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We propose an approach to mathematical modeling for a system on the basis of comparing
scalar products in spaces of real functions integrable on the segment. This approach may
be used in discrete and continuous measurement systems and some combinatorial systems,
in which comparison problem of function exists in the process of synthesis and optimal
choice of their parameters. In theory, such problems are characteristic of boundary value
problems for equations of mathematical physics, in particular for multi-point problems that
describe oscillatory processes in mechanisms. We have found the necessary and sufficient
conditions for such a comparison. We use special transformations of sums and integrals
that appear in the corresponding scalar products for vectors and functions.
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1. Introduction

Investigation of the behavior of systems of diverse nature and comparison of their quantitative and
qualitative characteristics are the main goals of mathematical modeling. In this process, we use contin-
uous or discrete parameters (functions) or continuous-discrete combinations of functions. Comparison
of models implies a comparison of functions that could take various forms (comparison at points, com-
parison in the domains, in particular, comparison on the basis of scalar products that is proposed)
depending on the nature of the function and its interpretation.

The general definition of the ‘function’ term in mathematics and natural sciences was formed by
classical mathematics for several centuries on the basis of different approaches: geometric (through the
function graph), analytical (as a mapping (relation) between sets), constructive (as a superposition
of elementary functions). The class of functions was extended considerably in the twentieth century
due to the notion of a generalized function (as a continuous linear functional on a set of smooth (test)
functions). This type of construction often uses scalar products and their continuous extensions. The
representation of functions in the form of series also usually implies a scalar product for calculating the
coefficients of a series (Fourier coefficients). From that, we can conclude the method of constructing
approximations to functions and their numerical characteristics.

The property of the equality of two generalized functions (the equality of a function to zero) in a
given domain uses a set of test functions with an appropriate localization. A comparison of functions
in the sense of order (greater–less) can also be made on the basis of scalar product and selected set of
test functions.

The problem of ordering objects of a combinatorial type is characteristic of various discrete and
distributed systems with control parameters. Here the scalar product is given on vectors with a finite
or infinite number of components (coordinates) in the form of the sum (series) of products — Euclidean
product.

In particular, the problem of ordering combinatorial objects often occurs in modelling systems of
measurement of observed quantity [1, p. 230]. Such an arrangement arises when planning experiments
on measuring complexes [1, 2].
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The theoretical study of solutions of problems with multipoint conditions for partial differential
equations also leads to a comparison of scalar products of vectors formed by rearrangements of their
components [3–8]. Selecting the greatest scalar product often means determining and evaluating the
dominant harmonic of the solution, its qualitative and quantitative characteristics [9–11]. Similar ques-
tions may arise for equations of infinite order [12], operator equations [13–15], equations on a mani-
fold [16], problems with Dirichlet conditions [17], with integral conditions [18], mixed problems [19].

In [20] we studied the problem of comparing vectors and specified the necessary and sufficient
conditions for their comparability. Consequently, some vectors cannot be compared, and some can be.

Let there be given two vectors x = (x0, x1, . . . , xn) and y = (y0, y1, . . . , yn) from the space R
n+1,

at that x0 6 x1 6 · · · 6 xn and y0 6 y1 6 · · · 6 yn, and the vectors xα = (xα0 , xα1 , . . . , xαn) and
yβ = (yβ0 , yβ1 , . . . , yβn), where α = (α0, α1, . . . , αn) and β = (β0, β1, . . . , βn) are permutations of the
set of indexes {0, 1, . . . , n}.

Among the set of numbers (xα,yβ), where (xα,yβ) =
∑n

i=0 xαiyβi, there are not more than (n+1)!
distinct ones, also there hold the inequalities

n∑

i=0

xiyn−i 6 (xα,yβ) 6
n∑

i=0

xiyi = (x,y).

In particular, (x,y(n,...,1,0)) 6 (x,yα) 6 (x,y(0,1,...,n)), but for arbitrary fixed pair of permutations α
and β there could be either (x,yα) > (x,yβ) or (x,yα) 6 (x,yβ) depending on the vector x.

The question arises on the possibility of comparison of vectors yα and yβ by the values of their
scalar products not only for one fixed vector, but for the whole set of ordered vectors x.

For arbitrary fixed permutations α and β, the inequality (x,yα) > (x,yβ) holds on the set of
ordered vectors x ∈ R

n+1 if and only if there hold [20] the inequalities
∑n

i=j yαi >
∑n

i=j yβi for
j = 1, . . . , n (similar inequalities were established while comparing any pair y, z of vectors from the
space R

n+1).
For n = 1, those conditions are yα1 > yβ1 , so in this case for each pair (α, β) we have (x,yα) >

(x,yβ) or (x,yα) 6 (x,yβ) at once for all ordered x ∈ R
n+1, in particular, (x,yα) = (x,yβ) + (x1 −

x0)(yα1 − yβ1).
For the case n > 2, that alternative does not hold. In fact, for n = 2 and yα = (2, 3, 1), yβ = (3, 1, 2)

we calculate

(x, yα) = 1 · 2 + 5 · 3 + 5 · 1 = 22 > 18 = 1 · 3 + 5 · 1 + 5 · 2 = (x, yβ),

for x = (1, 5, 5) and for x = (1, 2, 8)

(x, yα) = 1 · 2 + 2 · 3 + 8 · 1 = 16 < 21 = 1 · 3 + 2 · 1 + 8 · 2 = (x, yβ).

Extending such results for comparing of functions [a, b] → R, where a ∈ R and b ∈ R, is the topic
of this paper. Instead of the method of summing by parts (see [20]), which is widely used in the theory
of series [21–24], for numerical methods of solving boundary value problems for partial differential
equations [25–29], we use the method of integrating by parts [18, 19, 24].

2. Formulation of the problem and solvability

For the segment [a, b] of nonzero length, we denote: R(a, b) is a space of integrable on [a, b] functions,
Cd

1(a, b) is a space of functions with piecewise-continuous on [a, b] derivative, as well as the subset
Cd

1
6(a, b) of the set Cd

1(a, b), whose elements are functions with nonnegative on the segment [a, b]
derivative. This obviously implies that Cd

1(a, b) ⊂ R(a, b) and the piecewise-linear functions belong
to Cd

1(a, b).
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A scalar product in the space R(a, b) is defined by the formula

(f, g) =

∫ b

a
f(x)g(x) dx. (1)

If f ∈ Cd
1(a, b), then df = f ′ dx, where the derivative f ′ = f ′(x) is piecewise-continuous (hence,

bounded) function [a, b] → R.
For arbitrary pair of functions g = g(x), h = h(x) from the space R(a, b), we form one more pair

of functions

u = u(x) =

∫ b

x
g(t) dt, v = v(x) =

∫ b

x
h(t) dt. (2)

Then those functions are uniformly continuous on [a, b] generalized solutions of the following Cauchy
problems:

u′ = −g, u(b) = 0, v′ = −h, v(b) = 0. (3)

We study the question on finding the conditions for comparing functions g and h from the space R(a, b),
i.e. holding of the inequality (f, g) > (f, h) for all functions f from the set Cd

1
6(a, b).

Theorem 1. For given functions g and h from the space R(a, b) for all functions f from the set
Cd

1
6(a, b) there hold the inequality

(f, g) > (f, h) (4)

if and only if
u(a) = v(a), u(x) > v(x), x ∈ [a, b]. (5)

Let the functions g ∈ R(a, b) and h ∈ R(a, b) satisfy conditions (5), then for arbitrary fixed function
f ∈ Cd

1
6(a, b) there holds the equality

(f, g) = (f, h) +

∫

J
f ′(x)

(
u(x)− v(x)

)
dx, (6)

where J =
{
x ∈ [a, b] : f ′(x)

(
u(x) − v(x)

)
> 0

}
. Hence, if J = ∅, then (f, g) = (f, h), and if J 6= ∅,

then inequality (4) is strict; if

Jf (δ) =
{
x ∈ [a, b] : f ′(x) > δ

}
, Jg,h(∆) =

{
x ∈ [a, b] :

(
u(x)− v(x)

)
> ∆

}
,

where δ > 0 and ∆ > 0, then

(f, g) > (f, h) + δ

∫

Jf (δ)

(
u(x)− v(x)

)
dx, (f, g) > (f, h) + ∆

∫

Jg,h(∆)
f ′(x) dx. (7)

If Jf (δ) = [c, d] ⊂ [a, b], where c < d, then

(f, g) > (f, h) + δ

∫ d

c
(min{x, d} − c)

(
g(x) − h(x)

)
dx,

in particular, (f, g) > (f, h) + δ
∫ b
a x
(
g(x)− h(x)

)
dx in case when [c, d] = [a, b], if Jg,h(δ) = [c, d], then

(f, g) > (f, h) + ∆ ·
(
f(d)− f(c)

)
.

Proof. For the scalar product (f, g) we will use the formula for integrating by parts and formulas (1)–
(3), then

(f, g) = −
∫ b

a
f(x)u′(x) dx = f(a)u(a) +

∫ b

a
f ′(x)u(x) dx = f(a)u(a) + (f ′, u).
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Similarly, we obtain the formula (f, h) = f(a)v(a) + (f ′, v) and the formula for the difference

(f, g)− (f, h) = (f, g − h) = f(a)
(
u(a)− v(a)

)
+ (f ′, u− v). (8)

If conditions (5) are satisfied, then (f, g)−(f, h) =
∫ b
a f

′(x)
(
u(x)−v(x)

)
dx and f ′(x)

(
u(x)−v(x)

)
> 0

for x ∈ [a, b] and f ∈ Cd
1
6(a, b). This implies inequality (4). Therefore, conditions (5) are sufficient

conditions.
Vice versa, if the function f is constant, i.e. f = f(a) and f ′ = 0, then by formula (8) we obtain

(f, g)− (f, h) = (f, g − h) = f(a)
(
u(a)− v(a)

)
> 0.

This implies the necessity of the equality u(a) = v(a). Let the second condition (5) be not satisfied,
then the uniform continuousness of the functions u and v implies that u(x) + w < v(x) on a certain
segment [c, d] ⊂ [a, b], where a < c < d < b, w is a certain positive constant. For the function
f ∈ Cd

1
6(a, b) of the form f(x) = f(a) on [a, c], f(x) = f(a)− c+ kx on [c, d] and f(x) = f(a)− c+ d

on [d, b] we have (f, g)− (f, h) = k
∫ d
c

(
u(x)− v(x)

)
dx− < kw(d− c) < 0, where k is a certain positive

constant. Therefore, inequality (4) does not hold; hence, we proved the necessity of conditions (5).
Let the functions g ∈ R(a, b) and h ∈ R(a, b) satisfy conditions (5), then formula (6) follows from

equality (8). If J 6= ∅, then in that formula, the integral has a positive value and (f, g) > (f, h),
otherwise we obtain the equality (f, g) = (f, h).

Formula (7) also follows from equality (8) and the definition of the sets Jf (δ) and Jg,h(∆). If among
those sets there is the segment [c, d], then appropriate calculation of the integrals in formula (7) leads
to the equalities:

∫ d
c f

′(x) dx = f(d)− f(c),

∫ d

c

(
u(x)− v(x)

)
dx =

∫ d

c
dx

∫ b

x

(
g(t)− h(t)

)
dt =

∫ d

c
dt

∫ t

c

(
g(t)− h(t)

)
dx+

+

∫ b

d
dt

∫ d

c

(
g(t)− h(t)

)
dx =

∫ b

c
(min{t, d} − c)

(
g(t) − h(t)

)
dt.

In case if d = b we have min{t, d} = t and
∫ b
c

(
u(x)− v(x)

)
dx =

∫ b
c (t− c)

(
g(t)−h(t)

)
dt. If also c = a,

then
∫ b
a

(
g(t)− h(t)

)
dt = u(a)− v(a) = 0. This proves our theorem. �

Remark 1. If the functions g and h satisfy conditions (5) and g 6= h, then the difference g−h takes
on the segment [a, b] positive and negative values, moreover, the areas between the graphs of those
functions are the same above the graph and below the graph of each one.

3. Numerical and analytical examples

We give two examples for illustration of general results obtained above. In the first one, we compared
on the segment [1, 2] ⊂ R the logarithmic and the exponential functions. In the second example, we
compared scalar products for arbitrary degree polynomials.

Example 1. Let g(x) = ex−1/(1 − e) and h(x) = lnx/(1 − ln 4), then on the segment [1, 2] those
functions are continuous (see Fig. 1), i.e. g ∈ R(1, 2) and h ∈ R(1, 2).

Let us check the condition (5). Since

u(x) =

∫ 2

x

ex−1

1− e
dx =

ex−1 − e

e− 1
, v(x) =

∫ 2

x

lnx

1− ln 4
dx =

x(ln x− 1)− ln 4 + 2

ln 4− 1

and (u−v)′ = h−g, then u(1) = v(1) = −1 and the function h−g has only one zero. That is the result
of strictly monotonic decreasing of the functions g and h and of the different signs of the difference
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h− g at the bounds of the segment [1, 2]:

h(1) − g(1) = 1/(e − 1) > 0, h(2) − g(2) = ln 2/(1 − ln 4) + e/(e − 1) < −1/5 < 0.

x

g ∨ h

g

g

h

h

1.2 1.4 1.6 1.8

−0.5

−1.0

−1.5

x

u− v ∨ u ∨ v

u

v

1.2 1.4 1.6 1.8

−0.2

−0.4

−0.6

−0.8

−1.0

Fig. 1. Graphs of the functions g(x) = ex−1/(1 − e)
and h(x) = lnx/(1 − ln 4).

Fig. 2. Graphs of the functions u(x) = (ex−1−e)/(e−
1), v(x) = (x(ln x− 1)− ln 4 + 2)/(ln 4− 1) and u− v.

Therefore, the function u− v has a positive maximum at the point x0 ∈ (1, 2) for which h(x0) = g(x0).
Hence, on the whole interval (1, 2) there holds (see Fig. 2) the inequality u(x) > v(x). So, the function
ex−1/(1− e) is comparable with the function lnx/(1− ln 4), namely the first one is “greater than” the
second one.

x

u− v

0.1

0.2

0.3

0.4

1.5 2.0 2.5

−0.1

−0.2 t

1− t
(1− t)t

t5

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

Fig. 3. Graph of the function u− v in the variable x. Fig. 4. Graphs of the polynomials t5, (1 − t)ts−1,
where s = 1, . . . , 5.

On the segment [2, x∗], where x∗ ≈ 2.57 is the last (the greatest) zero of the function u − v, vice
versa (see Fig. 3), the function ex−1/(1 − e) is “less than” the function lnx/(1− ln 4).

Example 2. Let g and h be polynomials of degree not higher than n on the segment [a, b], then

g(x) = g(a) +

n∑

j=1

g(j)(a)
(x− a)j

j!
, h(x) = h(a) +

n∑

j=1

h(j)(a)
(x− a)j

j!
.

Denoting t = x−a
b−a , gj = g(j)(a) (b−a)

j

j! , hj = h(j)(a) (b−a)
j

j! , where j = 1, . . . , n, we obtain

g(x) = g0 +
n∑

j=1

gj

(
tj − 1

j + 1

)
, h(x) = h0 +

n∑

j=1

hj

(
tj − 1

j + 1

)

for g0 = g(a) +
n∑
j=1

gj
j+1 and h0 = h(a) +

n∑
j=1

hj
j+1 . At that 0 6 t 6 1, 1− t = b−x

b−a and dx = (b− a)dt.
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Now we find the functions u and v:

u(x) = (b−x)g0 +(b−a)
n∑

j=1

gj
j + 1

∫ b

x

(
(j+1)tj − 1

)
dt = (b−x)g0 +(b−a)t(1− t)

n∑

j=1

gj
j + 1

j∑

s=1

ts−1.

From that we obtain the polynomials

u(x) = (b− x)g0 +
(x− a)(b− x)

b− a

n∑

j=1

gj
j + 1

j∑

s=1

ts−1,

v(x) = (b− x)h0 +
(x− a)(b− x)

b− a

n∑

j=1

hj
j + 1

j∑

s=1

ts−1.

For which u(a) = (b− a)g0, v(a) = (b− a)h0. Thus by condition (5) we have g0 = h0 and

u(x)− v(x) =
(x− a)(b− x)

b− a

n∑

j=1

gj − hj
j + 1

j∑

s=1

ts−1 > 0 (9)

on the segment [a, b]. If gj > hj for j = 1, . . . , n, then inequality (9) holds and is strict on the interval
(a, b), if gj > hj at least for one j. If we rewrite the difference u− v in the form

u(x)− v(x) =
(x− a)(b− x)

b− a

n∑

s=1

(us − vs)t
s−1,

where us =
∑n

j=s

gj
j + 1

, vs =
∑n

j=s

hj
j + 1

, then inequality (9) holds under the condition us > vs,

s = 1, . . . , n, and is strict on (a, b), if us > vs at least for one s. If we rewrite inequality (9) one more
time

u(x)− v(x) =
(x− a)(b− x)

b− a

(
(1− t)

n−1∑

s=1

s∑

l=1

(ul − vl)t
s−1 +

n∑

l=1

(ul − vl)t
n−1
)
,

then we obtain one more sufficient condition for comparing the polynomials g and h:

s∑

l=1

ul >
s∑

l=1

vl, s = 1, . . . , n. (10)

The graphs of the positive on (0, 1) polynomials tn−1 and (1− t)ts−1, where s = 1, . . . , n− 1, are given
in Fig. 4 for n = 6.

Condition (10) is the weakest among the written sufficient conditions, whereas the strongest one is
the condition gj > hj , j = 1, . . . , n, in formula (9), which implies all the next conditions.

4. Conclusions

We obtain necessary and sufficient conditions on the given (fixed) functions g and h, which are in-
tegrable on the segment [a, b], under which for arbitrary functions f with nonnegative piecewise-
continuous derivative, the scalar product (f, g) does not exceed the scalar product (f, h). Those
conditions are written in the form of inequalities, which are easy to check. We also give the illustrative
(numerical and analytical) examples of applications of the conditions obtained. These results can be
used to synthesize and optimize continuous and discrete parameters of signal measurement systems by
analyzing their mathematical models.
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Аналiз математичних моделей вимiрювальних систем
з використанням порiвняння функцiй

Iлькiв В. С., Нитребич З. М., Пукач П. Я., Когут I. В., Пахолок Б. Б.

Нацiональний унiверситет “Львiвська полiтехнiка”,
вул. С. Бандери, 12, Львiв, 79013, Україна

У роботi запропоновано пiдхiд до математичного моделювання систем на основi порiв-
няння скалярних добуткiв у просторах, iнтегровних на вiдрiзку дiйсних функцiй. Цей
пiдхiд можна використовувати у дискретних i неперервних системах вимiрювання та
деяких комбiнаторних системах у процесi синтезу та оптимального вибору їх парамет-
рiв, де постає задача порiвняння функцiй. Теоретично такi задачi характернi також
для крайових задач для рiвнянь математичної фiзики, зокрема для багатоточкових
задач, якi описують коливнi процеси у механiзмах. Знайдено необхiднi й достатнi
умови такого порiвняння. Використано спецiальнi перетворення сум та iнтегралiв,
якi входять у вiдповiднi скалярнi добутки для векторiв та функцiй.

Ключовi слова: системи вимiрювання, оптимiзацiя, скалярний добуток, iнтегру-
вання частинами, iнтегровнi функцiї, многочлени.
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