z) of
tensor ε̃.

As we can see, the isotropic part ε̃ of tensor ε̃ does not affect on the phase retardation of waves
propagating in the body. So, we can exclude it from the equations (35). For this we represent the
solution of the system (35) as

Ẽj(z) = Êj(z) exp


−iC

z∫

0

ε̃dz


 , (38)

where Êj(z), j = 1, 2 are new unknown complex-valued functions.
Substituting (38) into (35), we reduce the model to the form

dÊk
dz

+ i
1

2
Cε̂KklÊl = 0. (39)

To satisfy the conditions (22) we should subordinate the function Êk(z), k = 1, 2 to the conditions:

Êj(z)
∣∣∣
z=0

= E0
j , j = 1, 2, (40)

Introducing Jones vector Ê = (Ê1, Ê2)
T and 2× 2-matrix

ÊK =

(
ε̂K11 ε̂K12

ε̂K21 ε̂K22

)
, (41)

we can rewrite system (39) in the matrix form

dÊ

dz
+ iCÊK · Ê = 0. (42)

So, mathematical model for interaction of polarized light with slightly inhomogeneous anisotropic
medium (21), (22) was reduced to Cauchy problem for the system of the ordinary first-order differential
equations (39) with variable coefficients and initial conditions (40)

If optical inhomogeneity and anisotropy of the medium are induced by its strain-stressed state,
we can rewrite the systems, with use of relationships (15) or (17), in terms of strain or stress field
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parameters. For instance for system (39) we will have

dÊk
dz

+ iĈeê
K
klÊl = 0, (43)

dÊk
dz

+ iĈσσ̂
K
kl Êl = 0, (44)

where Ĉe = 2CP̂e = P̂eω/c, Ĉσ = 2CP̂σ = P̂σω/c.
In the matrix form these systems look like

dÊ

dz
+ iĈeÊK · Ê = 0, (45)

dÊ

dz
+ iĈσŜK · Ê = 0, (46)

where

ÊK =

(
êK11 êK12

êK21 êK22

)
, ŜK =

(
σ̂K11 σ̂K12

σ̂K21 σ̂K22

)
.

System similar to (44) were suggested in [5] as a model of integrated photoelasticity. The author
starts his consideration directly from the (21), then, using presentation (29) and some qualitative
reasoning about smallness of the medium inhomogeneity, postulates system (32). We have shown
here that system (30) is singularly disturbed and system (32) follows from it as zero order term in
asymptotic expansion of solution.

5. Measurable polarized-optical parameters

Let E0 = (Ė0
1 , Ė

0
2)

T and Eh = (Ėh1 , Ė
h
2 )

T be Jones vectors of sounding light beam, propagating in the
direction K, at two points: z = 0 (input) and z = hk (output). Here hk stands for dimension of the
body in the direction K. As medium is linear, we can write down a general relation connecting two
complex 2× 1-matrix Eh and E0 in the form [14]:

Eh = JK · E0, (47)

where JK is a complex 2× 2-matrix (Jones matrix).
The Jones matrix JK identically defines a change of polarization of light ray passed through the

object in the direction K: if JK is known we can calculate by the formula (47) the output light state
Eh = (Ėh1 , Ė

h
2 )

T for any given input state E0 = (Ė0
1 , Ė

0
2)

T.
On the other hand, if to measure the light’s polarization at the points z = 0 and z = hk and to

use relationship (47), we can calculate matrix JK [14]. In this sense we can treat JK as a measurable
characteristic polarized-optical parameter of object in the direction K.

Consider the matrix
ĴK = JK exp (−iθK) , (48)

where θK = 1/2(ϕK
1 + ϕK

2 ), ϕK
1 = Arg (λK1 ), ϕK

2 = Arg (λK2 ); λK1 , λK2 stand for the eigenvalues of the
matrix JK.

It’s easy to see, that eigenvalues of matrix ĴK are

λ̂K1 = exp (iϕK) , λ̂K2 = exp (−iϕK) , ϕK = 1/2
(
ϕK
1 − ϕK

2

)
. (49)
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It is known [15], that logarithm of a 2 × 2 matrix X, with the eigenvalues ξ1 and ξ2 such that
ξ1 6= 0, ξ2 6= 0, ξ2 6= ξ1, is determined as

ln (X) =
X− ξ2I

ξ1 − ξ2
ln ξ1 +

X− ξ1I

ξ2 − ξ1
ln ξ2 (50)

Let us determine the matrix L̂K = −i ln(ĴK) such that exp(−iL̂K) = ĴK. Substituting into (50)
X = ĴK, ξ1 = λ̂K1 = exp(iϕK) and ξ2 = λ̂K2 = exp(−iϕK), after simple algebraic manipulations we
obtain

L̃K = −i J̃K − cos(ϕK)I

sin(ϕK)
(ϕK + 2πnK) , nK = 0,±1,±2, . . . . (51)

With accounting (49), we can rewrite (51) in the form

L̂K =
Im(J̃K)

sin(ϕK)
(ϕK + 2πnK) =

(
cos (2αK) sin (2αK)
sin (2αK) − cos (2αK)

)
(ϕK + 2πnK) , (52)

where αK is the angle between the eigenvectors of the matrix L̂K and coordinate axes x, y.
L̂K is a real symmetric matrix defined by two independent real constants αK and ϕK ≡ ϕK + nK.

It posses the feature Trace(L̂) = 0.
Jones matrix JK can be represented in terms of matrixes ĴK and L̂K as

JK = exp (iθKI) · ĴK = exp (iθKI) · exp(iL̂K) = exp
(
i(θKI+ L̂K)

)
. (53)

This enables to rewrite relation (47) in the form

E = exp
(
i(θKI+ L̂K)

)
·E0. (54)

As it follows from (52), (53), if the parameters θK, ϕK, and αK are given we can calculate by the
formula (54) the output light state Eh = (Ėh1 , Ė

h
2 )

T for any given input state E0 = (Ė0
1 , Ė

0
2)

T. So,
we can use the triplet (θK, ϕK, αK) as measurable characteristic polarized-optical parameter instead
of Jones matrix JK.

Parameter θK defines the absolute phase difference between the light states at the output and input.
Parameter ϕK defines the phase retardation which light gains on its way in strained body between
the input and output points. The third parameter αK determines change of electric field vector’s
orientation. Parameters ϕK and αK can be determined with use of polarized-optical technique by
measuring the light ellipticity and orientation of polarization ellipse at the body input and output. To
determine parameters θK more sophisticated interferometric instrumentation is needed, for instance,
Mach-Zehnder interferometer [7] can be used for that.

6. Ray integrals of photoelasticity

With the use of the matricant the solutions of the problem (39), (40) can be written in the form

Ê = ·E0 · exp


−iC

z∫

0

ÊK(ξ)dξ


 (55)

where E0 = (E0
1 , E

0
2)

T is the input Jones vector
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Substituting z = hK into function (55), and taking into account relations (29) and (38) we obtain:

EK = exp


−iC



(
h+

hK∫

0

ε̃Kdz

)
I+

hK∫

0

ÊK(z)dz




 ·E0, (56)

where EK stands for output Jones vector.
The trace of the matrix ÊK is nonzero: Trace(ÊK) ≡ ε̂K11 + ε̂K22 = −ε̂K33 6= 0, so we can present the

matrizant
hK∫
0

ÊK(z)dz in the form

hK∫

0

ÊK(z)dz =

hK∫

0

(
−ε̂K33I+ EK(z)

)
dz, (57)

where

EK =
1

2

(
ε̃K11 − ε̃K22 2ε̃K12

2ε̃K12 −ε̃K11 + ε̃K22

)
(58)

Using (57), we can rewrite relation (56) in the form

EK = exp


−iC



(
h+

hK∫

0

εKdz

)
I+

hK∫

0

EK (z) dz




 ·E0, (59)

where

εK = ε̃K − ε̂K33 =
2
(
ε̃K11 + ε̃K22

)
− ε̃K33

3
(60)

As far as matrix EK is real, symmetric, and its trace equals zero, we can compare now equalities
(59) and (54). Taking into account (52), we obtain

hK∫

0

(
ε̃K11 − ε̃K22

)
dz = 2

λ

π
cos (2αK) (ϕK + 2πnK) ,

hK∫

0

εK12 dz =
λ

π
sin (2αK) (ϕK + 2πnK) .

(61)

Hence, we reduce the model (21), (22) of interaction of polarized light with slightly anisotropic
inhomogeneous medium to integral relations (61). The left sides of these relations are line integrals
of linear combination of permittivity components. Their right sides are expressed by two independent
characteristic optical parameters αK, and ϕK, that can be measured by polarized-optical method.

Using relations (11) or (12), we can express the permittivity components ε̃kl in (61) in terms of
strain or stress components and come to corresponding integral relations for strain or stress fields. In
term of strain components they take the form

hK∫

0

(
eK11 − eK22

)
dz = 2

λ

P̂eπ
cos (2αK) (ϕK + 2πnK) ,

hK∫

0

eK12 dz =
λ

P̂eπ
sin (2αK) (ϕK + 2πnK) .

(62)
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If strain is elastic, we are able to apply relations (12), and reduce (62) to the form:

hK∫

0

(σ11 − σ22) dz = 2
λ

P̂σπ
cos (2αK) (ϕK + 2πnK) ,

hK∫

0

σK12 dz =
λ

P̂σπ
sin (2αK) (ϕK + 2πnK) .

(63)

Relations (62) and (63) are integral photoelasticity relations for arbitrary inhomogeneous elastic
3-d stress-strained state. It is easy to see, that, when stress component σK12 equals zero, parameter αK

also equals zero (the principal axes of the strain tensor are non-changeable along the direction K). In
this case the second relation (63) becomes identity and the first one change into relation (2).

7. Conclusions

Induced by strain optical inhomogeneity of the dielectric body is rather weak — the permittivity
is changed on distances considerably exceeding the wavelength of sounding light. This enables to
consider light rays propagating in strained medium as straight lines, neglect by their reflection in the
body volume and by the influence of material inhomogeneity in directions, normal to the rays. With
the use of these assumptions two integral elasticity relations were obtained. The relations connect
line integrals of strain or stress deviators’ components along any direction crossing the body with two
independent characteristic optical parameters, which can be measured by polarized-optical method.
Probing the body by polarized light beams in N different directions and measuring their polarization
states on the output of the body one can obtain values for 2N line integrals. These data can be used
to formulate inverse problems for non-destructive determination of body’s stress-strained state.
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Iнтегральнi спiввiдношення фотопружностi для неоднорiдно
деформованих дiелектрикiв

ЧекурiнВ.Ф.

Куявсько-Поморська Вища школа у Бидгощi, Польща

Розглянуто модель взаємодiї поляризованого свiтла iз неоднорiдно деформованим
немагнiтним дiелектричним тiлом. Встановленi променевi iнтеграли фотопружнос-
тi, якi пов’язують розподiли компонент тензора деформацiї у будь-якому напрямку в
об’ємi тiла з вимiрювальними поляризацiйно-оптичними параметрами свiтлового про-
меня, що поширюється у цьому напрямку. Модель можна використати для розроб-
лення математичних методiв для поляризацiйно-оптичної обчислювальної томографiї
напружено-деформованого стану дiелектричних тiл.

Ключовi слова: деформованi дiелектрики, явище фотопружностi, томографiя
тензорних полiв, поляризацiйно-оптичнi методи
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