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1. Introduction

Optimization of computing on PC due to a significant reduction of computer costs (computer time of
CPU, main memory, number of arithmetical and logical operations, loading of address buses, exchange
with external peripherals, etc.) is one of the urgent problems of the modern information society.
Analysis of last research and publications has shown that many works [1–3] are dedicated to the
theoretical development of classical numerical methods of integration and their modifications. In
particular, in [3] the approaches related to the principles of double and multiple recalculating when
using the Newton-Cotes quadrature formulas are considered. In the paper [4] there were shown the
first attempts to optimize the quadrature formulas, but this approach is not generalized for calculating
multiple integrals. The purpose of this article is to solve this problem as well as to develop the optimal
scheme of algorithm representation for further software implementation, regardless of the computer
platform, including operating systems and software environments.

2. Description of the model, the subjects, and research methods

The problem of computing multiple integrals arises in various fields of science. Thus, the application
of functional and discrete (FD-) method for solving a boundary value problem in the case of equations
of elliptic type [6] needs the calculating the multiple integral over two- or three-dimensional domain
Ω, namely:

p
u(x) =

∫

Ω

{

G(x, ξ) +

p
∑

n=1

(−1)n
∫

Ω
. . .

∫

Ω
︸ ︷︷ ︸

n

n+1∏

i=1

G(zi−1, zi)

n∏

i=1

q̂(zi)dz1 . . . dzn
}

f(ξ)dξ, p = 0, 1, 2, . . .

(1)

where
p
u(x) is a p-rank approximation of the solution, G(x, ξ) is a Green’s function of the corresponding

differential operator.
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With the help of computer mathematics Mathematica and Maple [5] we are able to find efficiently

the bilateral analytical approximations. To assess the norms ||
⌢
q ||0,2,Ω and ‖f‖0,2,Ω in Lebesgue space

L2(Ω), the corresponding double Riemann integrals should be calculated. With this purpose, either
the Newton-Cotes cubature formulas or the information and statistical methods Monte Carlo-type ones
can be applied. With this, for an error a posteriori estimation the principle of the double recalculation
is used, which in its turn at each step requires a 4-times increase of the amount of computing costs. The
paper presents an algorithm that optimally (without iterative recalculation at the previously calculated
points of the scheme) runs the calculations according to the Simpson’s cubature rule, starting with the
least possible partition. Thus, in the implementation, the accuracy of the calculated double integral is
estimated immediately.

Here is a brief description of the realization of the economic scheme in the case of the Simpson’s
cubature rule.

To represent the approximate value of the integral on the whole interval it is previously divided
into an even number n = 2m of intervals, then for each pair of adjacent intervals a substitution of the
integrand is made with the Lagrange interpolation polynomial of the second order (quadratic parabola)

∫ b

a
y(x)dx =

∫ x2

x0

y(x)dx+ . . .+

∫ x2m

x2m−2

y(x)dx ≈ h

3
(y0 + 4y1 + y2 + . . . + y2m−2 + 4y2m−1 + y2m)

=
h

3
(σ0 + 4σ1 + 2σ2), (2)

where the following designations are agreed

σ0 = (y0 + y2m), σ1 =

m∑

i=1

y2i−1, σ2 =

m−1∑

i=1

y2i, (3)

yi = y(xi), xi = a+ ih, h =
b− a

2m
, i = 0, . . . , 2m.

Since the formulas for σ1 and σ2 involve different numbers of internal nodes (odd and even), then
the use of a cycle for the simultaneous calculation of these sums requires a separate consideration of
the last term in the sum σ1. The generalized Simpson’s method gives the approximation of the order
of smallness

R(h) = O
(
h4
)
. (4)

Hence it can be concluded that the specified formula is accurate for all integrand functions that
represent the algebraic polynomial at least of the third order.

Among the quadrature formulas of higher order, the formula of “3/8” can be named. However, its
order of accuracy is also the value of the order of smallness O

(
h4
)
. Further, with the increasing number

of nodes n of the interpolation polynomial, the order of accuracy of the Newton-Cotes quadrature

formulas is rising in a unit, i.e. the error term is of the order O
(

h[
2n+1

2 ]
)

, that is why nowadays one of

the most efficient quadrature formulas constructed on a uniform mesh is the very Simpson’s rule [2].
The economic algorithm of calculation by the Simpson’s quadrature formula consists in the follow-

ing. Twice increasing the mesh dimension and using the mentioned formula and the principle of double
recalculation, we obtain in the new designations

Iold =
h

3
[σ0 + 4σ1 + 2σ2] =

h

3
[σ0 + 2σ1 + 2σ3] , σ3 = 2σ1 + 2σ2, (5)

Inew =
h

2 · 3 (σ0 + 2σ̃1 + 2σ̃3) , σ̃3 = σ̃1 + σ̃2, σ̃2 = σ3. (6)

Since the sum of the function values in the nodes with even indices for the new numbering coin-
cides with the sum of all of the function values in the internal nodes of the old mesh, then for the
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implementation of the principle of double recalculation it is sufficient to calculate the function values
and their sum only in odd nodes of the new mesh. In the general case, in k-iteration (k = 0, 1, 2, . . .)
the calculation formulas take the following forms

Ik =
hk
3

[

σ0 + 2σ
(k)
1 + 2σ

(k)
3

]

, hk =
b− a

2k+1n
, (7)

σ0 = [f(a) + f(b)], σ
(k)
1 =

2kn∑

i=1

f(a+ (2i− 1)hk), (8)

σ
(k)
2 =







n−1∑

i=1
f(a+ 2ihk), k = 0,

σ
(k−1)
3 , k > 1,

σ
(k)
3 = σ

(k)
1 + σ

(k)
2 .

Let now consider the two-dimensional space R2. If the domain of integration is, for example, a
rectangle, then the double integral calculation comes to calculating the iterated integral. In fact, this
means the consistent use of quadrature formulas first with respect to one spatial variable x, and then
with respect to the other — y. The order of variables of integration does not matter.

∫∫

D
f(x, y)dx dy =

∫ b

a
dx

∫ d

c
f(x, y)dy, D = {(x, y), a 6 x 6 b, c 6 y 6 d} . (9)

If the integration domain G is arbitrary, but it is finite and closed, it can be included as a subdomain
into some classic flat figure, the integrand in G\D can be additionally determined by the nul values
and the previously described approach can be applied.

Using the partitioning of a rectangular domain D consistently with respect to the variable x and
y, we obtain the symmetric matrix of the coefficients of the cubature formula

A =










1 4 2 4 . . . 4 1
4 16 8 16 . . . 16 4
2 8 4 8 . . . 8 2
. . . . . . . . . . . . . . . . . . . . .
4 16 8 16 . . . 16 4
1 4 2 4 . . . 4 1










(10)

Then the double integral calculus can be reduced to the iterated integral and the generalized
cubature Simpson’s formula takes the form

∫∫

D
f(x, y)dx dy =

2n∑

i=0

2m∑

j=0

Aijf(xi, yj), (11)

where the following designations are agreed

fij = f(xi, yj), xi = a+ ih1, yj = c+ jh2, (12)

h1 =
b− a

2n
, h2 =

d− c

2m
, i = 0, . . . , 2n, j = 0, . . . , 2m.

Apply to the Simpson’s cubature formulas the principle of double recalculation. Write down Eq. (11)
in the form

∫∫

D
f(x, y)dx dy =

h1h2
9

n−1∑

i=0

m−1∑

j=0

[
(f2i,2j + f2i+2,2j + f2i+2,2j+2 + f2i,2j+2)

+ 4(f2i+1,2j + f2i+2,2j+1 + f2i+1,2j+2 ++f2i,2j+1) + 16f2i+1,2j+1

]
. (13)
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Consider these formulas for the initial values n0 = 2, m0 = 2 and represent them as separate sums

I0 =
h
(0)
1 h

(0)
2

9

[

σ
(0)
0 + σ

(0)
1 + 4σ

(0)
2 + 16σ

(0)
3

]

, (14)

where

σ
(0)
0 = f

(0)
0,0 + f

(0)
0,4 + f

(0)
4,0 + f

(0)
4.4 , (15)

σ
(0)
1 = 2

[

f
(0)
0,2 + f

(0)
2,0 + f

(0)
2,4 + f

(0)
4,2

]

+ 4f
(0)
2,2 , (16)

σ
(0)
2 = f

(0)
0,1 + f

(0)
1,0 + f

(0)
1,4 + f

(0)
4,1 + f

(0)
0,3 + f

(0)
3,0 + f

(0)
3,4 + f

(0)
4,3 + 2

[

f
(0)
1,2 + f

(0)
2,1 + f

(0)
2,3 + f

(0)
3,2

]

, (17)

σ
(0)
3 = f

(0)
1,1 + f

(0)
1,3 + f

(0)
3,1 + f

(0)
3,3 . (18)

Here the superscript corresponds to the previous numbering of the mesh (grid) (Fig. 1).
Let us further apply the principle of double recalculation, i.e. redouble the values n = 2n0 and

m = 2m0. The formulas (13) take the form

I1 =
h
(1)
1 h

(1)
2

9

[

σ
(1)
0 + σ

(1)
1 + 4σ

(1)
2 + 16σ

(1)
3

]

, (19)

where
σ
(1)
0 = f

(1)
0,0 + f

(1)
0,8 + f

(1)
8,0 + f

(1)
8,8 . (20)

The sums in the nodes with even indices have the forms

σ
(1)
1 = 2

[

f
(1)
0,2 + f

(1)
0,4 + f

(1)
0,6 + f

(1)
2,0 + f

(1)
4,0 + f

(1)
6,0 + f

(1)
2,8 + f

(1)
4,8 + f

(1)
6,8 + f

(1)
8,2 + f

(1)
8,4 + f

(1)
8,6

]

+ 4
[

f
(1)
2,2 + f

(1)
2,4 + f

(1)
2,6 + f

(1)
4,2 + f

(1)
4,4 + f

(1)
4,6 + f

(1)
6,2 + f

(1)
6,4 + f

(1)
6,6

]

. (21)

The sums in the nodes with odd indices have the forms

σ
(1)
2 = f

(1)
0,1 + f

(1)
0,3 + f

(1)
0,5 + f

(1)
0,7 + f

(1)
1,0 + f

(1)
1,8 + f

(1)
3,0 + f

(1)
3,8 + f

(1)
5,0 + f

(1)
5,8

+ f
(1)
7,0 + f

(1)
7,8 + f

(1)
8,1 + f

(1)
8,3 + f

(1)
8,5 + f

(1)
8,7 + 2

[

f
(1)
1,2 + f

(1)
1,4 + f

(1)
1,6 + f

(1)
2,1 + f

(1)
2,3

+ f
(1)
2,5 + f

(1)
2,7 + f

(1)
3,2 + f

(1)
3,4 + f

(1)
3,6 + f

(1)
4,1 + f

(1)
4,3 + f

(1)
4,5 + f

(1)
4,7 + f

(1)
5,2 + f

(1)
5,4

+ f
(1)
5,6 + f

(1)
6,1 + f

(1)
6,3 + f

(1)
6,5 + f

(1)
6,7 + f

(1)
7,2 + f

(1)
7,4 + f

(1)
7,6

]

, (22)

σ
(1)
3 = f

(1)
1,1 + f

(1)
1,3 + f

(1)
1,5 + f

(1)
1,7 + f

(1)
3,1 + f

(1)
3,3 + f

(1)
3,5 + f

(1)
3,7

+ f
(1)
5,1 + f

(1)
5,3 + f

(1)
5,7 + f

(1)
7,1 + f

(1)
7,3 + f

(1)
7,5 + f

(1)
7,7 . (23)

In the formulas (19)–(23) the integration steps will be twice reduced

h
(1)
1 =

h
(0)
1

2
=
b− a

2n
, h

(1)
2 =

h
(0)
2

2
=
d− c

2m
,

and the points of integration will be calculated by the formulas

x
(1)
i = a+ ih

(1)
1 , y

(1)
j = c+ jh

(1)
2 , i = 0, . . . , 2n, j = 0, . . . , 2m. (24)

The optimization calculation scheme for double integrals corresponds to the matrix grid (Fig. 1).
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1 1
11

4 4 4
2 2 2

4 4 4 4

4 4
22

16 8 16
4 4 4

8 8 8 8

4 8 8 8 416 16 16 16

4 8 8 8 416 16 16 16

2 2
22

8 4 8
4 4 4

8 8 8 8

4 8 8 8 416 16 16 16

4 4
22

16 8 16
4 4 4

8 8 8 8

4 8 8 8 416 16 16 16

1 1
11

4 4 4
2 2 2

4 4 4 4

Fig. 1. Matrix grating with coefficients (in circles — for partitioning n0, m0 = 2;
in squares — for partitioning n,m = 4).

Here the coefficients of the cubature formulas (14)–(18) are represented in circles on the left (top)
side and the coefficients for the formulas (19)–(23), which correspond to the double recalculation are
presented in the circles on the right (bottom) side and in the squares. You can immediately note
that the sums (15) and (20) are equivalent, as they contain the values of the function f(xi, yj) at the
vertices of the rectangular area, i.e.

f
(0)
0,0 = f

(1)
0,0 , f

(0)
0,4 = f

(1)
0,8 , f

(0)
4,0 = f

(1)
8,0 , f

(0)
4,4 = f

(1)
8,8 .

Regrouping the terms in (21), we obtain

σ
(1)
1 =

{

2
[

f
(1)
0,4 + f

(1)
4,0 + f

(1)
4,8 + f

(1)
8,4

]

+ 4f
(1)
4,4

}

+ 2
{

f
(1)
0,2 + f

(1)
2,8 + f

(1)
2,0 + f

(1)
8,2 + f

(1)
0,6 + f

(1)
6,0

+ f
(1)
6,8 + f

(1)
8,6 + 2

[

f
(1)
2,4 + f

(1)
4,2 + f

(1)
4,6 + f

(1)
6,4

]}

+ 4
{

f
(1)
2,2 + f

(1)
2,6 + f

(1)
6,2 + f

(1)
6,6

}

. (25)

For nodes with even indices in the new numbering, the following correlations have a place

f
(1)
0,4 = f

(0)
0,2 , f

(1)
4,0 = f

(0)
2,0 , f

(1)
4,8 = f

(0)
2,4 , f

(1)
8,4 ) = f

(0)
4,2 , f

(1)
4,4 = f

(0)
2,2 ,

then the expression in the first braces (25) fully corresponds to the formula (16). Similarly, due to the
truth of the correlations

f
(1)
0,2 = f

(0)
0,1 , f

(1)
2,8 = f

(0)
1,4 , f

(1)
2,0 = f

(0)
1,0 , f

(1)
8,2 = f

(0)
4,1 ,

f
(1)
0,6 = f

(0)
0,3 , f

(1)
6,0 = f

(0)
3,0 , f

(1)
6,8 = f

(0)
3,4 , f

(1)
8,6 = f

(0)
4,3 ,

f
(1)
2,4 = f

(0)
1,2 , f

(1)
4,2 = f

(0)
2,1 , f

(1)
4,6 = f

(0)
2,3 , f

(1)
6,4 = f

(0)
3,2 ,
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the expression in the second braces (25) fully corresponds to the formula (17). And finally, the corre-
lations

f
(1)
2,2 = f

(0)
1,1 , f

(1)
2,6 = f

(0)
1,3 ,

f
(1)
6,2 = f

(0)
3,1 , f

(1)
6,6 = f

(0)
3,3

give grounds for comparing the expression in the third braces with the formula (18).
Thus, the next iteration in the double recalculation, there is no need to calculate the value of the

sum σ
(1)
1 by the formula (25) but immediately determine its value by the recurrent expression

σ
(1)
1 = σ

(0)
1 + 2σ

(0)
2 + 4σ

(0)
3 . (26)

This is substantiated by the fact that for the values of the integrand, which correspond to the nodes
indicated with circles, there is no need to be calculated. Suffice it to fix their sums according to (26)
and reproduce these values with the coefficients written on the right (bottom) side.

The values of the function in new nodes with odd indices, which correspond to the squares in
Fig. 1, and accordingly, to the formulas (22), (23) they should be calculated at every step of the double
recalculation.

Introduce new designations

σ
(k)
4 = σ

(k)
1 + 2σ

(k)
2 + 4σ

(k)
3 , k = 0, 1, 2, . . . (27)

Then for a couple of formulas (14), (19), we can use the following representation

Ik =
h
(k)
1 h

(k)
2

9

[

σ
(k)
0 + 2σ

(k)
2 + 12σ

(k)
3 + σ

(k)
4

]

, (28)

f
(k)
i,j = f

(

x
(k)
i , y

(k)
j

)

, x
(k)
i = a+ ih

(k)
1 , y

(k)
j = c+ jh

(k)
2 ,

h
(k)
1 =

b− a

2n
, h

(k)
2 =

d− c

2m
, n = 2kn0, m = 2km0, i = 0, . . . , 2n, j = 0, . . . , 2m.

In general, at the vertices of the rectangle, the integrand values are calculated by the formula

σ
(k)
0 = f

(k)
0,0 + f

(k)
0,2m + f

(k)
2n,0 + f

(k)
2n,2m (29)

The sums for the values of the indicated function on the surface of the mesh and in the internal
nodes will acquire the following form

σ
(k)
1 = 2S1

1 + 4S2
1 , (30)

where

S1
1 =

n−1∑

i=1

f
(k)
2i,0 +

m−1∑

j=1

f
(k)
0,2j +

n−1∑

i=1

f
(k)
2i,2m +

m−1∑

j=1

f
(k)
2n,2j

=
n−1∑

i=1

(

f
(k)
2i,0 + f

(k)
2i,2m

)

+
m−1∑

j=1

(

f
(k)
0,2j + f

(k)
2n,2j

)

, (31)

S2
1 =

n−1∑

i=1

m−1∑

j=1

f
(k)
2i,2j .

The sum in the nodes with one odd index will look like

σ
(k)
2 = S1

2 + 2
(
S2
2 + S3

2

)
, (32)
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where

S1
2 =

n−1∑

i=0

f
(k)
2i+1,0 +

m−1∑

j=0

f
(k)
0,2j+1 +

n−1∑

i=0

f
(k)
2i+1,2m +

m−1∑

j=0

f
(k)
2n,2j+1

=

n−1∑

i=0

(f
(k)
2i+1,0 + f

(k)
2i+1,2m) +

m−1∑

j+0

(f
(k)
0,2j+1 + f

(k)
2n,2j+1), (33)

S2
2 =

n−1∑

i=0

m−1∑

j=1

f
(k)
2i+1,2j, S3

2 =

n−1∑

i=1

m−1∑

j=0

f
(k)
2i,2j+1 (34)

correspondingly, and with two odd indices will have a form

σ
(k)
3 =

n−1∑

i=0

m−1∑

j=0

f
(k)
2i+1,2j+1. (35)

Thus, the generalized Simpson’s cubature formula, with taking into account the method of double
recalculation, will have a form (28) and its components will be calculated by formulas (29)–(35). The

value σ
(k)
1 , which is included into the expression (26), only at the zero iteration is calculated by (16)

and in other cases it is determined by the branched expression

σ
(k)
1 =







2
[

f
(0)
0,2 + f

(0)
2,0 + f

(0)
2,4 + f

(0)
4,2

]

+ 4f
(0)
2,2 , k = 0,

σ
(k−1)
4 , k > 0.

The last recurrence relation just provides the calculation process optimal related to the need for
computations in double recalculation only for some part of the nodes.

For accuracy posteriori estimation of the calculated double integral, the following inequality is used

|Ik − Ik−1| < ε, k = 1, 2, . . .

Fig. 2. f(x, y) = sin
(
π2xy

)
function graph.

Example. Calculate the double integral

∫∫

D
sin
(
π2xy

)
dx dy. (36)

D = {(x, y) , 0 6 x, y 6 1} is the unit square.
The integrand is a spatial surface shown in Fig. 2.
The antiderivative of the integrand in (36) can be

represented with the help of integral cosine

Ci (x) =

∫ x

∞

cos(t)

t
dt =

1

2

[
Ei[ix] + Ei[−ix]

]

= ln(γx) +

∞∑

n=0

(−1)n
(−1)nx2n

(2n)(2n)!
, (37)

i.e. function with a single point of branching [6].
Here Ei[z] is an integral exponential function

Ei(z) = −
∫ ∞

z

e

t
dt,
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and γ is an Euler’s constant, which is determined as follows

γ = lim
m→∞

[
m∑

k=1

1

k
− ln(m)

]

= 0.577215664901533.

Then the exact value of the integral (36) is calculated by the formula

IT =

∫ 1

0
dx

∫ 1

0
sin
(
π2xy

)
dy

= π−1
(
γ − Ci(π2) + 2 ln(π)

)

= 0.293900753785. (38)

The calculations were carried out in the system of computer mathematics (SCM) Maple 17 using
procedures-functions

Ci(x) = γ + ln(x) +

∫ x

0

cos(t)− 1

t
dt (39)

for the system variable Digits := 24. Note that the difference in determining (37) of the integral
cosine [7] between the built into the core SCM Maple and Mathematica functions (39) is only the
representation of improper integrals and the addition of natural logarithm lnx, leading to various
forms of recording with the accuracy to the Euler’s constant.

Table 1. Simpson’s cubature formula. Table 2. Monte Carlo method.

k N = m I(k)
∣
∣IT − I(k)

∣
∣

0 16 0.293904016570 0.326 E-5

1 32 0.293900956383 0.203 E-6

2 64 0.293900766427 0.126 E-7

3 128 0.293900754574 0.789 E-9

4 256 0.293900753834 0.494 E-10

5 512 0.293900753788 0.308 E-11

N IN |IT − IN |
512 0.257413264905 0.03550

1024 0.263619312307 0.03029

2048 0.281496057022 0.01251

4096 0.287567672987 0.00533

8192 0.287605685862 0.00524

16384 0.288771481162 0.00513

The results of the developed modifications of the Simpson’s cubature formula for different values
of partitioning of the integration area are shown in Table 1.

For comparison in Table 2, there are shown the results of calculations of double integral by Monte
Carlo method [1] for different values of statistical sampling of the dimension N .

The accuracy of Monte Carlo method is determined by the error of generating the pseudorandom
sequence of numbers, which are generated on a PC, and the volume of the sample. It can be estimated
from the ratio

δ =
1

2
√

N(1− P )
,

whеre P is the guaranteed probability of error occurrence in the interval [−δ,∆]. This error is the value
of the order O(N−1) and much greater than in the considered deterministic methods. In addition, for
the double integral it is necessary to use two generators of uniformly distributed random numbers in
the range (0, 1), what, in general, does not provide sufficiently small error and optimal computational
costs versus the modified formulas of Simpson with optimal implementation of the principle of double
recalculation.

It is necessary to note that for large values of n, m, the use of the value of the system variable “by
default” (Digits := 10) leads to the error of rounding-off, which affects not only the loss of accuracy
in the eighth significant digit of the mantissa, but it also causes a change in the sign of deviation of
the approximate solution from the exact one.
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3. Conclusions

On the basis of the developed software modules and numerical calculations, the benefits of the suggested
approach in comparison with the classical schemes are demonstrated in terms of significant reduction
of computational costs, in particular, the main memory, processing time, a rounding-off error.

It is necessary to note that used for qualitative comparison Monte Carlo method provides much less
accuracy. In terms of the spent CPU time, it can give slightly better results in comparison with the
presented formulas, but it will be noticeable only for multiple integrals (starting from triple ones) when
selecting a large sample and using a perfect generator of random numbers, connected to the software
and hardware complex as physical adapter device.

Being formulated in the paper, the problem of generalization of the method of double and multiple
recalculations for the case of multiple integrals can be solved by the application of the above stated
algorithm.
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Оптимальнi алгоритми реалiзацiї обчислень для кратних
iнтегралiв
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Розглянуто оптимальнi алгоритми для реалiзацiї кубатурної формули Сiмпсона iз
застосуванням принципу подвiйного перерахунку пiд час обчислення багатократних
iнтегралiв. Порiвняно запропонований алгоритм з вбудованими функцiями пакета
розширень системи комп’ютерної математики на тестовому прикладi обчислення iн-
тегральних тригонометричних функцiй. Розширено функцiональнi можливостi вико-
ристання СКМ Mathematica та Maple.

Ключовi слова: кубатурнi формули, оптимiзацiя обчислень, принцип подвiйного
перерахунку, iнтегральний косинус, системи комп’ютерної математики.
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