odeling
MATHEMATICAL MODELING AND COMPUTING, Vol.2, No. 2, pp.160-175 (2015) I\/I @puting

athematical

Mathematical modelling, determination and analysis of the
thermostressed state in a thermosensitive three-layer hollow cylinder
subjected to the convective-radiative heating

Kushnir R. M.!, Popovych V.S.!, Rakochal.I.?

L Pidstryhach Institute for Applied Problems of Mechanics and Mathematics
of the National Academy of Sciences of Ukraine
3b Naukova str., 79060, Lviv, Ukraine
2 Lviv Polytechnic National University
12 S. Bandera str., 79013, Lviv, Ukraine

(Received 1 December 2015)

The stationary temperature distribution in a three-layer infinitely-long hollow cylinder is
modeled and determined under the condition that the internal heat sources are distributed
within the second layer in accordance to the parabolic law and the convective-radiative and
convective heat exchange with the environment occurs on the inner and outer surfaces,
respectively. The components of the thermostressed state were found and the effect,
caused by the dependence of thermophysical and mechanical material properties on the
temperature, along with the intensity of radiative heat exchange, in the distribution of the
temperature and stress-strain state is analyzed.
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temperature, thermal stress
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1. Introduction

A wide class of modern structure members is presented by the multilayer assemblies of a rectilinear,
cylindrical or spherical shape. Due to the fact that such structures are usually supposed to undergo
the high- or lowtemperature heating under coacting force loading, the dependences of their thermo-
physical and mechanical properties on the temperature appear to be critical [1-5] for the adequate
determination of the stress-strain state |1,3], which, in turn, is quite important for the prediciton of
their durability and reliability.

By making use of the technique suggested in [1], a nonlinear mathematical model for the distribution
of temperature in a three-layer (with respect to the radial coordinate) thermosensitive hollow cylinder
is formulated. It is assumed that the second (intermediate) layer of the cylinder contains internal heat
sources, which are distributed in accordance to the parabolic law. The inner and outer surfaces of the
cylinder are exposed to the convective-radiative and convective heat exchange, respectively. On the
layer interfaces, the conditions of perfect thermal contact are imposed. We have managed to determine
the components of the stress-stain state induced by the determined non-uniform distribution of the
temperature. The effect of the material thermosensitivity, along with the intensity of the radiative
heat exchange, in the temperature and stress-strain state are analyzed.
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RFFI (the state registration number 0114U005081)
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2. Mathematical model of the thermal conductivity of temperature field

Consider an infinitely-long hollow cylinder consisting of three cylindrical layers made of dissimilar ther-
mosensitive materials. Assume the cylinder to be heated by internal heat sources which are distributed
within the intermediate layer due to the parabolic law

AW

A e

(r —ro)(r —rs).
The inner, » = r1, and outer, r = r4, surfaces of the cylinder are subjected to the convective-radiative
(with the thermal conductivity «; and emissivity rate €1) and convective (with the thermal conductivity
a3) heat exchange with the inner and outer surroundings of temperature ¢ = t;,s and t = tous,
respectively. The perfect thermal contact is assumed on the layer interfaces r = r9 and r=rs. Our
objective is to determine the temperature distribution along with the components of stress-strain state
in the cylinder under the foregoing conditions.

The mathematical model for the determination of temperature in the considered thermosensitive
hollow cylinder is governed by:

— the heat-conduction equations for each layer

li(mw%

- dr t dr): W(i)(r)%, r, <r<mriy1, 1=1,3; (1)

— the boundary conditions on the inner and outer limiting surfaces

dt
[Agl)(tl)d—l — ai(ty — tins) — oe1(t] — t?ns)] =0, (2)
r rT=T1
dt
N ()22 + aslts — tous)] =0 (3)
T T=rT4
— the interface contact conditions
4 dt: 4 dt:
t; — 1 A () =L = A (1) = —1,2 4
! T=Ti+1 ol 7’:7‘1'+1’ t ( Z) d’l“ T=Ti+1 t ( Z+1) d’l“ 7’:7‘1'+1’ ! B ( )
where 0;; = { (1)’ z ;?7 is the Kronecker delta and o stands for the Stefan—Boltzmann constant.

Model (1)—(4) is the nonlinear one due to the nonlinearity of the condition (2) and assumed de-
pendence of the heat-conduction coefficients )\,gi) (t;)(i = 1,3) on temperature. In the literature, such
dependencies are usually given in a tabular form. In order to implement the theoretical analysis, it is
desirable to have the heat-conduction coefficients in the form of explicit analytical expressions )\gi) =

= )\gi) (t). To obtain such expressions, the tabular data are usually approximated with an analytical
function by making use, e.g., of the least squares method.

Let the heat-conduction coefficients for each layer be given within the temperature range [tp, te].
In what follows, we will describe them with the linear dependencies )\gl) = a;t; + b;, which is quite
common. Then the unknown parameters a; and b; can be found by means of the least squares method
in order to achieve the minimum difference between the sums of experimental and theoretical data.

Let us represent the heat-conduction coefficients of each layer in the form )\gi) (t;) = )\Eé))\ii) (T3),
where )\gé) are constants in dimension of the heat-conduction coefficient, )\iz) (T;) are dimensionless
functions of dimensionless temperature T; = t;/t.,i = 1,3, t. is the reference temperature. Due to
such linear dependence of the heat-conduction coefficients on the temperature, such representations
will have the following form:

A () = N (1 + k(T - T)), (5)
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where Ty, = t/te, ki = a;ty/(a;ty + b;), and )\ié) = a;tp + b;.
By introducing a characteristic length value [y and the dimensionless coordinate p = r/ly, mathe-
matical model (1)—(4) can be given in the dimensionless form:

DTV Z (s o
d_p (p)\* (E)d—p)_ w (p)52l7 Pi <p<pPiy1, 1= 17 37 (6)
dT
@) — Bin (T = Tis) = S(TF - Tih)| =0, (7)
dp p=p1
1y
N2+ Big(Ty = Tous)| =0, (8)
1Y p=p4
i) iy AL i i dT; .
T =T M) = KON @) S =12, ()
P=Pi+1 P=Pi+1 P lp=pit+1 dp P=Ppi+1

where W) (p) = —4Pop(p — p2)(p— p3)/(p3 — p2)?, Po = WéQ)l%/()\gg)te) is the Pomerantsev number,
Bi; = ailo/)\gé) (1 = 1,3) denotes the Biot numbers, Sk; = Jeltg’lo/)\l%) stands for the Stark number,
K)(\J) = )\%)/)\%71) (.7 = 2’3)> T’ins = 7fins/tea Touts = touts/te'

3. Determination of the temperature field

Let us introduce the Kirchhoff variables

T;
6; = / (@) dry, i = 1,3, (10)
T

instead of dimensionless temperatures 7;. Then problem (6)—(9) can be reduced to the following one:

d /s db; .
L2 () ‘ 4 . -
dp (,0 dp> w (p)612) Pi <P < pPit1, 1 15 3) (11)
db .
[T = Bi(Ti(6)) — Tine) = S(TI(00) = Tihy)| =0, (12)
dp p=p1
do .
T2+ Big(Ta(0) = Touss)| =0, (13)
1% pP=pa
do; (i+1) d0i11 .
T3(6; — Tyo1(6; i — gl il i=1,2. 14
( ) P=pit1 +1( +1)‘P=Pi+1 dp lp=pi1 A dp ‘P=pz’+1 (14)

In such manner, the original non-linear heat-conduction problems is reduced to the simpler one
in terms of the Kirchhoff variable. In the latter problem, the non-linearity remains in (12), (13) and
the first condition of (14). Due to the linear dependence of the heat-conduction coefficients on the
temperature (5), formula (10) yields

k
0; = (T; — Tp) +

5 (T = 1) (15)

From this equation we can find the following expression

vV1+2k0; —1
To) = T, (16)

Note that the sign of square root in the obtained expressions has to be chosen in the way to assure
T;(0;) having feasible meaning.
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By integrating equations (11), we arrive at

do;  Ca . R
_ Ca WDy, 0, =Caln L 4+ Cn+ W6, i=1.3, (17)
dp  p pi
where P 5 ) 5
% 4Po  (p> p P p p2
woi)y=———~ (. _ Lt _ Ry, 2
(p) s = )2 ( T~ 3 (s p2) 500 6 (ps — 5 ))

77(2) P P pP2P3
W = = —(p3+p)+ == ) -
() = (p3_p2 ( ( 6 ot e+ = )
02

p2 ps+ ps\ P p( P2>
- Prin P (ps — P2 ).
Pz <16 9 +4> 6 BT

The solutions (17) contain six unknown constants of integration. In order to find them, we assume
the constants in the expression for Kirchhoff variables to be given (the basic ones) in the first layer C1;
and C1a, for example. Then the remaining constants can be expressed through the basic ones using
the interface contact conditions (14). Note that hereby the condition [1]

ki1 —k;

Oir1 = 0)|..., = 5 (T3(6;) — Tp)2|z:zi+1’ i=1,2, (18)

has been equivalently used instead of the first one of (14). From the second of condition (14) we obtain

C 1 C
Cyy = 11 ( 11

— Osn=—g + W@ (p3)
KO KO\ )

meanwhile conditions (18) yield

ko — k 142k (C1p + COg) — 1\ 2
Coy = CyIn 22 4+ Cpy + 22 1<\/ 1(Culnpa/p1 + Cha) >7

P1 k1
2
oy ks — ko 1/1+2k102|p:p3—1
32 — 2|p=p3+ 9 kQ )
where
ko — k 1+ 2k1(Cq11 4+ Ci2) —1
02‘ — Oy ln—+ 21 P3 4Oyt 2 1 \/ 1(Cr1Inpa/p1 12) —|—W()( ).
p=p3 p1 K() P2 2 k1

In such manner, the constant of integration C;; Ta Cjo (i = 2,3) are expressed through the basic
ones C1; and C12, which are found from boundary conditions (12) — (13). Using (12) we can determine
the constant C7y

4
(VIT O -1 VI F 2RO — 1
Cn = p1 <B'Ll < kl 12 + Ty — Tz‘ns) + Skq <( kl 2 +Tb> Tﬁw))
1 1

Formula (13), in turn, yields the algebraic equation

142k 1 -1
@ + Bis <\/ + 3(031 Dp4/,03 +032)

+ Tb - Touts) =0 (19)
P4 ks
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for determination of constant Cs.

Due to the fact that equation (19) cannot be solved analytically, we employ the mathematical
software for analytical manipulations for the specific input parameters. Having found C'o, we get the
rest of constants automatically.

4. Determination of the temperature distribution in a hollow nonthermosensitive cylin-
der

The dimensionless mathematical model for determining the temperature of a similarly formed, non-
thermosensitive cylinder has the form

d ¢ dT; -
2 20m (@) A A A L
dp (p dp ) Wn (P)‘SZu Pi < p<pPiy1, 1737 (20)
dT, .
[ dl — Bi1n(Tin — Tins) — Skln(Tln TzAﬁs)] =0, (21)
1% P=p1
dTs, .
|: 3 + B23n(T3n - Touts)} =0, (22)
p=p4
dT;, FD dT i1 1)n
ﬂn = Tz n ) - 7 ) 1= 1) 25 23
P=Pi+1 (+1) P=pi+1 dp p= Pz+1 )\ dp P=pi+1 ( )
where W% (p ) = ~4Poup(p=pa) o~ ps)/ (03 = 2, Pou = PoN /N, Bisn = Bishig [\ (i = 1,3),
Skin = Sk AG AL KD = \D 20D (5 — 2 3).
From the problem (20) (23) we can find the following:
= O WO (), T =Caln 2 4 Tt WO ()b, i = T3, (24)
dp p pi
where 5 )
~ 4Po
@)= % (P _ P P P, P
Wn (P) (P3 — P2)2 ( 4 3 (p3 + pZ) + 2/)3/)2 6p (PB 9 ) )
WO ()= __4Pon [ a2(p® p oa0s)
W) = s <p (4~ a0+

(st ps _p_§1n£<p_@)
16 9 4 6 p P2 ) )

Then, using the boundary conditions (23) we can find the constants of integration

Cot = —F%+,
K(2)

Cyp=Ciln P2 4 C12,
\ 1

— 1 /C — — 1 — —
Ca = —5 ( (11) +psW (P3)) C32 = Cn (1n Py —z &>+012 + W (p3).
K K>\ P1 K P2

From the boundary conditions (21) we get the constant

Ci1=p1 (Blln(cm Tins) + Skln(cm TzA;zs))
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meanwhile the condition (22) yields the equation

C
p—il + Bis, <C31 2+ Ty — outs) =0

to determine the constant C1s.

5. Formulation of the mathematical model of stress-strain state

Assume the layers of foregoing three-layered cylinder to be in the perfect mechanical contact and
exposed to the determined radial distribution of temperature. The inner and outer cylindrical sur-
faces of the cylinder are subjected to uniformly distributed normal loadings. Assume the mechanical
properties (the Young modulus E(t;), the Poisson ratio v (t;) and the linear thermal expansion

coefficients agi) (t;)) of the layers to be functions of the form y®(t;) = X(()i) ng) (T;), where X( ) are the

dimensional quantities equal to the value of the characteristic with the temperature ¢; and Xi)(n) are
the dimensionless function of the dimensionless temperature T;. Then,

EO() = B EX(T), v (t) = v v(T), o (t) = af el (T).

The basic equations, which govern the stress-strain state of the cylinder, are:

— the equilibrium equations

— the physical strain-stress relations

EWe® = 50 _,00) (Jg) + oDy + EWoO(T;) =

‘ ‘ S N . L 26

= 1+y(1))(01(j)_,,(Z)J(Z))_,,(Z)E(l)ez_,_(1+V(l))E(Z)@(Z)(ﬂ)’ (26)

EDed = 60 — 0 (o) 4 510y + EOGO(T3) = o
1+ ) (( 1—1/”)0(@) o) =D EWe, + (14 vD)EDO(Ty),

= (
i )( (4) +J( N+ EDeO(T) = — 060 4 EOSO(T)), =T n; (28)

z

EDeli) — o) _

z

— the compatibility equation

that can be represented in terms of stresses

iy o | ()
a4 (MJ@) e, + (14 V(Z))q)(l)(Ti)> _ 04 (1 tv ) ; (20)

dp E®

— the conditions on the limiting surfaces and in the cross section

Pn+1

oM (p1) = —p1, o (ppt1) = —pa, 2 / vo.(v)dv = p; (30)
p1

— the conditions of the perfect mechanical contact on the interfaces
u D (pi1) = (pir1), ol (pi1) =0 (piv1), i=Tn—1L (31)
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I . )
Here, in (25)-(31) ®(T;) = to [ o)(T;)dT; is the purely thermal deformation; o, JS), o) are
Ty
the radial, circumferential and axial stresses; 61(~Z), eg) are the radial and circumferential strains in

i-layer, respectively; e, is the constant axial strain; o) = U,(n) + 0’50), up is the radial component

of the displacement-vector in i-st layer related to the characteristic length ly; p1, p2 are the constant
pressures on the inner (p = p1) and outer (p = p,4+1) surfaces, respectively; p is the axial loading at
the ends of cylinder.

6. Determination of the stress-strain state

In [1], the following computation formulae have been obtained:

o (p) = 117 (p)r ™ (1) + 28 (p)e= + 6 (o), (32

o) (p) = oV (p) = o (p). (33)

o(p) = EVe. + g () - BT, (34)

7D (p) =410 ()M (p1) + 45 (p)e- +v“’<> (35)

e (p) = (09(p) =00 (p) + 010 (p)) + ED(T})) [ EO (36)
() = (09 () = v (0 (p) + 00 (p)) + EOBO (1) / O (37)
u(p) = p- e (p), (38)

where

1 1 7 7
W (p) = ((1 — 510 (o (o) +

P (p)
(1) i—1 Pk+1 , .
( E( (o ))) +(1—61) ) / vﬁ’?(n)(&“(n)) d77+5(k)7$)(/)k+1)> x(f)(p)>,
k=1 p,
750 (p) ( (i) + (1= 1098 (o) (o) +

i

Pk+1
1 ( / v () («p(’“) (n)) dn+ 6(k)7§f)(pk+1)>>x(f) (p)> :

1

+ (V Vpi) = vV(pr) + (1 = 615)

b
Il

Y0 (p) = W}(p) ((—&ipl (1=t (00) )58 (0) = FO(p) + FO(pi)+
i—1 Prt1 A
+ ((1 a0 ([ R0 (o) dn+ 590 <pk+1>)—F<Z‘><pi>> x§”<p>>,
k=1 Pk

P
i 1 i i
7 (p) = p <(1 —aw)piv, (o) + / el (n)dn>,

Pi
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p
i 1 i— 7
¥2(p) = p ((1 — 81)p2s (o) + /méo) (n)dn>,

pi

P
i 1 i— )
wp) = — (—p?pléu + (1= 61 (pe) + / ey (n)dn>,
Pi

R

. _ . . @) (.
W) _ 4 (P=PiN2 oy P (i)

; — i 7% A
v = PSP (LD (0) + (00 (p))).

2 \p
4 — (WD)(p))?2 — o
#0() = T (E52) 200,
. !
S0 (p) = 1 _ (p()p)’
% ! d 1_V(i)(p)
(e (p)) :d—p(iE(i)(p) ).

BY = (pi1) — 0D (pita),
F@(p) = (1+v9(p)) 2D (Ti(p)) — (1 + v (p1)) 2N (T1(p1)),

T;
OU(T}) = to / o) (T;)dT;
Ty

c1dan — cadi2 cadyy — ciday

(1) _ _
O- - 9 ez - 9
(P1) dy1dag — do1di2 di1dag — da1dr2

Pk+1

n

dnzz / 77’Y§l(§))(77)d777

k=1 Pk

n Pk+1
k
d12=2 / ﬁVéo)(n)d%
k=1

n Pk+1

=7 / ) ()yie) (m)dn,
k=1 p),
n Pk+1
do =Y [ n(v Bl )+ B )
k=1 p,
n Pk+1
1 = pip1 — Pi+1p2 + Z / 777(%) (m)dn,
k=1 p,

n Pk+1

=gty / n(B® @™ (Ti(m) = v B )l () ) dn,
k=1
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Note that formulae (32)—(35) are valid for the thin layers only, for which, then computing the
integrals that contain unknown stresses, the trapezium rule

[y =52 (v () + v () (39)

is satisfied within the given accuracy.

If the cylinder contains both thin and thick layers, then each of the thick layers can be segmented
into several thinner ones made of the same material. The accuracy of such representation can be
verified by making use of the formula [1]

n Pk+1

Pip1 = prap2 =) / no®) (n)dn. (40)

k=1 Pk

7. Special cases

Case 1. Consider the case when the thermo-physical and mechanical characteristics of the nonther-
mosensitive cylinder (denote them with n) are equal to the basic values of corresponding components
of the thermosensitive one, that are the values of thermosensitive characteristics at the temperature ;.

Then, the temperature distribution has the form (24), where )\gfl) = )\%), i = 1,3. The Poisson ratio,

the coefficient of linear thermal expansion and the Young modulus have the following form: 1/,(1) = uéz),

() _ o0 gl _

E(()Z), i = 1,3, and formulae for determination of the the stress-strain state take the

?tn = Q4
orm
oD (0) = ¥ou(P)o) (1) + 0 (P)ezn + 100 (0); (41)
D) = N (D)L (1) + W (P)ezn + 1500 (0), (42)
c0(p) = o (p) — o) p), (43)
o0(p) = B ean + )01 (p) — B DD (Tn), (44)
ep) = (01)(p) = v (01 (0) + o )(0) + ES @ (Tun)) / B, (5)
ei(p) = (00 (0) = (0D p) + 0 1)(p)) + B @ (Tin) [ B, (46)
u)(p) = p- e (p). (47)
where

()42 i—1
i 1 1—(y
() = (ﬂ £ (13 Zﬁ;%’ﬁL(le)) ,

w!\ By =
1—1
i 1 i
f)é())n(p) = w(z) (V(()) - V(gl) 1 - 512) Z /Br(Lk)Vélﬁzz(karl))’
n k=1

P
i 1 i— 1
0 (p) = e <(1 —51)p2 D (o) + / Mo)ndn)

Pi

Mathematical Modeling and Computing, Vol.2, No.2, pp. 160-175 (2015)



Modelling and determination of the thermostressed state of the layered cylindrical bodies 169

P
i 1 i— 7
A (p) = P <(1 — 51) P (o) + / méo)ndn)

Pi

P
i 1 i— %
’Yér)n(p) = ; <_P%p15u + (1 - 51i)p127(()rn1) (pl) + /n’Y(()O)ndn> ’
pi
G _ 1- (?(()Z))Q

wn - 9
B
i)
. 1—vy,
() — 0
0

B = pltD) — o),
O0)(Ty,) = tooll) (Tin — T),
FD(p) = (1 4+ 1§)00 (Tin(p)) = (1 + )00 (Th (1)),
1 Cindoon — condion
(p1)

b
d11nda2y — do1ndi2y
condi1n — cipdoin

€zn = )
d11nd22n, — do1ndi2,
n Pk+1
k
diin ZZ / M on (1),
k=1 p,
n PE+1
k
dion = Z / M son (1),
k=1 p,
n PE+1
k
doin = Z / g’ )’AOZL( )dn,
k=1 p,
n PE+1
k) (k k
doon = Z / 77(”(() Son(n) + E§ ))dﬁa
k=1 p,
n Pkt
k
C1n = pip1 — Phpap2+ Y / mMon(m)dn,
k=1
k
Pk+1

n

o +z/ n(EL S0 T0) ~ v§4 50 dn.

Case 2. In case of the average integral values of heat-conduction coefficients

Te
i i 1 i i) (ki .
A=A = T, /AEO’(l + k(T — Ty))dT; = A <E(Te - Tb)), i=13,
Ty
. F
{Vn ’Cltn’E(Z } {V ’O‘tc)’Eéi)} = /{I/C(Z)’ag?,Eél)}dTl’ 7= 1,3
T, —T,
T
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we obtain the temperature distribution (24). The formulae for calculation of the stress-strain state
will have the form (41)—(47) in which the basic values of the thermomechanical characteristics should
be replaced by average integral ones.

8. Numerical implementation

We intend to analyze the thermosensitivity effect in the distribution of temperature and stress-strain
components in the three-layer cylinder for different parameters. Assume the first and third layers to
be made of ceramics ZrOz, meanwhile the second one is made of the titanium alloy T — 6 Al — 4V [6].

Approximate the experimentally found heat-conduction coefficients and thermomechanical charac-
teristics by polynomials (5) within the temperature range 300 <+ 1100 using the least squares method.
The following values were established for ceramics

AP = 1.915(1 + 0.24664(T1 5 — Ty) [W/(m - K)], v = 0333,
o) = 8.783-1070(1 — 1.4128(Ty 3 — Ty) + 1.7496(T} 3 — Ty)?) [1/K],
BE13) =116.381(1 — 0.521357(T3 3 — Tp) — 0.084215(T1 5 — T3)?) [GPal,

and for titanium alloy

AP =621 +3.016(T, — T)) [W/(m - K)], v = 0.2984(1 +0.118(Ty — Ty)),
a® =8.8559 - 107%(1 + 0.49014(Ty — Tp) — 0.36754(T> — Ty)?)[1/K],
E® =105.05(1 — 0.5916(T> — T;,) [GPa] ,

Impose p1 = 0.7, po = 0.75, ps = 0.95, py = 1, and lp = r4. The dimensionless values of the
temperature are assumed to be T, = 3/11, T, = 1, Tips = 1/3, Tours = 1/3, and the Pomerantsev, Biot
and Stark numbers are Po = —3, Bi; = 1, Bis = 2, Sk; = 0.5. The cylinder is free of the pressures
on the inner and outer surfaces and axial loadings at the end-faces (p; = p2 = p =0).

The temperature distributions for the considered cylin-
der are presented in Fig.l. Here and in what follow,
the solid lines correspond to the thermosensitive cylinder,
dashed lines correspond to the non-thermosensitive cylinder
with basic values, dash-dotted lines correspond to the non-
thermosensitive cylinder with the average integral values of
the heat-conduction coefficient.

The maximum difference between the temperatures in
thermosensitive and non-thermosensitive (with basic and av-
erage integral values of the coefficient of thermal conductiv-
ity) cylinders do not exceed 1%

T

0.74-

0.72

0'7%_7 0.8 0.9 p The algorithm for determining the components of stress-
strain state, because the formulas (32)—(35) are valid for thin
Fig. 1. The temperature distribution. layers only, implies the following steps:

1. Compute the formulae (32)-(35) without segmentation of each layer into thin sublayers;

2. Verify the integral condition (40);

3. If the condition (40) is not satisfied, then increase the number of segments and return to step 2.
Otherwise, the computation is over.

Tab.1 presents the results obtained when finding the sufficient segmentation of layers into sublayers
in order to achieve the accuracy € = 107,
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Table 1. The result of segmentation of cylinder layers into sublayers

Total number Number of sublayers in each layer Verification of
of layers I layer IT layer 11T layer integral conditions
3 1 1 1 —0.000714
4 1 2 1 —0.000166
5 1 3 1 —0.000078
6 1 4 1 —0.000048

As we can see the representation of the considered cylinder by a six-layer body is enough to achieve
the required accuracy. The corresponding distributions of stresses, strains and displacements are shown
in Fig.2-4. Note, that the constant axial strain equals 0.0044256.
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C

Fig. 2. Distributions of radial o,(p) - 10® (a), circumferential o,(p) (b) and axial o,(p) - 10 (c) stresses.

In Fig.2-4, we can observe that the distribution of the stress-strain components in the nonther-
mosensitive cylinder with average integral values of mechanical characteristics gives a better approxi-
mation to the same distribution in thermosensitive hollow cylinder, in comparison to the stress-strain
components distribution in the nonthermosensitive cylinder with basic values. In particular, the max-
imum differences are 25% for the radial stress, 30% for the circumferential stress, 30% for the radial
strain, 10% for the circumferential strain, and 10% for the radial displacement.

The employment of the model of nonthermosensitive body with basic values of its thermomechanical
characteristics does not provide a correct approximation for such distribution of appropriate stress-
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Fig. 4. Distributions of radial displacement Fig. 5. The temperature distribution.
ur(p) - 103.

strain components in thermosensitive cylinder. Moreover, it leads to the qualitatively different results
in some cases. In Fig.2¢, we can observe that the axial stress in the second layer of nonthermosensi-
tive cylinder (with basic and average integral thermomechanical characteristics) are changed not only
quantitatively, but also inherently (the compression in the thermosensitive cylinder and tension in
the nonthermosensitive one). Therefore, it is necessary to take into account the thermosensitivity of
material components to determine axial stresses.

The influence of the radiative heat exchange on the distribution of the temperature and stress strain
state of the thermosensitive hollow cylinder has been investigated for the same coordinates of layer
interfaces and material properties. The dimensionless temperatures were given as Tj,s = 1, Touts =
= 5/11 so that they were higher than the temperature of the cylinder. The dimensionless parameters
are Po= —2, Biy =7, Big =5, Sk; = {0,1,2}. Note, that there is the pure convective heat exchange
on the inner limiting surface, if Sk; = 0. In Fig. 5-8, the distributions of temperatures and stress-strain
state components are shown. Here, lines 1 correspond to Sk1 =0, 2 - Sky =1, 3 — Sky = 2.

It is shown that under the imposed conditions, the increment in the Stark number by one unit
causes the increment of the temperature and stress-strain state components more than i 6%. But,
if temperatures, radial displacements and axial strains increase almost uniformly with the change of
Ski at each point of the cylinder, the radial, circumferential and axial stresses change mainly at the
interfaces.

Mathematical Modeling and Computing, Vol.2, No.2, pp. 160-175 (2015)



Modelling and determination of the thermostressed state of the layered cylindrical bodies 173

G T T
[
3 1
1.5 2
3 2
A
0.0+ - g
2\}/
0.7 0.8 0.9 P
a b
6 T T
Zz
0.2
3
1
2
3 2
0.17/?“ , ]
1
0.0 : .
\M‘
2
-0.1 3 .
0.7 0.8 0.9 P

Fig. 6. Distributions of the radial o,.(p) - 10® (a), circumferential o,(p) - 10 (b) and axial o,(p) - 10 (c) stresses.

0.7 0.8 0.9 p 0.7 0.8 0.9 P
a b
Fig. 7. Distributions of the radial e,(p) - 10% (a) and circumferential e, (p) - 10% (b) strains.

Mathematical Modeling and Computing, Vol.2, No.2, pp. 160-175 (2015)



174 KushnirR. M., PopovychV.S., Rakochal.l.

Fig. 8. Distributions of the radial displacement u,(p) - 103.

9. Conclusions

The nonlinear mathematical model of temperature distribution in an infinitely-long three-layer hollow
thermosensitive cylinder with heat sources distributed by parabolic law in the second layer under the
convective-radiative and convective heat exchange on the boundary surfaces is suggested. On this
basis, the temperature and components of the stress-strain state are determined.

The thermosensitivity effect on the temperature and stress-strain state components distribution is
analyzed. It is shown that neglecting the dependence of thermomechanical characteristics (the replace-
ment for basic or average integral ones) causes the significant differences between the distributions of
stress-strain state components in the thermosensitive and nonthermosensitive cylinders, which may lead
to qualitatively different distributions (the compression in the thermosensitive cylinder and stretching
in nonthermosensitive one).

For the considered materials, it is shown that the distribution of the stress-strain state in nonther-
mosensitive cylinder with average integral values of mechanical characteristics gives a better approx-
imation to the corresponding distribution in the thermosensitive hollow cylinder. This can be useful
for its quick estimation.

The investigation of the intensity of radiative heat exchange shows that the increment in the Stark
number causes, in our case, the increment of the temperature and stress-strain state components in
each point of cylinder.
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MaTtemaTnyHe mogentoBaHHS, BU3HAYEHHS Ta AOC/IA>KEHHS
TEPMOMPY>KHOro CTaHy TEPMOYYT/INBOrO TPMLLAPOBOro NOPOXHUCTOrO
UMNiHAPA 32 KOHBEKTUBHO-NPOMEHEBON0O TENJI000OMiHY

Kymuip P. M., ITonosuu B. C.!, Paxkoual.1.?

L Inemumym npusaaonus npobaesm MEeTaniky & MUmMememuKy
im. . C. ITidempuzava HAH Yxpainu
eys. Hayxosa, 36, 79060, Jlveis, Yrpaina
2 Haugonarvnuti ynieepcumem «JIv6iscoka noaimernixkas
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3MO/IeJIbOBAHO Ta BU3HAYEHO CTAIIOHAPHUI PO3IMOJILJ TeMIEpaTypl B TPUIIAPOBOMY 6e3-
MEYKHOMY TIOPO2KHUCTOMY IMJIIH/IPi, B APYTrOMY IIapi SIKOT'O HAsIBHI JIPKepeJia Telia, POo3Io-
JiseHi 3a mapaboiYHIM 3aKOHOM, & Ha BHYTPIITHIN Ta 30BHINIHI#T 0OMEKYBaJILHAX TIOBEPX-
HAX BiZIOYBAIOTHCS KOHBEKTUBHO-TIPOMEHEBUHN Ta KOHBEKTUBHUM TEIJIOOOMIHU BiIIOBIJIHO.
3HaiileH0 KOMIIOHEHTH HAIPYKeHO-1edOPMOBAHOr0 cTany. JloCTiPKeHO BILIUB 3aJ1eK-
HOCTi TEIJIOBUX Ta MEXaHITHUX XapaKTEPUCTUK MaTepilaiB CKJIaJOBUX BiJl TEMIIEpATypH,
a TaKOXK IHTE€HCUBHOCTI IMPOMEHEBOTO TEIJIOOOMIHY Ha BEJIUYUHY Ta XapaKTep PO3IOJILITY
TeMIIEPaTyPU 1 KOMIIOHEHT HAIIPYKEHO-1e(OPMOBAHOTO CTAHY.
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