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The advection-diffusion problem in a thin curvilinear channel is considered. The multiscale
finite element method is applied to solving the formulated model problem. It is shown
that this method is efficient in the case of sufficiently large Peclet numbers. Numerical
examples are presented and analysed.
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1. Introduction

The process of mathematical modeling of modern scientific and technical problems such as heat trans-
fer problems, transport of pollutants and other problems often requires investigation of transfer of
substance in the environment with complex heterogeneous structure. A lot of investigating domains
are characterized by the availability of thin channels with properties that are different from the main
environment. These heterogeneities produce significant difficulties while using the known approaches
to solving given problems. Besides this, most of such problems involves differences in types of transfer
of substance in thin channels. The simplest of these is the existence of advective transfer together with
the diffusive one. It is known that solving the advection-diffusion problem by numerical methods, in
particular by the finite element method (FEM) [1], becomes highly complicated in the case of large
Peclet numbers because of the instability of computational process.

The multiscale finite element method (MSsFEM) [2] was introduced as a modification of FEM for
diffusion problems in the heterogeneous environment. The main idea of MsFEM is that the multi-
scale structure of the solution is incorporated into the specific localized basis functions. Thereby the
multiscale features of the solution are captured, and thus better approximation with a small number
of finite elements takes place. It was shown [3,4] that MSFEM is also efficient for solving advection-
diffusion problems in the heterogeneous environment. In this paper MsFEM is applied to solving the
advection-diffusion problems with large Peclet numbers in a thin curvilinear channel, that is in the
homogeneous environment.

2. Multiscale finite element method

Multiscale finite element method consists of two steps: construction of the multiscale basis functions
and coupling these multiscale basis functions into global numerical formulation. The basis functions
are designed to capture the specific features of the solution (important features of the solution are
incorporated into these localized basis functions). A global formulation couples these basis functions
to provide an accurate approximation of the solution.
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Let us consider the following one-dimensional problem

Lu=f in Q, (1)
u=0 on 09, (2)

where L is the differential operator of the problem (we will consider the advection-diffusion operator),
u is the unknown function, f is the given function, Q = [a,b] C R.

At first, we consider the basis functions construction. Let P, be a partition of the interval [a, b] into
finite elements by points z;, i = 0,n, ¢ = a, x,, = b. We call this partition the coarse grid and assume
that the coarse grid can be resolved via a finer resolution called the fine grid. Let (,0? be the nodal
basis functions of FEM. For simplicity, one can assume that cp? are piecewise linear functions [1|. Let
us denote as S; the support of 90? and define MsFEM basis functions ¢; with support in S; as follows

Loi=0 inK, ¢=¢) on 0K VKecP, KCcCS; i=0n; (3)

that is multiscale basis functions coincide with standard finite element basis functions on the boundaries
of a coarse-grid block K and capture the specific features of the solution in the interior of each coarse-
grid block. Throughout, K denotes a coarse-grid block.

Next, we consider the global formulation of MSFEM. Analogously to standard FEM we will look
for the solution in the form

i(z) =Y uipi(x). (4)
i=1

We introduce the space

V= {u(:n) u(z) € W2(1), u(a) =0, u(b) = 0}.

After multiplying the equation (1) on the arbitrary function v € V and integrating the result on
we will obtain the variational formulation of the problem (1)—(2) that is as follows. Find such function
u(z) € V that satisfies the condition

(Lu,v) = (f,v) YveV. (5)

In the case of advection-diffusion operator L we can get rid of second derivatives in (5) using integration
of (Lu,v) by parts.

We take in (5) v = cp? €V, j = I,n. Substituting (4) into (5) we obtain the following system of
equations

Aw = b,

where A = (a;;) is the matrix with elements a;; = >, fKr Lgoi(:n)gpg(:n)dzn, i, =1,n;uw = (u;) is

the vector of unknown values of the function u in nodes z; € Py,,i = 1,n; b = (b;) is the vector with
elements b; = fab f(x)p)(x)de, j =T,n.
As a conclusion let us present the algorithm of MSFEM [2]

Algorithm 1. MsFEM Algorithm

Assemble matrix A and vector b on the coarse mesh
Solve the coarse formulation.

1: For each coarse grid block K,.,r = 1,n do

2: — For each vertex i

3: — Solve for ¢! satisfying L (¢7) = 0 and boundary conditions (see (3))
4: — End for

5: End do

6:

7
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3. Mathematical model of advection-diffusion in a thin curvilinear channel

Let some smooth curve is defined by the parametric equation
r1 = 1‘1(041), To = xg(al). (6)

We construct the curvilinear coordinate system g, g, that is related to (6) so coordinate oy
corresponds to the direction of curve tangent and coordinate ag corresponds to the direction of curve
normal.

Let us consider a thin curvilinear channel (see Fig. 1) in the coordinate system introduced above

Q={aas: ozlf <ap <af, —h<ay < h}.

We denote by A the Lame coefficient of the curve (6) and by K — the
curvature of this curve [5]

pw ",/
zyr) — afx
_ 12 4 02 _ TaTy — T3y
A= /(2 +25), K= Y .

The components g;; of the metric tensor in orthogonal coordinate sys-
tem o can be represented as

gn=H? gn=1 gu=g1=0 H=Al+xkK). (7)

Fig.1. Thin curvilinear

Let us consider the advection-diffusion equation in
channel.

m? + kW grad u — div(Agrad u) = f, (8)
T

where u(7, a1, a9) is the unknown function, W = {Pe, 0}, Pe is the Peclet number, x = const > 0,
A = const > 0 are the given coefficients, 7 is the time, f(aq,a2) is the given function.
We take into account that the following equations will take place in orthogonal coordinate system

. 1 0 V9, Ou 0 V3, Ou
1 Ou 1 O0Ou }

radu = ,
8 {\/911 Oay’ /922 O
g =det{gi;}.

102

According to (7) we obtain
1 0 (X Ou 1 0 ou
div(dgradu) = —— (220 4 = 2 (g dL
IV( gra u) H@oq <H Oél> + HaOQ < 80[2) ’

& N Haa176a2 ’
Vg=H.

Thereby we can write equation (8) in the form

ou Pe Ou 1 0 A Ou 1 0 ou
“or T 9oy H oo <ﬁaa1>‘ﬁa@<waz>—f' ©)
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We consider the following boundary and initial conditions

Uy =a; =0, (10)
u|a1:af = 07
ou
—)\%‘azzh = q+7
(11)
ou

(904 ‘az——h q ,

U(O,CYl,OéQ) - U(O)(al7a2)7 (12)

where ¢t (7, a1, h), ¢~ (7, a1, —h), u( (a1, az) are the given functions.
We assume that the channel is thin, that is hK < 1. Under this assumption we will look for the
solution in the form of linear distribution over the variable as

U:U1(77a1)+%u2(77a1)7 (13)

where u; (7, ), uz(7, a1) are the unknown functions.
We consider the following space

v = {4 (@) [v(er) € Wy (of, af), v(a}) = 0,0 (af) = 0} .

Let us substitute (13) into (9) and orthogonalize residuals to arbitrary functions ¢ (a1) € V' and
ag(aq) € V in terms of integrals over the variables aq, s in limits from o/{ to af and from —h to h
respectively. We will obtain the following equations

m(u' ) + alu, ) + b(u, §) = U(¥),
m(u'; a2v) + a(u, azi)) + blu, asp) = l(asy)),

or " h 9
o] h 1 aul a9 OUQ
a(u,v) = o /_h/{ er (8—1 + = 5 8a1> YHdaqdas,

ai rh 0 [\ [0uw Ouy  asOuy 3K Ouy
blu,9) = _/al{ /h (37011 <Z <5741 _OQKOOQ T h 9 h 8041))) v donda:

af h
miut )= [7 [ (8“1 o2 8“) GAQ + k) dondas,
P

b

KMW:/%/iMA1+@KMmm2

Let us integrate these components over the variable as. Taking into account our assumption of
hK < 1 we will neglect components that contain (aK)?. After using (11) we obtain

af 0 Kho
m(U',¢)=/b 2hk (auTlJr 3 ;2)1,!)14(10&1,
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T2 [0 0
m(u/7a2¢) = /b T <% +Kh%> YAday,
1

a(u,v) = /b1 2h/~iP6%¢ day,

af 9 2
o) = [ P,
a

D [2h) (Bur  KhOus
b(u,¢) = /o/; <3a1<A (8041 3 0a1>>>¢da1

A(l+ Kh)gt + A(1 — Kh)q™) v don,

(-
aq 2h2 8u2 aul
b(u, as®)) = _/al; <8a1 < 5 <8a1 KhTM)) — 2)\Au2> ¥ doy
(-

A(l+ Kh)hg™ A(l—Kh)hq_)¢da1.

As 1(aq) is arbitrary, we can write the basic equations for finding u; and ug [6]

(E?ul Kh8u2> kPedu; 1 0O A(@ul Kh8u2>

or T3 9 )T A 9y AdaA\dar 3 9oy

h
= % </—hf(1 + aoK)das — (1 + Kh)g™ + (1 — Kh)g‘) , (14)

+3 A 8041 §Z8a1A

or or dayy day e

ﬁ/{ (E?uz +Kh%> hkPedus h1l O X <8u2 Kh8u1> 2

h
= o </_hf(1 + o K)agdag — (1 + Kh)hq+ —(1- Kh)hq_> . (15)

Performing the same transformations as were used for obtaining (14), (15) we can write bound-
ary (10) and initial (12) conditions for functions u;(7, 1), u2(7, 1) in the form

U1g,—qt =0,
Ular=ag =0, (16)
U2|qy—at =0,
U2y =ag = 0,
1(0, 1) 2h/ dag,
(17)

3 Kn?
ug(O,al) = o5 /h ( )(1 —I-OQK) < Qo — T) das.

Therefore, we reduced the initial problem (9)—(12) to one-dimensional case and obtained the system
of two linear differential equations for u; and ug (14), (15) with the corresponding boundary (16) and
initial (17) conditions in the case of initial-boundary value problem in a thin curvilinear channel under
the assumption of a linear distribution over the variable as.
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For simplicity, let us rewrite the obtained initial-boundary value problem (14)—(17) to vector form |7]

Ou kPe_ Ou 1 0 X __0Ou

u|a1=a’1’ = (07 0)T7 19
- (19)

u’oq:oz‘f - (070) )
ulr—o = uo, (20)

where u = (uy, ug)?,
Kh Kh

1 = 1 0 1 e 0 0
M = Kh2 h ) L= 0 ﬁ ) N = KhQ 5 P = 0 l 5
3

3 3

3

3
h
3
h
1 /hf(l +apk)daz = (L4 Khjg" + (1= Khyg- ) ;U= = <u1(0=a1)> )

=5 ho
0
2 / f(1+aK)asdas — (1+ Kh)hqg™ — (1 — Kh)hq™ uz(0, 1)
—h
h
1 / U(O)dag
= —h
TN 3
/ u(o)(l + oK) <Ea2 — Kh> das
—h

4. Numerical experiments

For comparison we solve the problem (18)—(20) using MsFEM and standard FEM methods. We present
the multiscale basis functions in vector form, so they can be found from (3)

e = (o1, )", i=Tn,

where n — count of finite elements on coarse grid.

1.2 1r
0.9F
0.8
0.7r
0.6
0.5r
0.4
0.3F

0.2r

0.1r

0.02 0.04 0.06 0.08 0.1 0 0.02 0.04 0.06 0.08 0.1

a (Pe =10) b (Pe =100)

Fig. 2. Multiscale basis functions obtained in rectilinear channel with 20 finite elements for coarse and fine
grids.
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In Fig. 2a multiscale basis functions for (14) are presented for Pe = 10 and Pe = 100 respectively.
Note that for low Peclet numbers multiscale basis functions are similar to piecewise linear basis func-
tions of FEM, so we expect that the solution obtained by MsFEM will behave in the same manner
as the FEM solution for low Peclet numbers. More interesting is the case of sufficiently large Peclet
numbers, where multiscale basis functions are completely different from the FEM basis.

We use the following values of parameters for numerical experiments: al{ =0,af =1, h =0.15,
k=1, A=0.6, f=1,¢" =q = —1. At first we consider the rectilinear channel, that is when A =1
and K = 0. In this case the analytical solution can be obtained for the stationary problem, so we can
compare MsFEM and FEM solutions with the analytical one and make conclusions about efficiency of
these methods.

0.3r 0.3r
0.25- A S S 0.25f e~

0.2 —*— Analytical solution for ul \,\ 02h ,,,2*/ —— Analytical solution for ul |

—#— Analytical solution for u2 ¥/K —#— Analytical solution for u2 \
/ —o6— FEM solution for ul J —o6— FEM solution for ul K
0.15F "/ FEM solution for u2 0.151 # FEM solution for u2
/ MsFEM solution for ul \ MsFEM solution for ul
01k # MsFEM solution for u2 01t g MsFEM solution for u2

Fig. 3. Solutions obtained in rectilinear channel with Pe = 10 and n finite elements for coarse and fine grids.

—*— Analytical solution for ul
0357 __«  Analytical solution for u2 03
—&— FEM solution for ul
0.3F i L
FEM solutlon.for u2 0.25 —*— Analytical solution for ul
MsFEM solution for ul X .
MSFEM solution for U2 —*— Analytical solution for u2
0.25¢ 0.2} .| —©— FEM solution for ul
FEM solution for u2
0.2r MsFEM solution for ul
0.151 MsFEM solution for u2
015} Rl
0.1f Ny -
T 0.05f -
0.05f )oK /:l% oA
o \ el
$ % PPN o N
_— D—P—P——B—D—B—& P & O
- o k 0] 1] * : >——& &
-0.05 i i L L ‘ -0.05
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
a (n =10) b (n=20)

Fig. 4. Solutions obtained in rectilinear channel with Pe = 100 and n finite elements for coarse and fine grids.

As we can see from Figs. 3—4 the results obtained by MsFEM and FEM methods for Pe = 10 are
almost the same, while for Pe = 100 they are completely different (as was expected from the form of
constructed multiscale basis functions). For sufficiently large Peclet numbers the MsFEM solution is
much more accurate and stable, while the solution obtained by FEM contains unnatural oscillations.
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The absolute errors for FEM and MSFEM solutions (see Table 1) confirm that MSFEM is efficient even
for small amount of finite elements.

Table 1. Absolute errors of FEM and MsFEM solutions for Pe = 100, n = 10.

Node | u; FEM | u; MsFEM, 1.0e-03 * | ug FEM | us MsFEM
0.1 | 0.0415 0.0000 0.1820 0.0008
0.2 | 0.0017 0.0000 0.0265 0.0015
0.3 | 0.0433 0.0000 0.1837 0.0021
0.4 | 0.0035 0.0000 0.0529 0.0027
0.5 | 0.0452 0.0000 0.1892 0.0032
0.6 | 0.0055 0.0000 0.0798 0.0037
0.7 | 0.0472 0.0010 0.1985 0.0042
0.8 | 0.0077 0.0222 0.1077 0.0043
0.9 | 0.0495 0.4712 0.2118 0.0116

| Max | 0.0495 | 0.4712 | 02118 | 0.0116 |

Next we consider a simple parabolic channel, the middle curve of which can be described by equation

— 2 ; — 2 _ 2 : .
= z*. In this case A = v1 4 4z? and K = ———=——. The results obtained for this case are presented
y - (VI+ia?)? p
in Figs. 5-6.
041 | —o— FEM solution for ul 035
FEM solution for u2
0.35F MsFEM solution for ul 0.3t
MsFEM solution for u2
0.3
0.25r
0.25
0.2
0.2
0.15
0.15r
01l 0.1- —6— FEM solution for ul
FEM solution for u2
0.05} MsFEM solution for ul
0.05- . . .
MsFEM solution for u2
o0& L L L L & ox L L L L &
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
a (n=10) b (n = 20)

Fig. 5. Solutions obtained in parabolic channel with Pe = 10 and n finite elements for coarse and fine grids.

0.45 | —©— FEM solution for ul 0.35-
FEM solution for u2 .

04r MSsFEM solution for ul —o— FEM solution for ul

MsFEM solution for u2 03r FEM solution for u2

MsFEM solution for ul
MsFEM solution for u2

0.25

0.2
0.15
0.1
0.05-
0 0.‘2 014 0‘.6 0‘.8 i (Xd ” 02 - 7 0.4 0.6 0.8 ' \J?
a (n=10) b (n = 20)

Fig. 6. Solutions obtained in parabolic channel with Pe = 100 and n finite elements for coarse and fine grids.
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Now we can see that in the case of parabolic

channel both solutions obtained by MsFEM and 0.18
FEM converge and become more stable while in- 014 t=0.02 . ////i
creasing the amount of finite elements. But in :i:ho.o . @(//\‘\\
the case when Peclet number is large the MsFEM 02— o - @//‘/ Ww
solution is stable even for small amount of finite A //%/7/” W@
elements, while the solution obtained by FEM is s oo B ,:2 g |
oscillating and unnatural. The obtained results et I PR ;g’///// 5 ‘Q
demonstrate the efficiency of MsFEM for large 0.06 g/{ﬁﬂ \
Peclet numbers. 004 ////" : {
The Crank-Nicholson scheme is used for solv- 2 P \
ing the non-stationary problem. In Fig.7 we can 0.02 /ﬁv \
see MSFEM solutions in different points of time. %‘/’/_&_ e _a--8-H--8--&-" . ~y
Here Pe = 100, n = 10 and step of time dis- 0 02 04 06 08 !
cretization is 0.01. Fig.7 shows that the pre-
sented solutions converge. Fig.7. MsFEM solutions in different time moments.

5. Conclusions

The multiscale finite element method was applied to solving the advection-diffusion problem with large
Peclet numbers in a thin curvilinear channel. The solutions were also obtained by FEM and analytically
(in the case of stationary advection-diffusion problem) for comparison and verification of the results.
It was shown that the MSFEM solution is stable and matches the analytical solution in the case of
large Peclet numbers, while the FEM solution contains unnatural oscillations. Hence MsFEM allows

to solve the advection-diffusion problem with large Peclet numbers more accurately even with a small
number of finite elements.
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