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An analytical solution of the non-stationary axisymmetric thermoelasticity problem of the
pressurized thermal shock event for unbounded two-layered elastic cylinder has been pro-
posed. The physical and mechanical properties of the cylinder materials were assumed to
be temperature independent. The thermal boundary conditions correspond to the stepwise
medium temperature drop at the inner cylinder surface. The outer cylinder surface has
been considered as heat-insulated. Given solution has been applied to the development
of analytical basis for the generation of nuclear power plant emergency operation limiting
pressure-temperature curves. The comparison of the results of analytical approach with
the results of finite-element analysis performed for real, temperature-dependent material
properties has been carried out. The accuracy of the analytical results is shown to be
sufficient for the application of the given analytical approach for the generation of the
limiting curves.
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1. Introduction

The Emergency Operating Instructions (EOIs) define the activities of nuclear power plant (NPP)
operator in the case of emergency. The procedures of EOI are divided into two categories. One
category deals with specific events and their diagnosis; for these events, guidance is provided to recover
the plant in an optimal manner. The second category makes no attempt to diagnose an event. It
concentrates only on protecting the barriers against release of radiation. This second category of
guidelines is called Function Restoration Guidelines (FRGs). The FUNCTIONS referred to in the title
are those activities or conditions which must be satisfied to assure that the physical barriers to radiation
release are maintained. Three barriers are considered: the fuel matrix and cladding, the reactor coolant
system boundary and the containment building. To support the barriers to radiation release, a set of
Critical Safety Functions is defined. For the assurance of the Reactor Coolant System (RCS) safety
the Critical Safety Function “Integrity” is generated. The intent in monitoring the “Integrity” Critical
Safety Function is to define symptoms that indicate a challenge to RCS integrity and to prioritize
operator actions required to address this challenge. The first concern is transients that result in
rapid and severe RCS cool-down coincident with a high or increasing primary system pressure that
could lead to challenging vessel integrity (i.e., pressurized thermal shock (PTS)). The other concern
is transients that occur while the RCS is relatively cold and a rapid pressure increase occurs (i.e.,
cold overpressure). The plant process parameters to be used in monitoring the “Integrity” Critical
Safety Function are RCS pressure and RCS cold leg temperature. RCS pressure is an indication of
the pressure in the downcomer region and cold leg temperature is the indication of downcomer fluid
temperature. Limits to these RCS parameters are defined by Operational Limit Pressure-Temperature

c© 2016 Lviv Polytechnic National University

CMM IAPMM NASU

79



80 KutsenkoO.G., Kadenko I.M., KharytonovO.M., SakhnoN.V.

(p − T ) Curves for which typical example is presented in Figure 1. The Operational Limit Curves
divide the Tp plane into four regions identified with RED, ORANGE, YELLOW, and GREEN colors.
Depending on the regions, the appropriate operator actions will be provided by the guidelines.

Fig. 1. Typical Operational Limits Curves for Integrity.

Above Limit curves are developed based
on brittle fracture mechanics analysis which
is commonly realized using Finite Element so-
lution of the correspondent thermoelasticity
problem. However, Finite Element calculation
requires essential computational burden. Be-
sides, validated codes and models must be used
for such calculations. One of the most effec-
tive ways to reduce the computational burden,
necessary for Limit p − T curves generation,
is the development of appropriate analytical
approach. In addition, the analytical solution
gives possibility to validate new Finite Element
codes and models. An analytical approach to
Limit p − T curves generation is presented in
the given paper.

2. Model scenarios for limit p − T curves development

The problems, concerned with PTS analysis are divided into two categories. The first category includes
the problems of the plant-life extension. For that category, the resistance of the Reactor Pressure Vessel
(RPV) against fast fracture is assessed for the real PTS scenarios that can take place in the case of
emergency. In that problems the exact simulation of the coolant mixing in the downcomer and the
cold plumes influence analysis are of primary importance.

The problems from the second category deal with the EOI Operational Limit Curves generation. As
the accident diagnostics is not required and only symptoms of the accident are taken into account, the
conservative generalized model scenarios must be considered for Limit curves generation. The typical
generalized model of PTS scenario is uniform step cool-down. In accordance with such scenario, the
coolant temperature falls immediately from the normal operation temperature to the selected limiting
values. For the RPV region the most conservative value is the hydraulic tanks water temperature
of ECCS. At the same time, the primary circuit pressure does not lower and equals to the normal
operating pressure value. Conservative value of the heat transfer coefficient should be applied. Such
a scenario has a maximum available conservatism from the point of view of cool-down rate. From the
other hand, using the comparative analysis [1] it was concluded that the temperature stresses due to
uniform cooling down (the entire inner surface of RPV is cooled) are more dangerous than the stresses
due to cold plumes (the part of the inner surface of RPV is cooled). Thus, the scenarios with the cold
plumes lead to less severe thermal loading conditions than the uniform cool-down scenario.

3. Thermoelasticity problem

For the linear problem it is a possibility to carry out all the types of analysis (the heat conduction,
structural and fracture mechanics analysis) independently. So, at each time point of PTS transient
at first we can define the temperature fields, then the fields of stresses and then perform the brittle
fracture analysis based on the stress intensity factor (SIF) calculation. The fields of temperature and
stresses can be obtained from the solution of nonstationary thermoelasticity problem. This problem
can be set for a two-layered hollow cylinder with an infinite length that represents a model of a RPV
beltline zone. For the linear case, the thermoelasticity problem can be divided into two independent
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parts: the nonstationary problem of temperature field determination and the quasi-static problem of
stress field determination. The solution of the last problem must be obtained at each time point of the
transient.

3.1. Heat conduction problem

For the scenario of uniform cool-down, the temperature field is axisymmetric. The inner radius of
the RPV is much more than the RPV wall thickness. Therefore, the axisymmetric problem of heat
conduction in two-layered cylindrical wall can be considered as a problem of heat conduction in two-
layered rod with unit cross-section area and heat-insulated lateral surface (Figure 2). The length of
the first part (cladding) is denoted as h1 and the length of the second part (base metal) as h2.

Fig. 2. Heat conduction problem geometry.

The convectional boundary conditions are imposed at
the left end of the rod while the right end and the lateral
surface are thermal insulated. It is supposed that the initial
temperature of the rod is constant and equals to zero. At
the initial time point of the transient, the temperature of
the environment at the left end changes step-wise from zero
to the value T0. So, the corresponding heat conduction problem can be formulated as follows:

∂T1
∂t

= a21
∂2T1
∂x2

, t > 0, 0 < x < h1,
∂T2
∂t

= a22
∂2T2
∂x2

, t > 0, h1 < x < h, (1)

T1|t=0 = 0, T2|t=0 = 0,

(
T1 −

λ1
H

∂T1
∂x

)∣∣∣∣
x=0

= T0,
∂T2
∂x

∣∣∣∣
x=h

= 0, (2)

T1|x=h1
= T2|x=h1

, λ1
∂T1
∂x

∣∣∣∣
x=h1

= λ2
∂T2
∂x

∣∣∣∣
x=h1

. (3)

The following designations are used in (1)–(3): T1(x, t), 0 < x < h1 is the temperature in the
cladding, T2(x, t), h1 < x < h is the temperature in base metal, h = h1 + h2, a

2
k = λk/(ρkck), k = 1, 2,

where λk, ρk, ck are heat conductivities, densities, and specific heats of the rod parts materials,
respectively; H is the heat transfer coefficient. The conditions (3) are applied to assure the continuity
of the temperature field and heat flux at the interface cross-section of the rod.

The solution of the problem (1)–(3) can be obtained using Laplace transformation

T̃k(x, s) =

∞∫

0

Tk(x, t)e
−stdt, k = 1, 2,

where s is complex parameter of the transformation.
The representations T̃k(x, s) are given as the solution to the following problem:

∂2T̃k
∂x2

− s

a2k
T̃k = 0, k = 1, 2,

(
T̃1 −

λ1
H

∂T̃1
∂x

)∣∣∣∣∣
x=0

=
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s
,

∂T̃2
∂x

∣∣∣∣∣
x=h

= 0, T̃1

∣∣∣
x=h1

= T̃2
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x=h1
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∂x

∣∣∣∣∣
x=h1

= λ2
∂T̃2
∂x

∣∣∣∣∣
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.

This is the boundary problem for two ordinary differential equations with constant coefficients,
therefore it can be easily reduced to linear algebraic system. Finally the solution of the problem can
be written in the form

T̃k(x, s) =
T0
s

∆̃k(s, x)

∆̃0(s)
, k = 1, 2, (4)
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where

∆̃0(s) = cosh ξ cosh βξ + α sinh ξ sinh βξ + γξ [sinh ξ cosh βξ + α cosh ξ sinhβξ] ,

∆̃1(s, x) = cosh βξ cosh (1− x/h1) ξ + α sinhβξ sinh (1− x/h1) ξ,

∆̃2(s, x) = cosh (1− (x− h1) /h2)βξ, ξ =
h1
a1

√
s, α =

a1λ2
a2λ1

, β =
h2a1
h1a2

, γ =
λ1
h1H

.

To define the temperature fields, the inverse Laplace transformation must be performed in accor-
dance with the rule

Tk(x, t) =
1

2πi

m+i∞∫

m−i∞

T̃k(x, s)e
stds, k = 1, 2, m > 0. (5)

Fig. 3. Path of integration for the inverse
Laplace transformation.

Note, that the function
√
s is two-valued. Its branches

can be extracted on the plane with the cut that connects
the infinitely far point with the origin. However, the rep-
resentations T̃k(x, s) are single-valued functions. Really, if
the mentioned cut is drawn along the negative part of the
real axis, the branches of the function

√
s take at the faces

of the cut the pure imaginary values with the opposite
signs. Since function cosh(x) is even, the representations

(4) are single-valued. Therefore, the singular points of representations are poles that are located on
the negative part of the real axis with initial pole s0 = 0. So, the path of the integration in (5) can
be deformed in such a way that is presented in Figure 3 and the originals can be calculated as sums
of residues of integrands in (5). In fact, the above procedure expresses the application of the second
expansion theorem of operational calculus.

Taking into account that
√
s takes pure imaginary values on the path of integration, it is reasonable

to introduce the designation µ = iξ = ih1

a1

√
s. Then the zeros of the correspondent denominators can

be expressed as sn = −
(
a1
h1
µn
)2

. The equation for the definition of these zeros can be written in the
form

cosµn cos βµn − α sinµn sinβµn − γµn (sinµn cos βµn + α cosµn sin βµn) = 0, n = 1, 2, 3, . . . . (6)

Calculating the residuals of the integrands in (5), one can obtain the solution of the heat conduction
problem (1)–(3) in the following form

Tk(x, t) = T0

[
1− 2

∞∑

n=1

∆k(µn, x)

µn∆0(µn)
e
−
(

a1µn
h1

)2

t

]
, k = 1, 2, (7)

where

∆0(µn) = δ1 sinµn cos βµn + δ2 cosµn sin βµn + δ3 cosµn cos βµn + δ4 sinµn sinβµn,

∆1(µn, x) = cos βµn cos(1− x/h1)µn − α sin βµn sin(1− x/h1)µn,

∆2(µn, x) = cos(1− (x− h1)/h2)µn,

δ1 = 1 + αβ + γ, δ2 = α+ β + αγ, δ3 = (1 + αβ) γµn, δ4 = − (α+ β) γµn,

µn are the roots of the equation (6).
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3.2. Quasi-static thermoelasticity problem

As the inertia forces produced in the RPV wall due to temperature variation are negligible, it can
be supposed that at certain time point t thermal stresses are defined by the temperature field that
realized at that time point. So, in the thermoelasticity problem the time variable can be considered as
a parameter.

Consider an equilibrium state of two-layered cylinder (Figure 4) with inner layer defined by the
radial coordinate interval a < r < b (corresponds to cladding) and outer layer b < r < c corresponds
to base metal of RPV wall. Let us denote the parameters of the first layer by the index “1” and of the
second layer — by the index “2”. It is important that for the RPV wall materials Poisson coefficients
are equal for the base metal and cladding. The only loading applied to the cylinder is thermal loading
due to nonuniform temperature field T (r, t), a < r < c, t > 0. At each time point the temperature
field T (r, t) in two-layered cylinder can be approximately presented by the expressions (6), (7), where
following relationships must be used: x = r − a, h1 = b− a, h2 = c− b. The task is to determine the
longitudinal σz and circumferential σϑ stresses, since they are of the main importance for the fracture
analysis.

Let us consider at first the case of rigid fixing of the cylinder ends:

wk|z=0 = wk|z=l = 0, k = 1, 2,

where l is the cylinder length and w is the longitudinal displacement. Taking into account the plane
deformation condition εzk = dwk

dz ≡ 0, it can be concluded that wk ≡ 0.

Fig. 4. Thermoelasticity problem
geometry.

As a problem is axisymmetric, the stresses that arises in both
cylinder layers satisfy the equations

dσrk
dr

+
σrk + σϑk

r
= 0, k = 1, 2, (8)

where σrk are radial stresses and index k = 1, 2 corresponds to
the number of a layer. The tangential stresses are absent due to
equality of Poisson coefficients of the cylinder layers.

To obtain the governing equation from (8) one can apply
Hooke’s law with the hypothesis of the plane strain conditions.
For the plane strain εzk = 0, k = 1, 2 (where εz is the longitudinal
strain) and the longitudinal stresses σ̂zk can be expressed through
the circumferential and radial stresses using correspondent relation
of Hooke’s law:

σ̂zk = ν (σrk + σϑk)− αkEkT, k = 1, 2. (9)

The other Hooke’s law relations can be written in the form

εrk − (1 + ν)αkT =
1− ν2

Ek

(
σrk −

ν

1− ν
σϑk

)
, (10)

εϑk − (1 + ν)αkT =
1− ν2

Ek

(
σϑk −

ν

1− ν
σrk

)
, k = 1, 2,

where εr and εϑ are radial and circumferential strains, E is Young modulus, ν is Poisson coefficient, α
is thermal expansion coefficient.

For the axisymmetric problem the relations between strains and displacements may be expressed
in a following manner:

εrk =
duk
dr

, εϑk =
uk
r
, k = 1, 2, (11)

where u is radial displacement.
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Substitution of the relations (11) into the equations (10) leads to the governing equation for the
radial displacement

d

dr

(
1

r

d (ruk)

dr

)
=

1 + ν

1− ν
αk
dT

dr
, k = 1, 2. (12)

The general solution of the equation (12) can be written as

uk =
1 + ν

1− ν
αk

1

r

r∫

rk

Trdr + C2k−1r +
C2k

r
, k = 1, 2, r1 = a, r2 = b. (13)

Expressions for circumferential and radial stresses can be obtained from the solution (13) using
(11) and (10). They have the form

σϑk =
αkEk

1− ν

1

r2

r∫

rk

Trdr − Ek

1 + ν

[
αkT +

(
C2k−1

1− 2ν
+
C2k

r2

)]
, (14)

σrk = −αkEk

1− ν

1

r2

r∫

rk

Trdr +
Ek

1 + ν

(
C2k−1

1− 2ν
− C2k

r2

)
, k = 1, 2.

To obtain the well-defined final expressions for the stresses, one must define the arbitrary constants
C1, C2, C3 and C4 from the boundary conditions. The boundary conditions are represented by the
stress-free conditions on the lateral surface of the cylinder

σr1|r=a = σr2|r=c = 0, (15)

and the conditions of the continuity of the fields of stresses and displacements at the cladding-base
metal interface

u1|r=b = u2|r=b , σr1|r=b = σr2|r=b . (16)

The final expressions for the circumferential stresses have the following form:

σϑ1 =
α1E1

1− ν

1

r2


r

2 + a2

b2 − a2

b∫

a

Trdr +

r∫

a

Trdr − Tr2


− r2 + a2

b2 − a2
b2

r2
q,

σϑ2 =
α2E2

1− ν

1

r2


r

2 + b2

c2 − b2

c∫

b

Trdr +

r∫

b

Trdr − Tr2


+

r2 + c2

c2 − b2
b2

r2
q, (17)

where

q =

2α1

b2 − a2

b∫

a

Trdr − 2α2

c2 − b2

c∫

b

Trdr

a2 + (1− 2ν)b2

(b2 − a2)E1
+
c2 + (1− 2ν)b2

(c2 − b2)E2

.

After the definition of circumferential and radial stresses the longitudinal stresses can be determined
from the expressions (9). Such an approach makes it possible to find the longitudinal stresses for the
case of the rigid fixing of the ends of cylinder. These stresses can be used to obtain the longitudinal
stresses in the case of free ends of cylinder. The difference between the longitudinal stresses in these two
cases (rigid fixing and free ends of cylinder) is dealt with the stresses due to compressed longitudinal
thermal deformation which is absent in the case of free ends. So, the stresses for the case of free ends are

Mathematical Modeling and Computing, Vol. 3, No. 1, pp. 79–89 (2016)



An analytical basis for the generation... 85

equal to the difference between the stresses for the case of rigid fixing and the stresses corresponding to
uniform longitudinal deformation. In accordance with Saint-Venan, principle the error of the simulation
of the real stresses by the combination of two above mentioned fields is essential only for the area close
to the ends of cylinder.

The longitudinal stresses due to compressed thermal deformation have the form

σ0z1 = E1ε0, σ0z2 = E2ε0,

where ε0 is averaged compressed thermal deformation of the cylinder. It can be defined from statically
equivalent load condition

ε0
[
E1

(
b2 − a2

)
+ E2

(
c2 − b2

)]
= 2

b∫

a

σ̂z1rdr + 2

c∫

b

σ̂z2rdr.

Representing the longitudinal stresses for the case of free ends σzk accordingly to the outlined
procedure, one can obtain the following expressions:

σz1 =
α1E1

1− ν


 2

b2 − a2

b∫

a

Trdr − T


− Q

b2 − a2
,

σz2 =
α2E2

1− ν


 2

c2 − b2

c∫

b

Trdr − T


+

Q

c2 − b2
, (18)

where

Q = q


2νb

2 +

a2 + (1− 2ν)b2

(b2 − a2)E1
+
c2 + (1− 2ν)b2

(c2 − b2)E2

1

(b2 − a2)E1
+

1

(c2 − b2)E2


 .

The expressions (17) and (18) give the final solution of the thermoelasticity problem. That is quite
enough, because only longitudinal and circumferential stresses must be taken into account during
fracture mechanics analysis.

To analyze the fracture conditions, the stresses due to inner pressure must be added to the obtained
thermal stresses. The expressions for the stresses due to inner pressure can be easily developed from
the general solution (13), (14), (9) putting T ≡ 0 and changing the conditions (15) in the following
manner:

σr1|r=a = −p, σr2|r=c = 0.

The final form of these expressions is

σϑ1 =
pa2 − qb2

b2 − a2
+

(p− q) a2b2

(b2 − a2) r2
, σϑ2 =

qb2

c2 − b2

(
1 +

c2

r2

)
,

σz1 = 2ν
pa2 − qb2

b2 − a2
+ E1Q, σz2 = 2ν

qb2

c2 − b2
+ E2Q, (19)

where

q =

2(1− ν)a2

(b2 − a2)E1
p

a2 + (1− 2ν)b2

(b2 − a2)E1
+
c2 + (1− 2ν)b2

(c2 − b2)E2

, Q =
(1− 2ν)a2p

(b2 − a2)E1 + (c2 − b2)E2
.
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Note, that there are misprints in the correspondent expressions presented in [2].

4. Verification of the analytical approach

The proposed approach is verified by the comparison with the results of traditional Finite-Element
calculation. For that purpose, the model problem of step cool-down PTS scenario for VVER-1000
RPV wall beltline zone has been considered. It was supposed that at the initial time point the RPV
wall temperature field is uniform and the value of temperature corresponds to the normal operation
conditions (290oС). At the initial time point, the coolant temperature is step-wise changed to the value
110oС. The geometrical data of the beltline zone is provided by Table 1.

Table 1. Geometrical data of VVER-1000 RPV beltline zone.

Inner radius, a 2.068 m

Thickness of cladding, h1 0.007 m

Thickness of base metal, h 0.1995 m

The averaged values of physical properties of base metal and cladding are given in Table 2 (averaging
is used for the temperature range 20− 300oС ).

Table 2. Averaged values of physical properties of base metal and cladding for VVER-1000 RPV [3].

Layer
E α ν λ c ρ

[103MPa] [10−61/K] [W/m·K] [J/kg·K] [kg/m3]

Cladding 153 17.5 0.3 13.5 520 7830

Base metal 193 13.5 0.3 36 520 7780

Fig. 5. Temperature distribution at different time points.

The distributions of temperature, circumferential and longitudinal stresses obtained using analyt-
ical and Finite-Element approaches are correspondently presented in Figures 5–7. The temperature
dependencies of physical properties [3] were used in numerical Finite-Element calculation, while the
analytical approach is based on the averaged values (Table 2). The solid lines correspond to the
analytical solution (7), (17)–(19), while the points correspond to the numerical Finite-Element solu-
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tion. In these figures, three different curves correspond to the three time points of the PTS transient:
(t = 30, 120, 320 s). It can be concluded from Figs. 5–7 that the differences between the analytical and
numerical solutions are not essential (less than 5%).

Fig. 6. Distribution of the circumferential stresses at different time points.

Fig. 7. Distribution of the longitudinal stresses at different time points.

The practical application of the proposed analytical approach is demonstrated by example of p−T
curve LIMIT A (Figure 1) generation. LIMIT A is the curve on the p−T plane, where p is RCS pressure
and T is the cold leg temperature. This curve is generated in such a way that the resistance of RPV
to brittle fracture is assured if the values of p and T are to the right from the curve. LIMIT A is an
envelope of the two curves called “Step Cooldown Crack Initiation Limit” and “Isothermal Wall Crack
Initiation Limit”. PTS step cool-down model scenario has been considered to generate “Step Cooldown
Crack Initiation Limit” curve. For such a scenario, the coolant temperature is step-wise falling from
the value 290oC (normal operation cold leg temperature) to different values, correspondent to possible
ECC water temperatures. The values to which temperature falls are put on the T axis, while the values
of pressure critical for correspondent transient are put on the p axis. In the given example, the brittle
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fracture conditions have been analyzed for the surface circumferential and longitudinal semi-elliptical
cracks with the depth equal to 1/4 of wall thickness and aspect ratios 0.3 and 0.7. For each time point
of the transient, the critical pressure has been determined for all the cracks for a set of points at the
crack front. The critical pressure has been determined from the formula

KI = pcr ·Kp
I +KT

I = [KIC ], (20)

where KI is a stress intensity factor, Kp
I is a stress intensity factor per unit pressure, KT

I is a stress
intensity factor due to thermal loading, [KIC ] is a critical stress intensity factor.

The critical pressure put on the p axis has been defined as a minimum from all the values calculated
in the different time points of a transient.

For “Isothermal Wall Crack Initiation Limit” generation the series of constant RPV temperatures
is considered. For each temperature value, the critical pressure is determined as a minimum from the
pressures critical for all the cracks. The following formula is applied:

KI = pcr ·Kp
I = [KIC ]. (21)

Fig. 8. LIMIT A curves.

The LIMIT A curves generated using analytical (solid line) and Finite Element (dashed line)
approaches are presented in Figure 8. The stress intensity factor values have been calculated using the
same approach, based on superposition method. The following expressions were taken for [KIC ] [2,3]:

[KIC ]3(T ) = min {26 + 36 · exp [0.02 · (T − Tk)] ; 200MPa · √m}
— for “Step Cooldown Crack Initiation Limit” generation;

[KIC ]1(T ) = min {13 + 18 · exp [0.02 · (T − Tk)] ; 100MPa · √m}
— for “Isothermal Wall Crack Initiation Limit” generation.

From Figure 8 it can be concluded that the difference in “Isothermal Wall Crack Initiation Limit”
curves generated using analytical and Finite Element approaches is negligible. For “Step Cooldown
Crack Initiation Limit” curve the maximal difference is less than 2оС. At the same time, the difference
at ends of those curves is also negligible.
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5. Conclusions

The analytical approach to EOI limit p−T curves generation has been proposed. The results obtained
using given approach are compared with the results of Finite Element analysis. From the comparative
analysis it can be concluded that the proposed analytical approach can be used for Operational Limit
Pressure-Temperature (p − T ) Curves generation.
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Аналiтичний пiдхiд до побудови граничних кривих
тиск-температура аварiйних умов єксплуатацiї АЕС

КуценкоО. Г., Каденко I.М., Харитонов О.М., Сахно Н.В.

Київський нацiональний унiверситет iменi Тараса Шевченка
вул. Володимирська, 64/13, 01601, Київ, Україна

Подано аналiтичний розв’язок осесиметричної задачi нестацiонарної термопружностi
для подiї теплового удару нескiнченного двошарового пружного цилiндра. Фiзико-
механiчнi властивостi матерiалiв цилiндра вважалися незалежними вiд температури.
Температурнi граничнi умови вiдповiдають стрибкоподiбнiй змiнi температури сере-
довища на внутрiшнiй поверхнi цилiндра. Зовнiшня поверхня цилiндра вважається
теплоiзольованою. Даний розв’язок використано для розробки аналiтичного базису
для побудови граничних кривих «температура–тиск», якi застосовуються в аварiйних
iнструкцiях атомних електричних станцiй. Проведене порiвняння результатiв засто-
сування даного аналiтичного пiдходу iз результатами скiнченно-елементного аналi-
зу, отриманими в припущеннi залежностi властивостей матерiалiв вiд температури.
Результати порiвняння свiдчать про достатню практичну точнiсть запропонованого
методу.

Ключовi слова: нестацiонарна термопружнiсть, двошаровий пружнiй цилiндр,
термiчний удар, резервуар пiд тиском, граничнi p− T кривi, чисельний приклад
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