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The stationary temperature distribution in a three-layer infinitely-long hollow cylinder is
modeled and determined under the condition that the internal heat sources are distributed
within the second layer in accordance to the parabolic law and the convective-radiative and
convective heat exchange with the environment occurs on the inner and outer surfaces,
respectively. The components of the thermostressed state were found and the effect,
caused by the dependence of thermophysical and mechanical material properties on the
temperature, along with the intensity of radiative heat exchange, in the distribution of the
temperature and stress-strain state is analyzed.
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1. Introduction

A wide class of modern structure members is presented by the multilayer assemblies of a rectilinear,
cylindrical or spherical shape. Due to the fact that such structures are usually supposed to undergo
the high- or lowtemperature heating under coacting force loading, the dependences of their thermo-
physical and mechanical properties on the temperature appear to be critical [1–5] for the adequate
determination of the stress-strain state [1,3], which, in turn, is quite important for the prediciton of
their durability and reliability.

By making use of the technique suggested in [1], a nonlinear mathematical model for the distribution
of temperature in a three-layer (with respect to the radial coordinate) thermosensitive hollow cylinder
is formulated. It is assumed that the second (intermediate) layer of the cylinder contains internal heat
sources, which are distributed in accordance to the parabolic law. The inner and outer surfaces of the
cylinder are exposed to the convective-radiative and convective heat exchange, respectively. On the
layer interfaces, the conditions of perfect thermal contact are imposed. We have managed to determine
the components of the stress-stain state induced by the determined non-uniform distribution of the
temperature. The effect of the material thermosensitivity, along with the intensity of the radiative
heat exchange, in the temperature and stress-strain state are analyzed.
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2. Mathematical model of the thermal conductivity of temperature field

Consider an infinitely-long hollow cylinder consisting of three cylindrical layers made of dissimilar ther-
mosensitive materials. Assume the cylinder to be heated by internal heat sources which are distributed
within the intermediate layer due to the parabolic law

W (2)(r) =
4W 2

0

(r3 − r2)2
(r − r2)(r − r3).

The inner, r = r1, and outer, r = r4, surfaces of the cylinder are subjected to the convective-radiative
(with the thermal conductivity α1 and emissivity rate ε1) and convective (with the thermal conductivity
α3) heat exchange with the inner and outer surroundings of temperature t = tins and t = touts,
respectively. The perfect thermal contact is assumed on the layer interfaces r = r2 and r=r3. Our
objective is to determine the temperature distribution along with the components of stress-strain state
in the cylinder under the foregoing conditions.

The mathematical model for the determination of temperature in the considered thermosensitive
hollow cylinder is governed by:

— the heat-conduction equations for each layer

1

r

d

dr

(
rλ

(i)
t

dti
dr

)
=W (i)(r)δi2, ri < r < ri+1, i = 1, 3; (1)

— the boundary conditions on the inner and outer limiting surfaces

[
λ
(1)
t (t1)

dt1
dr

− α1(t1 − tins)− σε1(t
4
1 − t4ins)

]
r=r1

= 0, (2)

[
λ
(3)
t (t3)

dt3
dr

+ α3(t3 − touts)
]
r=r4

= 0; (3)

— the interface contact conditions

ti

∣∣∣
r=ri+1

= ti+1

∣∣∣
r=ri+1

, λ
(i)
t (ti)

dti
dr

∣∣∣
r=ri+1

= λ
(i+1)
t (ti+1)

dti+1

dr

∣∣∣
r=ri+1

, i = 1, 2, (4)

where δij =

{
1, i = j;
0, i 6= j

is the Kronecker delta and σ stands for the Stefan–Boltzmann constant.

Model (1)–(4) is the nonlinear one due to the nonlinearity of the condition (2) and assumed de-

pendence of the heat-conduction coefficients λ
(i)
t (ti)(i = 1, 3) on temperature. In the literature, such

dependencies are usually given in a tabular form. In order to implement the theoretical analysis, it is

desirable to have the heat-conduction coefficients in the form of explicit analytical expressions λ
(i)
t =

= λ
(i)
t (t). To obtain such expressions, the tabular data are usually approximated with an analytical

function by making use, e.g., of the least squares method.
Let the heat-conduction coefficients for each layer be given within the temperature range [tb, te].

In what follows, we will describe them with the linear dependencies λ
(i)
t = aiti + bi, which is quite

common. Then the unknown parameters ai and bi can be found by means of the least squares method
in order to achieve the minimum difference between the sums of experimental and theoretical data.

Let us represent the heat-conduction coefficients of each layer in the form λ
(i)
t (ti) = λ

(i)
t0 λ

(i)
∗ (Ti),

where λ
(i)
t0 are constants in dimension of the heat-conduction coefficient, λ

(i)
∗ (Ti) are dimensionless

functions of dimensionless temperature Ti = ti/te, i = 1, 3, te is the reference temperature. Due to
such linear dependence of the heat-conduction coefficients on the temperature, such representations
will have the following form:

λ
(i)
t (ti) = λ

(i)
t0 (1 + ki(Ti − Tb)), (5)
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where Tb = tb/te, ki = aitk/(aitb + bi), and λ
(i)
t0 = aitb + bi.

By introducing a characteristic length value l0 and the dimensionless coordinate ρ = r/l0, mathe-
matical model (1)–(4) can be given in the dimensionless form:

d

dρ

(
ρλ

(i)
∗ (Ti)

dTi
dρ

)
=W (i)(ρ)δ2i, ρi < ρ < ρi+1, i = 1, 3, (6)

[
λ
(1)
∗ (T1)

dT1
dρ

−Bi1(T1 − Tins)− Sk1(T
4
1 − T 4

ins)
]
ρ=ρ1

= 0, (7)

[
λ
(3)
∗ (T3)

dT3
dρ

+Bi3(T3 − Touts)
]
ρ=ρ4

= 0, (8)

Ti

∣∣∣
ρ=ρi+1

= Ti+1

∣∣∣
ρ=ρi+1

, λ
(i)
∗ (Ti)

dTi
dρ

∣∣∣
ρ=ρi+1

= K
(i+1)
λ λ

(i+1)
∗ (Ti+1)

dTi+1

dρ

∣∣∣
ρ=ρi+1

, i = 1, 2, (9)

where W (2)(ρ) = −4Poρ(ρ− ρ2)(ρ− ρ3)/(ρ3 − ρ2)
2, Po =W

(2)
0 l20/(λ

(2)
t0 te) is the Pomerantsev number,

Bii = αil0/λ
(i)
t0 (i = 1, 3) denotes the Biot numbers, Sk1 = σε1t

3
el0/λ

(1)
t0 stands for the Stark number,

K
(j)
λ = λ

(j)
t0 /λ

(j−1)
t0 (j = 2, 3), Tins = tins/te, Touts = touts/te.

3. Determination of the temperature field

Let us introduce the Kirchhoff variables

θi =

Ti∫

Tb

λ
(i)
∗ (Ti) dTi, i = 1, 3, (10)

instead of dimensionless temperatures Ti. Then problem (6)–(9) can be reduced to the following one:

d

dρ

(
ρ
dθi
dρ

)
=W (i)(ρ)δi2, ρi < ρ < ρi+1, i = 1, 3, (11)

[dθ1
dρ

−Bi1(T1(θ1)− Tins)− Sk1(T1(θ1)
4 − T 4

ins)
]
ρ=ρ1

= 0, (12)

[dθ3
dρ

+Bi3(T3(θ3)− Touts)
]
ρ=ρ4

= 0, (13)

Ti(θi)
∣∣∣
ρ=ρi+1

= Ti+1(θi+1)
∣∣∣
ρ=ρi+1

,
dθi
dρ

∣∣∣
ρ=ρi+1

= K
(i+1)
λ

dθi+1

dρ

∣∣∣
ρ=ρi+1

i = 1, 2. (14)

In such manner, the original non-linear heat-conduction problems is reduced to the simpler one
in terms of the Kirchhoff variable. In the latter problem, the non-linearity remains in (12), (13) and
the first condition of (14). Due to the linear dependence of the heat-conduction coefficients on the
temperature (5), formula (10) yields

θi = (Ti − Tb) +
ki
2
(Ti − Tb)

2. (15)

From this equation we can find the following expression

Ti(θi) =

√
1 + 2kiθi − 1

ki
+ Tb. (16)

Note that the sign of square root in the obtained expressions has to be chosen in the way to assure
Ti(θi) having feasible meaning.
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By integrating equations (11), we arrive at

dθi
dρ

=
Ci1

ρ
+ W̃ (i)δi2, θi = Ci1 ln

ρ

ρi
+ Ci2 +W

(i)
δi2, i = 1, 3, (17)

where

W̃ (2)(ρ) = − 4Po

(ρ3 − ρ2)2

(ρ3
4

− ρ2

3

(
ρ3 + ρ2

)
+
ρ

2
ρ3ρ2 −

ρ32
6ρ

(
ρ3 −

ρ2
2

))

W
(2)

(ρ) = − 4Po

(ρ3 − ρ2)2

(
ρ2
(
ρ2

16
− ρ

9
(ρ3 + ρ2) +

ρ2ρ3
4

)
−

− ρ32

(
ρ2
16

− ρ3 + ρ2
9

+
ρ3
4

)
− ρ32

6
ln

ρ

ρ2

(
ρ3 −

ρ2
2

))
.

The solutions (17) contain six unknown constants of integration. In order to find them, we assume
the constants in the expression for Kirchhoff variables to be given (the basic ones) in the first layer C11

and C12, for example. Then the remaining constants can be expressed through the basic ones using
the interface contact conditions (14). Note that hereby the condition [1]

(θi+1 − θi)
∣∣
z=zi+1

=
ki+1 − ki

2

(
Ti(θi)− Tp

)2∣∣
z=zi+1

, i = 1, 2, (18)

has been equivalently used instead of the first one of (14). From the second of condition (14) we obtain

C21 =
C11

K
(2)
λ

, C31 =
1

K
(3)
λ

( C11

K
(2)
λ

+ ρ3W̃
(2)(ρ3)

)
,

meanwhile conditions (18) yield

C22 = C11 ln
ρ2
ρ1

+ C12 +
k2 − k1

2

(√1 + 2k1(C11 ln ρ2/ρ1 + C12)− 1

k1

)2
,

C32 = θ2
∣∣
ρ=ρ3

+
k3 − k2

2

(√
1 + 2k1θ2

∣∣
ρ=ρ3

− 1

k2

)2

,

where

θ2

∣∣∣
ρ=ρ3

= C11

(
ln
ρ2
ρ1

+
1

K
(2)
λ

ln
ρ3
ρ2

)
+C12+

k2 − k1
2

(√
1 + 2k1(C11 ln ρ2/ρ1 + C12)− 1

k1

)2

+W
(2)

(ρ3).

In such manner, the constant of integration Ci1 та Ci2 (i = 2, 3) are expressed through the basic
ones C11 and C12, which are found from boundary conditions (12) – (13). Using (12) we can determine
the constant C11

C11 = ρ1

(
Bi1

(√
1 + 2k1C12 − 1

k1
+ Tb − Tins

)
+ Sk1

((√
1 + 2k1C12 − 1

k1
+ Tb

)4

− T 4
ins

))
.

Formula (13), in turn, yields the algebraic equation

C31

ρ4
+Bi3

(√
1 + 2k3(C31 ln ρ4/ρ3 + C32)− 1

k3
+ Tb − Touts

)
= 0 (19)
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for determination of constant C12.
Due to the fact that equation (19) cannot be solved analytically, we employ the mathematical

software for analytical manipulations for the specific input parameters. Having found C12, we get the
rest of constants automatically.

4. Determination of the temperature distribution in a hollow nonthermosensitive cylin-
der

The dimensionless mathematical model for determining the temperature of a similarly formed, non-
thermosensitive cylinder has the form

d

dρ

(
ρ
dTin
dρ

)
=W (i)

n (ρ)δ2i, ρi < ρ < ρi+1, i = 1, 3, (20)

[dT1n
dρ

−Bi1n(T1n − Tins)− Sk1n(T
4
1n − T 4

ins)
]
ρ=ρ1

= 0, (21)

[dT3n
dρ

+Bi3n(T3n − Touts)
]
ρ=ρ4

= 0, (22)

Tin

∣∣∣
ρ=ρi+1

= T(i+1)n

∣∣∣
ρ=ρi+1

,
dTin
dρ

∣∣∣
ρ=ρi+1

= K
(i+1)
λ

dT(i+1)n

dρ

∣∣∣
ρ=ρi+1

, i = 1, 2, (23)

where W
(2)
n (ρ) = −4Ponρ(ρ− ρ2)(ρ− ρ3)/(ρ3 − ρ2)2, Pon = Poλ

(2)
t0 /λ

(2)
tn , Biin = Biiλ

(i)
t0 /λ

(i)
tn (i = 1, 3),

Sk1n = Sk1λ
(1)
t0 /λ

(1)
tn , K

(j)
λ = λ

(j)
tn /λ

(j−1)
tn (j = 2, 3).

From the problem (20)–(23) we can find the following:

dTin
dρ

=
Ci1

ρ
+ W̃ (i)

n (ρ)δi2, Tin = Ci1 ln
ρ

ρi
+ Ci2 +W

(i)
n (ρ)δi2, i = 1, 3, (24)

where

W̃ (2)
n (ρ) = − 4Pon

(ρ3 − ρ2)2

(
ρ3

4
− ρ2

3
(ρ3 + ρ2) +

ρ

2
ρ3ρ2 −

ρ32
6ρ

(
ρ3 −

ρ2
2

))
,

W
(2)
n (ρ) = − 4Pon

(ρ3 − ρ2)2

(
ρ2
(
ρ2

16
− ρ

9
(ρ3 + ρ2) +

ρ2ρ3
4

)
−

− ρ32

(
ρ2
16

− ρ3 + ρ2
9

+
ρ3
4

)
− ρ32

6
ln

ρ

ρ2

(
ρ3 −

ρ2
2

))
.

Then, using the boundary conditions (23) we can find the constants of integration

C21 =
C11

K
(2)
λ

, C22 = C11 ln
ρ2
ρ1

+ C12,

C31 =
1

K
(3)
λ

( C11

K
(2)
λ

+ ρ3W̃
(2)(ρ3)

)
, C32 = C11

(
ln
ρ2
ρ1

+
1

K
(2)
λ

ln
ρ3
ρ2

)
+C12 +W

(2)
(ρ3).

From the boundary conditions (21) we get the constant

C11 = ρ1

(
Bi1n(C12 − Tins) + Sk1n(C

4
12 − T 4

ins)
)
,
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meanwhile the condition (22) yields the equation

C31

ρ4
+Bi3n

(
C31 ln

ρ4
ρ3

+ C32 − Touts

)
= 0

to determine the constant C12.

5. Formulation of the mathematical model of stress-strain state

Assume the layers of foregoing three-layered cylinder to be in the perfect mechanical contact and
exposed to the determined radial distribution of temperature. The inner and outer cylindrical sur-
faces of the cylinder are subjected to uniformly distributed normal loadings. Assume the mechanical
properties (the Young modulus E(i)(ti), the Poisson ratio ν(i)(ti) and the linear thermal expansion

coefficients α
(i)
t (ti)) of the layers to be functions of the form χ(i)(ti) = χ

(i)
0 χ

(i)
∗ (Ti), where χ

(i)
0 are the

dimensional quantities equal to the value of the characteristic with the temperature tb and χ
(i)
∗ (Ti) are

the dimensionless function of the dimensionless temperature Ti. Then,

E(i)(ti) = E
(i)
0 E

(i)
∗ (Ti), ν(i)(ti) = ν

(i)
0 ν

(i)
∗ (Ti), α

(i)
t (ti) = α

(i)
t0 α

(i)
∗ (Ti).

The basic equations, which govern the stress-strain state of the cylinder, are:

— the equilibrium equations
d

dρ
(ρσ(i)r ) = ρσ(i), i = 1, 3; (25)

— the physical strain-stress relations

E(i)e(i)r = σ(i)r − ν(i)(σ(i)ϕ + σ(i)z ) + E(i)Φ(i)(Ti) =

= (1 + ν(i))(σ(i)r − ν(i)σ(i))− ν(i)E(i)ez + (1 + ν(i))E(i)Φ(i)(Ti),
(26)

E(i)e(i)ϕ = σ(i)ϕ − ν(i)(σ(i)r + σ(i)z ) + E(i)Φ(i)(Ti) =

= (1 + ν(i))((1 − ν(i))σ(i) − σ(i)r )− ν(i)E(i)ez + (1 + ν(i))E(i)Φ(i)(Ti),
(27)

E(i)e(i)z = σ(i)z − ν(i)(σ(i)r + σ(i)ϕ ) + E(i)Φ(i)(Ti) = σ(i)z − ν(i)σ(i) + E(i)Φ(i)(Ti), i = 1, n; (28)

— the compatibility equation

ρ
de

(i)
ϕ

dρ
= e

(i)
r − e

(i)
ϕ ,

that can be represented in terms of stresses

d

dρ

(
1− (ν(i))2

E(i)
σ(i) − ν(i)ez + (1 + ν(i))Φ(i)(Ti)

)
= σ(i)r

d

dρ

(
1 + ν(i)

E(i)

)
; (29)

— the conditions on the limiting surfaces and in the cross section

σ(1)r (ρ1) = −p1, σ(n)r (ρn+1) = −p2, 2π

ρn+1∫

ρ1

νσz(ν)dν = p; (30)

— the conditions of the perfect mechanical contact on the interfaces

u(i+1)
r (ρi+1) = u(i)r (ρi+1), σ(i+1)

r (ρi+1) = σ(i)r (ρi+1), i = 1, n − 1. (31)
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Here, in (25)–(31) Φ(i)(Ti) = t0
Ti∫
Tb

α(i)(Ti)dTi is the purely thermal deformation; σ
(i)
r , σ

(i)
ϕ , σ

(i)
z are

the radial, circumferential and axial stresses; e
(i)
r , e

(i)
ϕ are the radial and circumferential strains in

i-layer, respectively; ez is the constant axial strain; σ(i) = σ
(i)
r + σ

(i)
ϕ ; u

(i)
r is the radial component

of the displacement-vector in i-st layer related to the characteristic length l0; p1, p2 are the constant
pressures on the inner (ρ = ρ1) and outer (ρ = ρn+1) surfaces, respectively; p is the axial loading at
the ends of cylinder.

6. Determination of the stress-strain state

In [1], the following computation formulae have been obtained:

σ(i)r (ρ) = γ
(i)
1r (ρ)σ

(1)(ρ1) + γ
(i)
2r (ρ)ez + γ

(i)
0r (ρ), (32)

σ(i)ϕ (ρ) = σ(i)(ρ)− σ(i)r (ρ), (33)

σ(i)z (ρ) = E(i)ez + ν(i)σ(i)(ρ)− E(i)Φ(i)(Ti), (34)

σ(i)(ρ) = γ
(i)
10 (ρ)σ

(1)(ρ1) + γ
(i)
20 (ρ)ez + γ

(i)
00 (ρ), (35)

e(i)r (ρ) = (σ(i)r (ρ)− ν(i)(σ(i)ϕ (ρ) + σ(i)z (ρ)) + E(i)Φ(i)(Ti))
/
E(i), (36)

e(i)ϕ (ρ) = (σ(i)ϕ (ρ)− ν(i)(σ(i)r (ρ) + σ(i)z (ρ)) + E(i)Φ(i)(Ti))
/
E(i), (37)

u(i)r (ρ) = ρ · e(i)ϕ (ρ), (38)

where

γ
(i)
10 (ρ) =

1

ψ(i)(ρ)

(
(1− δ1i)γ

(i−1)
1r (ρi)χ

(i)
2 (ρ)+

+

(
1− (ν(1)(ρ1))

2

E(1)(ρ1)
+ (1− δ1i)

i−1∑

k=1

ρk+1∫

ρk

γ
(k)
1r (η)

(
ϕ(k)(η)

)′
dη + β(k)γ

(k)
1r (ρk+1)

)
χ
(i)
1 (ρ)

)
,

γ
(i)
20 (ρ) =

1

ψ(i)(ρ)

(
ν(i)(ρ)− ν(i)(ρi) + (1− δ1i)γ

(i−1)
2r (ρi)χ

(i)
2 (ρ)+

+

(
ν(i)(ρi)− ν(1)(ρ1) + (1− δ1i)

i−1∑

k=1

( ρk+1∫

ρk

γ
(k)
2r (η)

(
ϕ(k)(η)

)′
dη + β(k)γ

(k)
2r (ρk+1)

))
χ
(i)
1 (ρ)

)
,

γ
(i)
00 (ρ) =

1

ψ(i)(ρ)

((
−δ1ip1 + (1− δ1i)γ

(i−1)
0r (ρi)

)
χ
(i)
2 (ρ)− F (i)(ρ) + F (i)(ρi)+

+

(
(1− δ1i)

i−1∑

k=1

( ρk+1∫

ρk

γ
(k)
0r (η)

(
ϕ(k)(η)

)′
dη + β(k)γ

(k)
0r (ρk+1)

)
−F (i)(ρi)

)
χ
(i)
1 (ρ)

)
,

γ
(i)
1r (ρ) =

1

ρ2

(
(1− δ1i)ρ

2
i γ

(i−1)
1r (ρi) +

ρ∫

ρi

ηγ
(i)
10 (η)dη

)
,
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γ
(i)
2r (ρ) =

1

ρ2

(
(1− δ1i)ρ

2
i γ

(i−1)
2r (ρi) +

ρ∫

ρi

ηγ
(i)
20 (η)dη

)
,

γ
(i)
0r (ρ) =

1

ρ2

(
−ρ21p1δ1i + (1− δ1i)ρ

2
i γ

(i−1)
0r (ρi) +

ρ∫

ρi

ηγ
(i)
00 (η)dη

)
,

χ
(i)
1 = 1 +

(ρ− ρi
2

)2
(ϕ(i)(ρ))′

ρi
ρ2

E(i)(ρi)

1− (ν(i)(ρi))2
,

χ
(i)
2 =

ρ− ρi
2

(ρ2i
ρ2

(ϕ(i)(ρ))′ + (ϕ(i)(ρi))
′
)
,

ψ(i)(ρ) =
1− (ν(i)(ρ))2

E(i)(ρ)
−
(ρ− ρi

2

)2 1
ρ
(ϕ(i)(ρi))

′,

ϕ(i)(ρ) =
1− ν(i)(ρ)

E(i)(ρ)
,

(ϕ(i)(ρ))′ =
d

dρ

(1− ν(i)(ρ)

E(i)(ρ)

)
,

β(i) = ϕ(i+1)(ρi+1)− ϕ(i)(ρi+1),

F (i)(ρ) = (1 + ν(i)(ρ))Φ(i)(Ti(ρ)) − (1 + ν(1)(ρ1))Φ
(1)(T1(ρ1)),

Φ(i)(Ti) = t0

Ti∫

Tb

α
(i)
t (Ti)dTi,

σ(1)(ρ1) =
c1d22 − c2d12
d11d22 − d21d12

, ez =
c2d11 − c1d21
d11d22 − d21d12

,

d11 =

n∑

k=1

ρk+1∫

ρk

ηγ
(k)
10 (η)dη,

d12 =
n∑

k=1

ρk+1∫

ρk

ηγ
(k)
20 (η)dη,

d21 =

n∑

k=1

ρk+1∫

ρk

ην(k)(η)γ
(k)
10 (η)dη,

d22 =

n∑

k=1

ρk+1∫

ρk

η
(
ν(k)(η)γ

(k)
20 (η) + E(k)(η)

)
dη,

c1 = ρ21p1 − ρ2n+1p2 +

n∑

k=1

ρk+1∫

ρk

ηγ
(k)
00 (η)dη,

c2 =
p

2π
+

n∑

k=1

ρk+1∫

ρk

η
(
E(k)(η)Φ(k)(Tk(η))− ν(k)(η)γ

(k)
00 (η)

)
dη,

Mathematical Modeling and Computing, Vol. 2, No. 2, pp. 160–175 (2015)



168 Kushnir R.M., PopovychV. S., Rakocha I. I.

Note that formulae (32)–(35) are valid for the thin layers only, for which, then computing the
integrals that contain unknown stresses, the trapezium rule

ρ∫

ρi

Y (η)dη =
ρ− ρi

2

(
Y (ρ) + Y (ρi)

)
(39)

is satisfied within the given accuracy.
If the cylinder contains both thin and thick layers, then each of the thick layers can be segmented

into several thinner ones made of the same material. The accuracy of such representation can be
verified by making use of the formula [1]

ρ21p1 − ρ2n+1p2 =

n∑

k=1

ρk+1∫

ρk

ησ(k)(η)dη. (40)

7. Special cases

Case 1. Consider the case when the thermo-physical and mechanical characteristics of the nonther-
mosensitive cylinder (denote them with n) are equal to the basic values of corresponding components
of the thermosensitive one, that are the values of thermosensitive characteristics at the temperature tb.

Then, the temperature distribution has the form (24), where λ
(i)
tn = λ

(i)
t0 , i = 1, 3. The Poisson ratio,

the coefficient of linear thermal expansion and the Young modulus have the following form: ν
(i)
n = ν

(i)
0 ,

α
(i)
tn = α

(i)
t0 , E

(i)
n = E

(i)
0 , i = 1, 3, and formulae for determination of the the stress-strain state take the

form
σ(i)n (ρ) = γ

(i)
10n(ρ)σ

(1)
n (ρ1) + γ

(i)
20n(ρ)ezn + γ

(i)
00n(ρ), (41)

σ(i)rn(ρ) = γ
(i)
1rn(ρ)σ

(1)
n (ρ1) + γ

(i)
2rn(ρ)ezn + γ

(i)
0rn(ρ), (42)

σ(i)ϕn(ρ) = σ(i)n (ρ)− σ(i)rn(ρ), (43)

σ(i)zn(ρ) = E
(i)
0 ezn + ν

(i)
0 σ(i)n (ρ)− E

(i)
0 Φ(i)

n (Tin), (44)

e(i)rn(ρ) = (σ(i)rn(ρ)− ν
(i)
0 (σ(i)ϕn(ρ) + σ(i)zn(ρ)) + E

(i)
0 Φ(i)

n (Tin))
/
E

(i)
0 , (45)

e(i)ϕn(ρ) = (σ(i)ϕn(ρ)− ν
(i)
0 (σ(i)rn(ρ) + σ(i)zn(ρ)) + E

(i)
0 Φ(i)

n (Tin))
/
E

(i)
0 , (46)

u(i)rn(ρ) = ρ · e(i)ϕn(ρ), (47)

where

γ
(i)
10n(ρ) =

1

ψ
(i)
n

(
1− (ν

(i)
0 )2

E
(i)
0

+ (1− δ1i)

i−1∑

k=1

β(k)n γ
(k)
1rn(ρk+1)

)
,

γ
(i)
10n(ρ) =

1

ψ
(i)
n

(
ν
(i)
0 − ν

(1)
0 + (1− δ1i)

i−1∑

k=1

β(k)n γ
(k)
2rn(ρk+1)

)
,

γ
(i)
1rn(ρ) =

1

ρ2

(
(1− δ1i)ρ

2
i γ

(i−1)
1rn (ρi) +

ρ∫

ρi

ηγ
(i)
10ndη

)
,
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γ
(i)
2rn(ρ) =

1

ρ2

(
(1− δ1i)ρ

2
i γ

(i−1)
2rn (ρi) +

ρ∫

ρi

ηγ
(i)
20ndη

)
,

γ
(i)
0rn(ρ) =

1

ρ2

(
−ρ21p1δ1i + (1− δ1i)ρ

2
i γ

(i−1)
0rn (ρi) +

ρ∫

ρi

ηγ
(i)
00ndη

)
,

ψ(i)
n =

1− (ν
(i)
0 )2

E
(i)
0

,

ϕ(i)
n =

1− ν
(i)
0

E
(i)
0

,

β(i)n = ϕ(i+1)
n − ϕ(i)

n ,

Φ(i)
n (Tin) = t0α

(i)
t0 (Tin − Tb),

F (i)
n (ρ) = (1 + ν

(i)
0 )Φ(i)

n (Tin(ρ))− (1 + ν
(1)
0 )Φ(1)

n (T1n(ρ1)),

σ(1)n (ρ1) =
c1nd22n − c2nd12n
d11nd22n − d21nd12n

,

ezn =
c2nd11n − c1nd21n
d11nd22n − d21nd12n

,

d11n =

n∑

k=1

ρk+1∫

ρk

ηγ
(k)
10n(η)dη,

d12n =
n∑

k=1

ρk+1∫

ρk

ηγ
(k)
20n(η)dη,

d21n =
n∑

k=1

ρk+1∫

ρk

ην
(k)
0 γ

(k)
10n(η)dη,

d22n =

n∑

k=1

ρk+1∫

ρk

η
(
ν
(k)
0 γ

(k)
20n(η) + E

(k)
0

)
dη,

c1n = ρ21p1 − ρ2n+1p2 +

n∑

k=1

ρk+1∫

ρk

ηγ
(k)
00n(η)dη,

c2n =
p

2π
+

n∑

k=1

ρk+1∫

ρk

η
(
E

(k)
0 Φ(k)(Tk(η)) − ν

(k)
0 γ

(k)
00n(η)

)
dη.

Case 2. In case of the average integral values of heat-conduction coefficients

λ
(i)
tn = λ

(i)
tc =

1

Te − Tb

Te∫

Tb

λ
(i)
t0 (1 + ki(Ti − Tb))dTi = λ

(i)
t0

(ki
2
(Te − Tb)

)
, i = 1, 3,

{ν(i)n , α
(i)
tn , E

(i)
n } = {ν(i)c , α

(i)
tc , E

(i)
c } =

1

Te − Tb

Te∫

Tb

{ν(i)c , α
(i)
tc , E

(i)
c }dTi, i = 1, 3
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we obtain the temperature distribution (24). The formulae for calculation of the stress-strain state
will have the form (41)–(47) in which the basic values of the thermomechanical characteristics should
be replaced by average integral ones.

8. Numerical implementation

We intend to analyze the thermosensitivity effect in the distribution of temperature and stress-strain
components in the three-layer cylinder for different parameters. Assume the first and third layers to
be made of ceramics ZrO2, meanwhile the second one is made of the titanium alloy T i− 6Al− 4V [6].

Approximate the experimentally found heat-conduction coefficients and thermomechanical charac-
teristics by polynomials (5) within the temperature range 300 ÷ 1100 using the least squares method.
The following values were established for ceramics

λ
(1,3)
t = 1.915(1 + 0.24664(T1,3 − Tb))

[
W/(m ·K)

]
, ν(1,3) = 0.333,

α(1,3) = 8.783 · 10−6(1− 1.4128(T1,3 − Tb) + 1.7496(T1,3 − Tb)
2)
[
1/K

]
,

E(1,3) = 116.381(1 − 0.521357(T1,3 − Tb)− 0.084215(T1,3 − Tb)
2)
[
GPa

]
,

and for titanium alloy

λ
(2)
t = 6.2(1 + 3.016(T2 − Tb))

[
W/(m ·K)

]
, ν(1,3) = 0.2984(1 + 0.118(T2 − Tb)),

α(2) = 8.8559 · 10−6(1 + 0.49014(T2 − Tb)− 0.36754(T2 − Tb)
2)
[
1/K

]
,

E(2) = 105.05(1 − 0.5916(T2 − Tb)
[
GPa

]
,

Impose ρ1 = 0.7, ρ2 = 0.75, ρ3 = 0.95, ρ4 = 1, and l0 = r4. The dimensionless values of the
temperature are assumed to be Tb = 3/11, Te = 1, Tins = 1/3, Touts = 1/3, and the Pomerantsev, Biot
and Stark numbers are Po = −3, Bi1 = 1, Bi2 = 2, Sk1 = 0.5. The cylinder is free of the pressures
on the inner and outer surfaces and axial loadings at the end-faces (p1 = p2 = p = 0).
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Fig. 1. The temperature distribution.

The temperature distributions for the considered cylin-
der are presented in Fig.1. Here and in what follow,
the solid lines correspond to the thermosensitive cylinder,
dashed lines correspond to the non-thermosensitive cylinder
with basic values, dash-dotted lines correspond to the non-
thermosensitive cylinder with the average integral values of
the heat-conduction coefficient.

The maximum difference between the temperatures in
thermosensitive and non-thermosensitive (with basic and av-
erage integral values of the coefficient of thermal conductiv-
ity) cylinders do not exceed 1%

The algorithm for determining the components of stress-
strain state, because the formulas (32)–(35) are valid for thin
layers only, implies the following steps:

1. Compute the formulae (32)-(35) without segmentation of each layer into thin sublayers;
2. Verify the integral condition (40);
3. If the condition (40) is not satisfied, then increase the number of segments and return to step 2.

Otherwise, the computation is over.

Tab.1 presents the results obtained when finding the sufficient segmentation of layers into sublayers
in order to achieve the accuracy ε = 10−4.
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Table 1. The result of segmentation of cylinder layers into sublayers

Total number Number of sublayers in each layer Verification of

of layers I layer II layer III layer integral conditions

3 1 1 1 −0.000714

4 1 2 1 −0.000166

5 1 3 1 −0.000078

6 1 4 1 −0.000048

As we can see the representation of the considered cylinder by a six-layer body is enough to achieve
the required accuracy. The corresponding distributions of stresses, strains and displacements are shown
in Fig.2–4. Note, that the constant axial strain equals 0.0044256.
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Fig. 2. Distributions of radial σr(ρ) · 103 (a), circumferential σϕ(ρ) (b) and axial σz(ρ) · 10 (c) stresses.

In Fig. 2–4, we can observe that the distribution of the stress-strain components in the nonther-
mosensitive cylinder with average integral values of mechanical characteristics gives a better approxi-
mation to the same distribution in thermosensitive hollow cylinder, in comparison to the stress-strain
components distribution in the nonthermosensitive cylinder with basic values. In particular, the max-
imum differences are 25% for the radial stress, 30% for the circumferential stress, 30% for the radial
strain, 10% for the circumferential strain, and 10% for the radial displacement.

The employment of the model of nonthermosensitive body with basic values of its thermomechanical
characteristics does not provide a correct approximation for such distribution of appropriate stress-
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Fig. 3. Distributions of radial er(ρ) · 103 (a) and circumferential eϕ(ρ) · 103 (b) deformations.
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Fig. 4. Distributions of radial displacement
ur(ρ) · 103.

Fig. 5. The temperature distribution.

strain components in thermosensitive cylinder. Moreover, it leads to the qualitatively different results
in some cases. In Fig.2c, we can observe that the axial stress in the second layer of nonthermosensi-
tive cylinder (with basic and average integral thermomechanical characteristics) are changed not only
quantitatively, but also inherently (the compression in the thermosensitive cylinder and tension in
the nonthermosensitive one). Therefore, it is necessary to take into account the thermosensitivity of
material components to determine axial stresses.

The influence of the radiative heat exchange on the distribution of the temperature and stress strain
state of the thermosensitive hollow cylinder has been investigated for the same coordinates of layer
interfaces and material properties. The dimensionless temperatures were given as Tins = 1, Touts =
= 5/11 so that they were higher than the temperature of the cylinder. The dimensionless parameters
are Po = −2, Bi1 = 7, Bi3 = 5, Sk1 = {0, 1, 2}. Note, that there is the pure convective heat exchange
on the inner limiting surface, if Sk1 = 0. In Fig. 5–8, the distributions of temperatures and stress-strain
state components are shown. Here, lines 1 correspond to Sk1 = 0, 2 – Sk1 = 1, 3 – Sk1 = 2.

It is shown that under the imposed conditions, the increment in the Stark number by one unit
causes the increment of the temperature and stress-strain state components more than i 6%. But,
if temperatures, radial displacements and axial strains increase almost uniformly with the change of
Sk1 at each point of the cylinder, the radial, circumferential and axial stresses change mainly at the
interfaces.
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Fig. 6. Distributions of the radial σr(ρ) · 103 (a), circumferential σϕ(ρ) · 10 (b) and axial σz(ρ) · 10 (c) stresses.
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Fig. 7. Distributions of the radial er(ρ) · 103 (a) and circumferential eϕ(ρ) · 103 (b) strains.
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Fig. 8. Distributions of the radial displacement ur(ρ) · 103.

9. Conclusions

The nonlinear mathematical model of temperature distribution in an infinitely-long three-layer hollow
thermosensitive cylinder with heat sources distributed by parabolic law in the second layer under the
convective-radiative and convective heat exchange on the boundary surfaces is suggested. On this
basis, the temperature and components of the stress-strain state are determined.

The thermosensitivity effect on the temperature and stress-strain state components distribution is
analyzed. It is shown that neglecting the dependence of thermomechanical characteristics (the replace-
ment for basic or average integral ones) causes the significant differences between the distributions of
stress-strain state components in the thermosensitive and nonthermosensitive cylinders, which may lead
to qualitatively different distributions (the compression in the thermosensitive cylinder and stretching
in nonthermosensitive one).

For the considered materials, it is shown that the distribution of the stress-strain state in nonther-
mosensitive cylinder with average integral values of mechanical characteristics gives a better approx-
imation to the corresponding distribution in the thermosensitive hollow cylinder. This can be useful
for its quick estimation.

The investigation of the intensity of radiative heat exchange shows that the increment in the Stark
number causes, in our case, the increment of the temperature and stress-strain state components in
each point of cylinder.
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Математичне моделювання, визначення та дослiдження
термопружного стану термочутливого тришарового порожнистого

цилiндра за конвективно-променевого теплообмiну

КушнiрР.М.1, ПоповичВ.С.1, Ракоча I. I.2
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Змодельовано та визначено стацiонарний розподiл температури в тришаровому без-
межному порожнистому цилiндрi, в другому шарi якого наявнi джерела тепла, розпо-
дiленi за параболiчним законом, а на внутрiшнiй та зовнiшнiй обмежувальних поверх-
нях вiдбуваються конвективно-променевий та конвективний теплообмiни вiдповiдно.
Знайдено компоненти напружено-деформованого стану. Дослiджено вплив залеж-
ностi теплових та механiчних характеристик матерiалiв складових вiд температури,
а також iнтенсивностi променевого теплообмiну на величину та характер розподiлу
температури i компонент напружено-деформованого стану.

Ключовi слова: кусково однорiдний цилiндр, порожнистий цилiндр, термочутли-

вий матерiал, температура, термальна напруженiсть

2000 MSC: 97M50

УДК: 593.3

Mathematical Modeling and Computing, Vol. 2, No. 2, pp. 160–175 (2015)




