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1. Introduction

A mathematical model of oscillations in the form of a narrowband process is widely used in various
fields of science and engineering: in statistical radiophysics [1–4], in the theory of communication and
telemetry [5–9], in technical diagnostics [10–13], in geophysics and oceanology [14, 15], in statistical
hydroacoustics [16] etc. For investigation of their properties, the Hilbert transform is usually used

η(t) = H{ξ(t)} =
1

π

∫ ∞

−∞

ξ(t)

t− τ
dτ, (1)

as it does not change the amplitude of the harmonic components of the input signal ξ(t), but shifts
their phases by −π/2. The concept of the analytic signal

ζ(t) = ξ(t) + iη(t) = µ(t)eiψ(t), (2)

was introduced оn the basis of (1) along with the definitions of the envelope µ(t) =
[
ξ2(t) + η2(t)

]1/2

and the instantaneous phase ψ(t) = arctan η(t)
ξ(t) , and the instantaneous angular frequency

ω(t) =
dψ(t)

dt
=
ξ(t)η′(t)− ξ′(t)η(t)

µ2(t)
.

The frequency bandwidth ∆ω of the signal can be determined using the characteristics of the introduced
random processes:

∆ω = σ2ω + Eµ̇2(t),

here E is the sign of the mathematical expectation, µ̇(t) is a derivative of an envelope,
σ2ω(t) = E[ω(t)]2 − [Eω(t)]2 is the variance of instantaneous frequency. The value Eµ̇2(t) defines the
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Covariance characteristics of narrowband periodically non-stationary random signals 277

change of the envelope power. The signal ξ(t) is assumed as narrowband if ∆ω2/[Eω(t)]
2
6 1, other-

wise — broadband. The Hilbert transform is used for both types of signals, but the envelope conception
has physical meaning only for narrowband signals [17, 18].

Bedrosian’s theorem is important in practice [19]: Hilbert transform of the product of low-frequency
ξ1(t) and high-frequency ξ2(t) signals equals the product of low-frequency signal and Hilbert transform
of high-frequency signal if frequency bands do not overlap:

H {ξ1(t)ξ2(t)} = ξ1(t)H{ξ2(t)}.

We choose the mean of the random process ω(t) as the central frequency of the signal Eω(t) = ω0

and set that ψ(t) = ω0t− ϕ(t). Then the analytical signal (2) can be represented in the form:

ζ(t) = [ξc(t)− iξs(t)] e
iω0t,

where

ξc(t) = µ(t) cosϕ(t),

ξs(t) = µ(t) sinϕ(t).

Hence
ξ(t) = ξc(t) cosω0t+ ξs(t) sinω0t, (3)

η(t) = ξc(t) sinω0t− ξs(t) cosω0t. (4)

The quantity µ̃(t) = ξc(t) − iξs(t) is called a complex envelope, random processes ξc(t) and ξs(t)
are quadrature components of the signal. They are determined by the expressions:

ξc(t) = ξ(t) cosω0t+ η(t) sinω0t,

ξs(t) = ξ(t) sinω0t− η(t) cos ω0t.

It follows from E.Bedrosian’s theorem, that the random process (4) is Hilbert transform of a sig-
nal ξ(t) if the spectra of processes ξc(t) and ξs(t) is concentrated in the interval [ω0 − ωm, ω0 + ωm]
and ωm < ω0. In this case the expression for an envelope µ(t) can be rewritten in the form

µ(t) =
[
ξ2c (t) + ξ2s(t)

]1/2
. The above-mentioned narrowband signal condition is hard to apply in prac-

tice, therefore, it is usually replaced by a condition ωm ≪ ω0 which is obviously much stronger than
one in the E.Bedrosian’s theorem. In this article the analysis of the dependency of the Hilbert trans-
form properties on the frequency bandwidth of the quadrature components is carried out. However,
the main attention is paid to the analysis of those new features and characteristics that it acquires, as
well as the overall narrowband signal when we move from a stationary to a periodically non-stationary
model.

2. Narrowband signal as a stationary random process

Let us suppose that a narrowband signal ξ(t) is described by a stationary random process with a zero
mean mξ = Eξ(t) = 0. Then, as it follows from (1), mη = 0 too. Proceeding from the expression (1)
and the formula of the inverse Hilbert transform

ξ(t) = − 1

π

∫ ∞

−∞

η(τ)

t− τ
dτ,

for auto- and cross- covariance functions Rξ(u) = Eξ(t)ξ(t + u), Rη(u) = Eη(t)η(t + u), Rξη(u) =
Eξ(t)η(t+ u) we obtain:

Rξ(u) = − 1

π

∫ ∞

−∞

Rξη(τ)

u− τ
dτ, Rηξ(u) = − 1

π

∫ ∞

−∞

Rη(τ)

u− τ
dτ,
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Rξη(u) =
1

π

∫ ∞

−∞

Rξ(τ)

u− τ
dτ, Rη(u) =

1

π

∫ ∞

−∞

Rηξ(τ)

u− τ
dτ.

It follows from these relations that Rξη(−u) = −Rξη(u) = Rηξ(u) and Rξ(u) = Rη(u), i.e. cross-
covariance functions of the signal and its Hilbert transform are odd lag functions and have different
signs. Their autocovariance functions are equal. Taking into consideration these properties, we find
for the auto- and cross-covariance function of the quadrature components:

Rc(u) = Rs(u) = Rξ(u) cos ω0u+Rξη(u) sinω0u, (5)

Rcs(u) = Rξ(u) sinω0u−Rξη(u) cos ω0u. (6)

It follows from formula (6) that Rcs(−u) = −Rcs(u) = Rsc(u).
The covariance function of the analytical signal Rζ(u) = Eζ̄(t)ζ(t+ u) is equal to:

Rζ(u) = 2 [Rξ(u) + iRξη(u)] .

It is easily seen that cross-covariance function Rξη(u) is the Hilbert transform of autocovariance function
Rξ(u): Rξη(u) = H {Rξ(u)}. Taking into account that the transfer function of Hilbert transform
H(ω) = −i for ω > 0 and H(ω) = i for ω < 0, and also the representation

Rξ(u) =

∫ ∞

−∞
fξ(ω) e

iωudω, (7)

where fξ(ω) is the power spectral density of signal ξ(t), we obtain:

Rξη(u) = 2

∫ ∞

0
fξ(ω) sinωudω. (8)

And then

Rζ(u) = 4

∫ ∞

0
fξ(ω) e

iωudω.

It follows from the last expression, that

|Rζ(u)| 6 2Rξ(0).

The variance of the analytic signal

Rζ(0) = 4

∫ ∞

0
fξ(ω) dω

is the mathematical expectation of the square of the envelope signal and it is equal to the sum of the
variances of the signal and its Hilbert transform:

Rζ(0) = Eµ2(t) = Eξ2(t) + Eη2(t).

This formula determines also the sum of variances of quadrature components ξc(t) and ξs(t):

Rζ(0) = Rc(0) +Rs(0).

Proceeding from (5) and (6), and also formulae (7) and (8), we can find the dependencies of the
auto- and cross-covariance functions and the corresponding power spectral densities of quadrature
components on the power spectral density of the signal. Substituting (7) and (8) into (5) we obtain:

Rc(u) = Rs(u) = 2

∫ ∞

0
fξ(ω) cos(ω − ω0)u dω = 2

∫ ∞

−ω0

fξ (ω + ω0) cosωudω.
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The spectral density of narrowband process is concentrated in narrow intervals [ω0 − ∆ω, ω0 + ∆ω]
and [−ω0 −∆ω,−ω0 +∆ω], therefore, the last integral can be rewritten in the form:

Rc(u) ∼= 2

∫ ∞

−ω0

f̃ξ(ω + ω0) dω,

where f̃ξ(ω + ω0) is the component of the spectrum in the positive frequency domain shifted by the
amount −ω0. Then fc(ω) = fs(ω) ∼= 2f̃ξ(ω + ω0), i.e. the power spectral densities of the quadrature
components are equal to the component of the spectrum of the signal in the positive frequencies domain
multiplied by 2, shifted to the left by carrier frequency ω0.

After substituting (7) and (8) into (6) we obtain:

Rcs(u) = 2

∫ ∞

0
fξ(ω) sin(ω − ω0)u dω = 2

∫ ∞

−ω0

fξ (ω + ω0) sin(ω)u dω

∼= 2

∫ ∞

−ω0

f̃ξ(ω + ω0) sin(ω)u dω. (9)

It follows from this expression that the cross-covariance function of quadrature components is not equal
to zero only in the case when f̃ξ(ω + ω0) contains an odd component. It is easily seen from (9) that
Rcs(u) is odd lag function and Rcs(0) = 0 if u = 0. Thus, the quadrature components of the stationary
narrowband signal are uncorrelated at the same moments of time.

3. The Hilbert transform of periodically non-stationary narrowband signal

As it was noted above, the auto-covariance functions of the quadrature components of the narrow-
band stationary random process are equal, and their cross-covariance function is an odd lag function.
Assuming now that these conditions are not satisfied and we will analyze the covariance and spectral
properties of the Hilbert transform of such a narrowband signal.

If the mean of quadrature components mc = Eξc(t) and ms = Eξs(t) are not equal to zero, then

mξ(t) = mc cosω0t+ms sinω0t.

For the mean function of the Hilbert transform we obtain:

mη(t) =
1

π

∫ ∞

−∞

mξ(t)

t− τ
dτ = mc sinω0t−ms cosω0t.

The mean function of the analytic signal (2) has the form:

mζ(t) = mξ(t) + imη(t) = meiωt,

where m = mc − ims.
The covariance function bξ(t, u) = E [ξ(t)−mξ(t)] [ξ(t+ u)−mξ(t+ u)] of periodically non-

stationary narrowband signal (3) is determined by formula [12]:

bξ(t, u) = B
(ξ)
0 (u) + C

(ξ)
2 (u) cos 2ω0t+ S

(ξ)
2 sin 2ω0t = B

(ξ)
0 (u) +

∑

k=±2

B
(ξ)
k (u)eikω0t, (10)

where

B
(ξ)
0 (u) =

1

2
[Rc(u) +Rs(u)] cos ω0u+R−

cs(u) sinω0u, (11)

B
(ξ)
2 (u) =

1

2

[
1

2
[Rc(u)−Rs(u)]− iR+

cs(u)

]
eiω0u. (12)
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Here B(ξ)
2 (u) = 1

2 [C
(ξ)
2 (u)− iS

(ξ)
2 (u)], and also R+

cs(u) and R−
cs(u) are even and odd parts of the cross-

covariance function Rcs = R+
cs(u) + R−

cs(u). Obviously, that B(ξ)
−2(u) = B

(ξ)
2 (u), where “ ” is a sign of

conjugation. Thus, the random signal (3) is PNRS [11, 12, 14, 15]. The quantities B(ξ)
k (u) are called

covariance components [12, 15]. The zero covariance component B(ξ)
0 (u), which is a time-averaged

value of the covariance function, has all the properties of the covariance function of the stationary
random process. It is called the covariance function of the stationary approximation of a periodically
non-stationary random process [12].

Since bξ(t,−u) = bξ(t− u, u), then Bk(−u) = Bk(u)e
−ikω0u. Thus, the zero covariance component

is the even lag function: B0(−u) = B0(u). For the second cosine and sine covariance components from
the equality B2(−u) = B2(u)e

−i2ω0u we obtain:

C
(ξ)
2 (−u) = C

(ξ)
2 (u) cos 2ω0u− S

(ξ)
2 (u) sin 2ω0u, (13)

S
(ξ)
2 (−u) = C

(ξ)
2 (u) sin 2ω0u+ S

(ξ)
2 (u) cos 2ω0u. (14)

The instantaneous spectral density

fξ(ω, t) =
1

2π

∫ ∞

−∞
bξ(t, u) e

−iωudu

of the signal (3) is equal to:

fξ(ω, t) =
∑

k=0,±2

f
(ξ)
k (ω) eikω0t,

where

f
(ξ)
k (ω) =

1

2π

∫ ∞

−∞
B

(ξ)
k (u) e−iωudu. (15)

The quantities (15) are called the spectral components of PNRS (also cyclic covariance function or cyclic
spectral densities [6]). The zero spectral components f0(ω) is even frequency function: f0(−ω) = f0(ω).
It determines the time averaged power of PNRS. The second spectral components satisfy the equalities:

f2(−ω) = f2(ω + 2ω0) = f−2(ω). (16)

Proceeding from (11) and (12) we obtain:

f0(ω) =
1

4
[fc(ω + ω0) + fs(ω + ω0) + fc(ω − ω0) + fs(ω − ω0)] +

1

2

[
f−cs(ω + ω0)− f−cs(ω − ω0)

]
,

f2(ω) =
1

4
[fc(ω − ω0)− fs(ω − ω0)]−

i

2

[
f+cs(ω − ω0)

]
, (17)

where

fc,s(ω) =
1

π

∫ ∞

0
Rc,s(u) cos ωudu,

f−c,s(ω) =
1

π

∫ ∞

0
R−
c,s(u) sinωudu, f+c,s(ω) =

1

π

∫ ∞

0
R+
c,s(u) cos ωudu.

Since
|fcs(ω)|2 6 fc(ω)fs(ω)

then the spectrum bandwidth of PNRS is determined by the zero spectral components. Below we shall
call PNRS narrowband if

f0(ω) =

{
f0(ω), ω ∈ [ω0 −∆ω, ω0 +∆ω] ,
0, ω /∈ [ω0 −∆ω, ω0 +∆ω] ,
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where ∆ω < ω0. It is mean that the value of fc,s(ω) are concentrated in the interval [−ω0, ω0] and
for narrowband PNRS condition of the Bedrosian’s theorem is satisfied. Note that the value of the
second spectral component of narrowband PNRS as follows from (17) are concentrated in the interval
(0, 2ω0).

The auto-covariance and cross-covariance functions of the signal and its Hilbert transform are
connected by relations [20]:

bξη(t, u) =
1

π

∫ ∞

−∞

bη(t+ u, τ)

τ + u
dτ, (18)

bξ(t, u) =
1

π

∫ ∞

−∞

bξη(t+ u, τ)

τ + u
dτ, (19)

bηξ(t, u) = − 1

π

∫ ∞

−∞

bξ(t+ u, τ)

τ + u
dτ, (20)

bη(t, u) = − 1

π

∫ ∞

−∞

bηξ(t+ u, τ)

τ + u
dτ. (21)

Proposition 1. A periodically non-stationary random signal, the covariance function of which is
determined by the relations (10)–(12), and its Hilbert transform are jointly periodically non-stationary
random processes and their auto- and cross- covariance component are connected by expressions:

B
(η)
k (u) =

∫ ∞

−∞
h(u− τ)B

(ηξ)
k (τ) dτ, (22)

B
(ηξ)
k (u) = −

∫ ∞

−∞
h(u− τ)B

(η)
k (τ) dτ, (23)

B
(ξ)
k (u) = −

∫ ∞

−∞
h(u− τ)B

(ξη)
k (τ) dτ, (24)

B
(ξη)
k (u) =

∫ ∞

−∞
h(u− τ)B

(ξ)
k (τ) dτ, (25)

where h(τ) = (πτ)−1 is the pulse response of the Hilbert transform, i.e. the covariance components

B
(η)
k (u) and B(ηξ)

k (u), and also B(ξη)
k (u) and B(ξ)

k (u) are Hilbert transform pairs.
Proof. After substituting into formula (20) the representation (10) we obtain

bηξ(t, u) =
∑

k=0,±2

eikω0t

[
− 1

π

∫ ∞

−∞

B
(ξ)
k (τ)

τ + u
dτ

]
eikω0u.

It follows from this equality that the cross-covariance function bηξ(t, u) varies with time periodically,
and its Fourier coefficients are determined by the formula

B
(ηξ)
k (u) = −e

ikω0u

π

∫ ∞

−∞

B
(ξ)
k (τ)

τ + u
dτ,

hence:
B

(ηξ)
k (−u) = e−ikω0u

∫ ∞

−∞
h(u− τ)B

(ξ)
k (τ)dτ.

It’s easily seen that bξη(t,−u) = bηξ(t−u, u). Then B(ξη)
k (−u) = B

(ηξ)
k (u)e−ikω0u. Taking into account

the last equality, we obtain the formula (25).
Let us substitute the cross-covariance function

bξη(t, u) =
∑

k=0,±2

B
(ξη)
k (u) eikω0t
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into formula (19). Then

B
(ξ)
k (u) =

eikω0u

π

∫ ∞

−∞

B
(ξη)
k (τ)

τ + u
dτ,

or
B

(ξ)
k (−u)eikω0u = −

∫ ∞

−∞
h(u− τ)B

(ξη)
k (τ) dτ.

Taking into account the equality B(ξ)
k (−u)eikω0u = B

(ξ)
k (u), we obtain formula (24).

It follows from expression (21) that

B
(η)
k (u) = −e

ikω0u

π

∫ ∞

−∞

B
(ηξ)
k (τ)

τ + u
dτ,

using that B(η)
k (−u)eikω0u = B

(η)
k (u) we come to (22). Taking into consideration the relation (18), the

representation
bη(t, u) =

∑

k=0,±2

B
(η)
k (u)eikω0t

and equality B(ξη)
k (u) = B

(ηξ)
k (−u) eikω0u we arrive the formula (23). To simplify the further analysis,

we rewrite the relations (22)–(25) in the frequency domain. Fourier transforms of cross-covariance
components

f
(ξη)
k (ω) =

1

2π

∫ ∞

−∞
B

(ξη)
k (u)e−ikωudω, (26)

are called cross-spectral components [12, 15]. They have the following properties:

f
(ξη)
k (−ω) = f

(ηξ)
k (ω + kω0) = f̄

(ξη)
−k (ω). (27)

Using (15) and (22)–(26), we obtain:

f
(η)
k (ω) = H(ω)f

(ηξ)
k (ω), (28)

f
(ηξ)
k (ω) = −H(ω)f

(η)
k (ω), (29)

f
(ξ)
k (ω) = −H(ω)f

(ξη)
k (ω),

f
(ξη)
k (ω) = H(ω)f

(ξ)
k (ω). (30)

�

Proposition 2. The zero covariance components of the periodically nonstationary narrowband sig-
nal (3) and its Hilbert transform are equal and their zero cross-covariance components differ only by

a sign. They are odd lag functions and are determined by the zero spectral component f (ξ)0 (ω) of the
signal:

B
(ξη)
0 (u) = 2

∫ ∞

0
f
(ξ)
0 (ω) sinωudω.

Proof. It follows from equation (27) that f (ηξ)0 (ω) = f̄
(ξη)
0 (ω). Using (30) we have f

(ηξ)
0 (ω) =

−H(ω)f
(ξ)
0 (ω). Substitution the last equality into (28), we come to expression f

(η)
0 (ω) =

−H(ω)H(ω)f
(ξ)
0 (ω) = f

(ξ)
0 (ω) and B(η)

0 (u) = B
(ξ)
0 (u). Proceeding from (30) for a zero cross-covariance

component B(ξη)
0 (u) we obtain:

B
(ξη)
0 (u) =

∫ ∞

−∞
H(ω)f

(ξ)
0 (ω) eiωudω = i

∫ ∞

−∞
sign(ω)f

(ξ)
0 (ω) eiωudω

=

∫ ∞

−∞
f
(ξ)
0 (ω)(−ieiωu + ie−iωu) dω = 2

∫ ∞

−∞
f
(ξ)
0 (ω) sinωudω. (31)
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Since f (ξ)0 (ω) = f
(η)
0 (ω) and expressions (29) and (30) differ only by the sign, therefore B(ξη)

0 (u) =

−B(ηξ)
0 (u). It follows from (31) that the cross-covariance components are the odd lag function. �

Let us now consider the properties of the second auto- and cross- covariance components.
Proposition 3. The second covariance components of the periodically non-stationary narrowband
signal and its Hilbert transform have the different sign B

(η)
2 (u) = −B(ξ)

2 (u) and their second cross-
covariance components are symmetric and related with the second covariance component of the signal
by the relation:

B
(ξη)
2 (u) = B

(ηξ)
2 (u) = −iB(ξ)

2 (u).

Proof. Taking into consideration the relations H(−ω) = H(ω), f (ηξ)2 (−ω) = f
(ξη)
2 (ω + 2ω0) and (28)

we obtain:

B
(η)
2 (u) =

∫ ∞

−∞
H(ω) f

(ηξ)
2 (ω) eiωudω = −

∫ ∞

−∞
H(ω) f

(ηξ)
2 (−ω) e−iωudω

= −
∫ ∞

−∞
H(ω) f

(ξη)
2 (ω + 2ω0) e

−iωudω.

Now introduce the variable ν = ω + 2ω0. Using the equality (30), we have:

B
(η)
2 (u) = −ei2ω0u

∫ ∞

−∞
f
(ξ)
2 (ω)H(ω − 2ω0)H(ω) e−iωudω.

Since B(η)
2 (−u) = B

(η)
2 (u) e−i2ω0u, then

B
(η)
2 (u) = −

∫ ∞

−∞
f
(ξ)
2 (ω)H(ω − 2ω0)H(ω) eiωudω, (32)

and hence
f
(η)
2 (ω) = −H(ω − 2ω0)H(ω) f

(ξ)
2 (ω).

We substitute the last equality into the formula (29). Then

f
(ηξ)
2 (ω) = H(ω)H(ω)H(ω − 2ω0) f

(ξ)
2 (ω) = −H(ω − 2ω0) f

(ξ)
2 (ω). (33)

Taking into account that

−H(ω)H(ω − 2ω0) =





1, ω ∈ (−∞, 0],
−1, ω ∈ (0, 2ω0],
1, ω ∈ (2ω0,∞),

we rewrite the integral (32) in the form

B
(η)
2 (u) =

∫ 0

−∞
f
(ξ)
2 (ω) eiωudω −

∫ 2ω0

0
f
(ξ)
2 (ω) eiωudω +

∫ ∞

2ω0

f
(ξ)
2 (ω) eiωudω

=

∫ ∞

−∞
f
(ξ)
2 (ω) eiωudω − 2

∫ 2ω0

0
f
(ξ)
2 (ω) eiωudω.

The second spectral component is determined by the formula (17). The spectral densities fc(ω − ω0),
fs(ω − ω0) and f+cs(ω − ω0) for narrowband PNRS are concentrated in (ω0 −∆ω, ω0 +∆ω), so we can
put

B
(η)
2 (u) ∼= −

∫ 2ω0

0
f
(ξ)
2 (ω) eiωudω = −

∫ ∞

−∞
f
(ξ)
2 (ω) eiωudω = −B(ξ)

2 (u).
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Using the relation (16), (30) and (33) for the cross-covariance components we have that:

B
(ξη)
2 (u) = i

∫ ∞

0

[
f
(ξ)
2 (ω + 2ω0) e

−iωu − f
(ξ)
2 (ω) eiωu

]
dω,

B
(ηξ)
2 (u) = −i

[
2

∫ 2ω0

0
f
(ξ)
2 (ω) eiωudω +

∫ ∞

0

[
f
(ξ)
2 (ω + 2ω0)− f

(ξ)
2 (ω)

]
eiωudω

]
.

Hence for the narrowband process:

B
(ξη)
2 (u) = −i

∫ 2ω0

0
f
(ξ)
2 (ω) eiωudω ∼= −i

∫ ∞

−∞
f
(ξ)
2 (ω) eiωudω,

B
(ηξ)
2 (u) = −i

∫ 2ω0

0
f
(ξ)
2 (ω) eiωudω ∼= −i

∫ ∞

−∞
f
(ξ)
2 (ω) eiωudω.

So B(ξη)
2 (u) = B

(ηξ)
2 (u) = −iB(ξ)

2 (u). �

4. Numerical results

To analyze the dependency of covariance properties for Hilbert transform on the rate of covariance
damping coefficients αi of the signal we use the processing results of the simulated random sequences
(see Fig. 1):

ξ(nh) = ξc(nh) cos

(
2π

T
nh

)
+ ξs(nh) sin

(
2π

T
nh

)
.

We have chosen the following approximations:

38800 39000 39200 39400 39600

-10

-8

-6

-4

-2

0

2

4

6

8

10

nh

ξ(nh) signal

η(nh) signal

Fig. 1. The simulated realization ξ(nh) and its Hilbert transform η(nh) for α1 = 0.02.

Bc(u) = Dce
−αc|u|, Bs(u) = Dse

−αs|u|, Bcs(τ) = Dcse
−αcs|u|,

and also the folloving values of parameters:

T = 20, Dc = 4, Ds = 1, Dcs = 1, mc = ms = mcs = 0.
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α = 0.08

α = 0.10

Fig. 2. The zeroth spectral component of the signal:
1) α1 = 0.02, 2) α2 = 0.04, 3) α3 = 0.08, 4) α4 = 0.10.

The realization was simulated for the coef-
ficients αc = αs = 2αcs = αi, herewith we
consider cases when α1 = 0.02, α2 = 0.04,
α3 = 0.08, α4 = 0.1.

If we chose the bandwidth of the signal
on the basis of equality f0(ωm) = 0.05f0(ω0),
where ωm is the cut-off frequency, then we have
ωm = 0.28ω0 and ωm = 0.59ω0 for the first
and second coefficient values and ωm = 1.1ω0,
ωm = 1.26ω0 for next.

Thus, in the last cases the conditions of
the Bedrosian’s theorem are not satisfied and
then we can expect of the estimators for Hilbert
transform of covariance component

B̂
(η)
0 (rh) =

1

K

K−1∑

n=0

◦
η(nh)

◦
η [(n+ r)h] ,

{
Ĉ

(η)
2 (rh)

Ŝ
(η)
2 (rh)

}
=

1

K

K−1∑

n=0

◦
η(nh)

◦
η [(n+ r)h]

{
cos 4π

T nh
sin 4π

T nh

}

differ from the theoretical forms. It was confirmed by the calculations, which was carried out. For the
first values αi difference between the covariance component estimators for the signal and its Hilbert
transform is not significant (see Tables 1, 2, Figs. 3, 4).

Table 1. The relative errors δ[B̂0(rh)] for different coefficient αi.

α1 = 0.02 α2 = 0.04 α3 = 0.08 α4 = 0.1

δ[B̂0(rh)] 1.40877E-05 6.97E-06 3.22E-05 0.00010754
δ[B̂c

2(rh)] 0.000482 0.001509 0.005104 0.037413
δ[B̂s

2(rh)] 0.000134 0.000269 0.0048406 0.095018
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rh

B̂
(ξ)
0 (rh)

B̂
(η)
0 (rh)

0 20 40 60 80 100 120 140 160 180

-0.0015

-0.0010

-0.0005

0.0000

0.0005

0.0010

0.0015

rh

Fig. 3. The estimators of the zeroth covariance
component for the signal and its Hilbert transform.

Fig. 4. The deference B̂ξ
0(τh) − B̂η

0(τh)
in the dependency on lag.
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Table 2. The estimators of the second covariance component.

α = 0.02
The characteristics of

simulated signal
The characteristics of Hilbert

transform
Them cross-characteristics

Bc
2(rh)

0 20 40 60 80 100 120 140 160 180

0

2

-1

-2

1

rh

Ĉ
(ξ)
2 (rh)
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-1

-2

1

rh

Ĉ
(η)
2 (rh)
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0

2

-1

-2

1

rh

Ĉ
(ξη)
2 (rh)

Bs
2(rh)
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0

2

-1

-2

1

rh

Ŝ
(ξ)
2 (rh)
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0

2
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1

rh

Ŝ
(η)
2 (rh)
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rh

Ŝ
(ξη)
2 (rh)

As we see from Table 1 the relative error of the zeroth component increases slowly as αi increas.

δ
[
B̂

(η)
0 (rmaxh)

]
=

1

(rmax + 1)hB̂
(η)
0 (0)

rmax∑

r=0

[
B̂

(ξ)
0 (rmaxh)− B̂

(η)
0 (rmaxh)

]2
.

However the relative error of the second component estimators calculated similarly yet achieves the
value 0.07. The experimental results allow to conclude that the satisfaction of the inequality α < 3ω0

provides the relative errors that are not larger than 0.04.

5. Conclusions

The covariance properties of Hilbert transform of a narrowband PNRS are analyzed in this article. It
is shown that PNRS and its Hilbert transform are jointly periodically non-stationary random processes
and their auto- and cross- covariance components are Hilbert transform pairs. The zero auto-covariance
of the signal ξ(t) and its Hilbert transform η(t) are equal and the second components differ only by sign:

B
(η)
0 (u) = B

(ξ)
0 (u), B(η)

2 (u) = −B(ξ)
2 (u). The zero cross-covariance component have the different sign

B
(ξη)
0 (u) = −B(ηξ)

0 (u), they are odd lag functions B(ξη)
0 (−u) = −B(ξη)

0 (u) and are determinate by one-

sided sine transform of the zero spectral component of the signal: B(ξη)
0 (u) = 2

∫∞
0 f

(ξ)
0 (ω) sinωudω.

The second cross-covariance components are symmetric B(ξη)
2 (u) = −B(ηξ)

2 (u). And they are related

to the second covariance component of the signal by the equality B(ξη)
2 (u) = −iB(ξ)

2 (u). On the basis
of statistical processing of the simulated realization of the PNRS quadrature model the influence of
the damping covariance coefficients of the modulating processes on the covariance properties of Hilbert
transform was analyzed. The numerical values of the mean square errors are obtained for the covariance
component for increasing sequence of covariance damping coefficients α. The empirical inequality for
damping coefficient is obtained.
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Кореляцiйнi характеристики вузькосмугових перiодично
стацiонарних випадкових процесiв

Яворський I. М.1,3, Курапов П. Р.1,2, Юзефович Р. М.1,2
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Iнститут телекомунiкацiї та iнформатики,
алея проф. С. Калiськего, 7, Бидгощ, 85796, Польща

Розглянуто перетворення Гiльберта вузькосмугових перiодично корельованих сиг-
налiв. Отримано спiвiдношення, що описують зв’язок мiж кореляцiйними компонен-
тами сигналу та компонентами його перетворення Гiльберта. На основi симульованих
реалiзацiй проаналiзовано залежнiсть кореляцiйної функцiї перетворення Гiльберта
вiд декремента загасання кореляцiйного зв’язку модулюючих процесiв.

Ключовi слова: перетворення Гiльберта, вузькосмуговий перiодично корельований
випадковий сигнал, автокореляцiйнi та взаємокореляцiйнi компоненти, коефiцiєнт
загасання кореляцiйного зв’язку.
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