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A problem of determining the electrostatic field formed by a set of charged electrodes has
been considered. The details of the approximate solving of the Dirichlet problem have
been given for the Laplace’s equation in a substantially spatial formulation based on the
use of the model order reduction method. The mathematical models have been improved
and the problem of calculating the electrostatic field has been simplified, taking into
account the present symmetry of electrodes positioning in electronic optics systems. For
the eighth-order abstract group, three independent structures of the corresponding class
of systems have been identified. The application domain of the model order reduction
method based on finite-group theory for numerically solving integral equations has been
extended by transforming the initial boundary-value problem not containing symmetry
groups into two problems. The boundary surface of one of them has a finite symmetry
group and the other allows for a sufficiently simple numerical solution. This simplification
of the problem is aimed at improving the accuracy of computational methods, eliminating
sources of instability of these methods, and speeding up computations. To confirm the
efficiency of the proposed algorithm, a model problem of calculating the electrostatic field
of a quadrupole lens has been considered. The example of its solving demonstrates all the
advantages of the developed computational algorithm. A number of numerical experiments
have been conducted. The electrostatic field of the corresponding planar approximations
has been calculated to verify the validity of the obtained results.
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1. Introduction

The rapid development and expansion of the field of nanotechnology put forward new requirements
for electronic optics systems [1–4]. The last ones are used to form and control the bundles of charged
electrodes. The quality of the formed beam affects the key parameters of devices which include elec-
tronic optics systems. For example, resolution of electron microscopes, energy characteristics of particle
accelerators, precision of electronic vacuum lithography systems, noise characteristics of klystrons. Ev-
erywhere in these areas, there is a need to form a bundle of charges. They are not necessary to be
electrons. In physics, there are examples of studying ions, collisions of various charged parts. To
control them, an electrostatic or a magnetic field is used. In favour of the electrostatic field, we can
say that we do not have energy losses for heating the coil. It is also known [5] that the Lorentz force
consists of two components: the first corresponds to the electrostatic field and does not depend on the
particle velocity; the second one depends on the velocity of the particle. Therefore, if we do not know
this velocity, there is a need to use an electrostatic system. Designing such systems and controlling
their parameters is based on complex mathematical calculations and simulation of processes of charges
interaction with an electrostatic field created by a pair of cathode anodes and a system of “lenses” in
the form of electrodes [6].
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The basic mathematical model for such processes is the Laplace’s equation along with the bound-
ary conditions in relation to the electric potentials, which are set on the surfaces of the electrodes.
Taking into account the complexity of three-dimensional geometry of electronic optics systems, pres-
ence of singularities in the nuclei of corresponding integral equations and formation of a large charge
concentration at the boundaries of the electrodes, the exact solution of such an equation is a remark-
able problem. In addition, for the correction of various aberrations in a bunch of charged particles,
electrodes are used, which have complex geometry and symmetrically located relative to some axis.

2. Literature review

Among electrodes surfaces configurations of electronic optics systems, can be distinguished a class
of surfaces possessing the Abelian group of the eighth order symmetry. This class includes so-called
quadrupole systems [7]. The last ones are used in many electronic devices. Thus, lenses and their
systems are the main parts of modern powerful electron microscopes and accelerators that play an
important role in nuclear physics. Today, in most microprobes, which are in operation, use multiplet
(systems of two, three or more) electrostatic quadrupole lenses [8].

With the help of electrodes “quadrupole lens” system type, which allows to create a spatial nonuni-
form electric field in the entire volume of electrodes system, carry out electrophysical purification of
transformer oil from contaminants of various origin. The specified purification performance in real
filtration plants can be obtained using parallel-coupled systems of spatial electrodes “quadrupole lens”
type [9].
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Fig. 1. Parallel capacitor.

It is known [10] that each abstract Abelian group of finite
order can be represented as a direct product of cyclic groups.
Since the order of each group, which is a direct product, must
be a divisor of the initial group order, then for the eighth or-
der abstract groups there are three nonisomorphic structures:
the structure of a group that has a representation in the form
of a direct product of three cyclic groups of second order, the
structure of a group that is represented by a direct product
of the second and fourth order cyclic groups and the structure
of the cyclic group of the eighth order. In this regard, in the
boundary-value problems of electrodes surface, which possess
the Abelian group of symmetry of the eighth order, three dif-
ferent cases can be distinguished. An example of the first case is the system of the surfaces electrodes
configuration which is presented in Fig. 1. This system is studied in detail in the work [11, 12].
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Fig. 2. Quadrupole lens.

Having broken each plate S1 and S2 into four
parts, it is obvious that our surface S = S1∪S2 will
have an Abelian group of symmetry of the eighth
order {τi}8i=1, which in turn is a direct product
of the Abelian subgroups {e, τx}, {e, τy}, {e, τz},
where e is the identical transformation, and, τx,
τy, τz is a mirror image of three pairs of orthogonal
planes {yz}, {xz}, {xy}. That is, the elements of
our group are the following linear transformations:
τ1 = e, τ2 = τx, τ3 = τy, τ4 = τx · τy, τ5 = τz,
τ6 = τx · τz, τ7 = τy · τz, τ8 = τx · τy · τz.

An example of the second case is the
quadrupole system presented in Fig. 2.

Electrode system, that is shown in Fig. 2 is pre-
sented in the form of a set of four smooth unlocked
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surfaces that do not have common points, is S := ∪4
i=1Si. Having broken down each of its constituents

Si into two congruent elements: Si := ∪2
j=1Sij, it is obvious that the surface will have an Abelian

group of symmetry of the eighth order. The latter is a direct product of a cyclic group of fourth order,
{e, τ0, τ20 , τ30 }, τ0 is a turn on an angle π/2, and a second-order cyclic group {e, τ}, τ is a mirror image.

Since the Laplace operator is invariant relative to the group of Euclidean space, and each finite
group of surface symmetry in the Euclidean space is a subgroup of the Euclidean group, therefore, if
the boundary surface has a finite group of symmetry, then the corresponding boundary value problem
of the potential theory is similar to the group.

If the finite group of symmetries of the boundary value problem is commutative, then we can
introduce the concept of convolution and the Fourier transform in this group [13]. Also, the bound-
ary integral equation [14, 15], which corresponds to boundary value problems with “finite by group”
symmetry space variables can be divided into two sets, one of which is finite and responsible group
parameters corresponding to the second set of points with a boundary surface congruent components.
In this case, the integral operator on a discrete variable can be considered in the case of a commutative
group as a convolution operator on a finite group. The latter allows if using the Fourier transform on
the symmetry group, to reduce the integral operator by the discrete variables to a diagonal form. This
in turn corresponds to the transformation of the output integral equation given on the entire boundary
surface to the N integral equations given on one of the congruent components of the boundary surface,
where N is the order of the symmetry group of the boundary value problem.

In turn, transition from the original integral equation across the boundary surface to the integral
equation on the congruent component in the computational relation allows, on the one hand, consider-
ably reduce the amount of computing, but on the other hand, prevent numerical instability by reducing
the order of matrix equations, which approximates the corresponding boundary integral equations in
boundary-value problems with commutative symmetry group.

Thus, the methods of the theory of finite groups that can be used directly for numerical solving
of integral equations in boundary-value problems are well investigated [11, 12, 16, 17]. Areas of use of
the method of reduction, in turn, are presented in papers [17–19]. This article shows that the scope
of these methods can be greatly expanded on the basis of the transformation of the original boundary
value problem, which does not contain the symmetry group (or contains such a group, but of a small
order), to two problems, one of which contains a group of symmetries (contains a group symmetry of
higher order), and the second — admits a fairly simple numerical solution.

3. Formulation of the problem

For the study, the following physical model is used: let the electrostatic field of the system of electronic
optics be determined by the system N − 1 of infinitely thin, ideally conductive electrodes {Si}, which
in their totality form a multiply connected surface:

S(1) :=
N−1⋃

i=1

Si, where Si
⋂
Sj = ∅, when i 6= j. (1)

To each electrode Si ∈ {Si} the known potential, which is constant, is applied. Lets suppose that such

system exists SN , that S :=
(
∪N−1
i=1 Si

)
∪ SN = ∪Ni=1Si, where SN ∩ Si = ∅ when i = 1, 2, . . . , N − 1.

Moreover the surface S = S1 ∪ SN has a certain Abelian group {τk}, k = 1, 2, . . . , N , of symmetry
N -th order.

We need to find a solution of the boundary value problem for the Laplace equation with boundary
conditions on S1:

∆U(x) = 0, x ∈ D, x /∈ S(1), U(x) = f(x), x ∈ S(1), (2)
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where D is set of points of Euclidean space, S(1) is set of boundary points. Using the apparatus of
integral equations, the problem (2) is reduced to the following operator equation:

Aµ(x) = f(x), x ∈ S(1). (3)

The possibility of preliminary calculation of electrostatic field distribution is an important task
in designing the electrical and electronic equipment. Its complexity lies in the interaction between
conductors, which manifests itself in the redistribution of charge on their surface. The definition of
this redistribution is a key stage in calculation the resulting electrostatic field and determines the
complexity of the task: the system of equations, which describes the distribution of charge a set of
charged conductors, must take into account all conductors without exception.

4. Method of reduction of the model order

In this work it is shown that using the apparatus of the group theory, problem (2) can be reduced to
the boundary value problem with the Abelian symmetry group of N -th order.

Let
A11µ1(x) + . . . +A1,N−1µN−1(x) = f1(x),
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AN−1,1µ1(x) + . . . +AN−1,N−1µN−1(x) = fN−1(x)

(4)

is a partition of the integral equation (3), which corresponds to the partition (1) of the surface S(1).
There µ(x) is surface charge density, f(x) is given limit value of the potential, µi(x) and fi(x) i =
1, 2, . . . , N − 1 are narrowing µ(x) and f(x) on Si, i = 1, 2, . . . , N − 1. Herewith

Aijρj =

∫

Sj

ρj(x)

|x− y|dSj, y ∈ Si, x ∈ Sj, i, j = 1, 2, . . . , N − 1;

there |x− y| is euclidean distance between points x and y.
Now turn from equations (4) to the equations of the next form:

A11µ1(x) + . . . +A1,N−1µN−1(x) +A1NµN (x) = f1(x),
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AN−1,1µ1(x) + . . . +AN−1,N−1µN−1(x) +AN−1,NµN (x) = fN−1(x),
AN1µ1(x) + . . . +AN,N−1µN−1(x) +ANNµN (x) = fN (x).

(5)

Obviously, that the system (5) corresponds to the boundary-value problem for the Laplace equation

∆U(x) = 0, x ∈ D, x /∈ S, U(x) = f(x), x ∈ S, (6)

with Abelian group of symmetry of N -th order, that is, the boundary value problem (2) reduces to the
boundary value problem (6), whose boundary surface of electrodes has an Abelian symmetry group
of, if function fN(x) is defined. We will show, that fN(x) can be determined from the condition that
µN (x) = 0. To do this, let’s move on from the basis {µi(x)}, i = 1, 2, . . . , N , in the basis {µ′i(x)},
µ′i(x) = µi(τ

−1
i x), i = 1, 2, . . . , N , and designate operator matrix as ‖A′

ij‖Ni,j=1, which corresponds
in the basis {µ′i(x)} to matrix ‖Aij‖Ni,j=1 of equations system (5). In accordance, if ‖Fij‖Ni,j=1 is the
Fourier transform matrix for the symmetry abelian group which has a surface S, then in the basis
µ̄′i(x) =

∑N
j=1 Fijµ

′
j(E) the matrix ‖A′

ij‖ acquires a diagonal form, and equation (5) goes over to the
equation

Aiµ
′
i(x) = f̄ ′i(x), x ∈ Si, i = 1, 2, . . . , N, (7)
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where Ai = Ā′
ii =

∑N
k,m=1 FikA

′
kmF̂mi, and ‖F̂ij‖Ni,j=1 is the matrix of inverse Fourier transform.

Accordingly, equation (7) can be rewritten in the form

Aiµ̄
′
i(x) =

N−1∑

j=1

Fijf
′
j(x) + FiNf

′
N(x).

From the last equality it follows that

µ̄′i(x) =
N−1∑

j=1

FijA
−1
i
f ′j(x) +A−1

i FiNf
′
N (x). (8)

Because µ′N (x) =
∑N

i=1 F̂Niµ̄
′
i(x), then equality (8) takes the following form

µ′N (x) =

N∑

i=1

N−1∑

j=1

F̂NiFijA
−1
i f ′j(x) +

(
N∑

i=1

F̂NiFiNA
−1
i

)
f ′N (x).

It is known, that µN (x) = 0 then µ′N (x) = 0, therefore

f ′N(x) = −
(

N∑

i=1

F̂NiFiNA
−1
i

)−1



N∑

i=1

N−1∑

j=1

F̂NiFijA
−1
i f ′j(x)


 . (9)

Since fN (x) = f ′N(τNx), where {τk}, k = 1, 2, . . . , N are elements of the symmetry group, which
has a surface S, then from (9) we can calculate the function fN (x), and by solving the problem (2) go
to the solution of the boundary value problem (6), where the boundary surface of the electrodes has
an Abelian group of N -th order symmetry.

It should be noted that in numerical implementation, this method will only be effective when the
surface area S(1) is larger than the surface area S\S(1).

5. Numerical experiments

Without reducing the universality, for example, consider the task of calculation the electrostatic field
of the electronic optics system presented in Fig. 2. As shown above, the surface of the electrodes of a
quadrupole lens has an Abelian group of the eighth order symmetry. We will assume that one of the
eight congruent components of the surface is absent, for example, S42. Then the relation (8) will look
like

µ̄′i(x) = µ
(1)
i (x) + µ

(2)
i (x),

where µ1i (x) = A−1
i (x)f1i (x), µ

2
i (x) = A−1

i (x)f2i (x), i = 1, 2, . . . , 8. Then using the Fourier transform
matrix

(Fij)
8
i,j=1 =




1 1 1 1 1 1 1 1
1 −1 −1 1 1 −1 −1 1
1 1 −1 1 −1 1 −1 −1
1 −1 1 1 −1 −1 1 −1
1 1 1 −1 1 − 1 −1 −1
1 −1 −1 −1 1 1 1 − 1
1 1 −1 −1 −1 − 1 1 1
1 −1 1 −1 −1 1 −1 1




,

for f1i (x) can be written

f
(1)
1 = f ′1 + f ′2 + f ′3 + f ′4 + f ′5 + f ′6 + f ′7,
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f
(1)
2 = f ′1 − f ′2 − f ′3 + f ′4 + f ′5 − f ′6 − f ′7,

f
(1)
3 = f ′1 + f ′2 − f ′3 + f ′4 − f ′5 + f ′6 − f ′7,

f
(1)
4 = f ′1 + f ′2 + f ′3 + f ′4 − f ′5 − f ′6 + f ′7,

f
(1)
5 = f ′1 + f ′2 + f ′3 − f ′4 + f ′5 − f ′6 − f ′7,

f
(1)
6 = f ′1 − f ′2 − f ′3 − f ′4 + f ′5 + f ′6 + f ′7,

f
(1)
7 = f ′1 + f ′2 − f ′3 − f ′4 − f ′5 − f ′6 + f ′7,

f
(1)
8 = f ′1 − f ′2 − f ′3 − f ′4 − f ′5 + f ′6 + f ′7,

and f2i (x) can be represented as

f
(2)
1 (x) = f

(2)
2 (x) = f

(2)
7 (x) = f

(2)
8 (x) = f ′8, f

(2)
3 (x) = f

(2)
4 (x) = f

(2)
5 (x) = f

(2)
6 (x) = −f ′8,

where taking into account (9), f ′8(x) takes the form

f ′8(x) =
[
A−1

1 +A−1
2 +A−1

3 +A−1
4 +A−1

5 +A−1
6 +A−1

7 +A−1
8

]−1
µ̂(x),

µ̂(x) =
[
ρ
(1)
1 (x) + ρ

(1)
2 (x)− ρ

(1)
3 (x)− ρ

(1)
4 (x)− ρ

(1)
5 (x)− ρ

(1)
6 (x) + ρ

(1)
7 (x) + ρ

(1)
8 (x)

]
.

In this work the program is presented for calculating the electrostatic field of the system of electronic
optics in Fig. 2, with the presence of eight and seven congruent components. As a result, a number of
numerical experiments were conducted for arbitrary limit values of potential. It is taken into account
that the boundary surface has an Abelian group of the eighth order symmetry. During numerical
solving of integral equations the most economical method of collocation is used in the case of piecewise
constant approximation of the required charge distribution density. The system of linear algebraic
equations is solved by the Gauss’ method [20]. To verify the reliability of the results, the electrostatic
field is calculated based on the corresponding flat approximations [18].

6. Analysis of results

It is known that the electrostatic field is characterized by tension and potential at each point. The
visualization of the results of simulation of the electrostatic field of a quadrupole lens (see Fig. 2) with
the use of the above-described algorithm is represented by the distribution of the equipotential lines.
Usually, in this way, potential fields are experimentally studied, and lines of tension are constructed
as orthogonal lines to the equipotential ones.

In Fig. 3 it is shown the equipotential lines of studied electronic optics system, in the presence of
eight congruent components — cases a , b and seven congruent components — cases c, d . Limit values
of potential on electrodes: case a — f1 = f2 = 0.1, f3 = f4 = 0.2, f5 = f6 = 0.3, f7 = f8 = 0; b —
f1 = f2 = 0.1, f3 = f4 = 0.2, f5 = f6 = 0.3, f7 = 0; c — f1 = f2 = 1, f3 = f4 = −1, f5 = f6 = 1,
f7 = f8 = −1; d — f1 = f2 = 1, f3 = f4 = −1, f5 = f6 = 1, f7 = −1.

Obtained in Fig. 3 results correspond to the physics of investigated phenomenon.
If the surfaces of the charged electrodes are infinitely long cylindrical, generatrices of which are

infinitely thin filaments parallel to one of co-ordinate axes and equally charged on length, then in a cut
with an arbitrary plane, perpendicular to this axis, some aggregate of the open-circuit arcs appears.
Then the value of potential of the researched field in the arbitrary point of space does not depend on
one co-ordinate. Therefore, the examined spatial task can be interpreted as flat [21].

It is also noticed [18] that under predominance of one geometrical component surface over the
other ones the value of potential in her transversal cuts close to central changes are small. It allows
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Fig. 3. Lines of distribution of equal potential.

us to draw a conclusion that for establishing the high-quality representation of the field in the central
transversal cuts of the electron-optical systems, under condition of satisfying boundary surfaces of the
geometrical properties shown above, it is possible to limit the research only of the flat cuts of spatial
constructions. It allows to interpret a spatial task as flat.

Error between the calculated potential values, obtained in the solution of spatial problems and cor-
responding planar approximations in the case of a two-fold increase in predominance of one component
of the surface over other is approximately 0.1%. Usage of the proposed approach has reduced the cost
of computer RAM (random access memory) by about 5 times, and processor time — about 12 times.
The last one is due to the fact that instead of matrix dimension 7M × 7M eight dimensional matrices
are reversed M ×M and one matrix of the same size is rotated.
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7. Conclusion

In this paper, the scope of application of method for model order reducing is extended in the case,
when the boundary surface of the electrodes does not have a symmetry group, or owns such a group,
but in a lesser order. It is shown, that the initial boundary-value problem can be represented in the
form of two problems, one of which is a problem with an Abelian group of finite-order symmetry, and
the other allows effective numerical solving. This allowed us: to reduce the costs of computer memory
and processor time; to get high-accuracy numerical resolution of spatial problem and at the same time
to avoid the instability of the calculations. As a result, calculation of potential fields on the basis of the
proposed algorithm gives an opportunity to control a bunch of charged electrodes with high accuracy,
which is important in designing the electronic optics systems.

As an example, the spatial problem of electrostatics is considered for the model of electronic optics
system — quadrupole lens. The conducted study illustrates the possibility of generalization of the
proposed computing algorithm in the case where the boundary surface of the electrodes does not have
an Abelian finite-order symmetry group.
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Розширення областi застосування методу редукцiї порядку моделi
пiд час розрахунку електростатичного поля

Мочурад Л. I.

Нацiональний унiверситет “Львiвська полiтехнiка”,
вул. С. Бандери, 12, Львiв, 79013, Україна

Розглянуто проблему визначення електростатичного поля, утвореного сукупнiстю за-
ряджених електродiв. Наведено деталi наближеного розв’язування задачi Дiрiхле для
рiвняння Лапласа в суттєво просторовому формулюваннi на основi використання ме-
тоду редукцiї порядку моделi. Удосконалено математичнi моделi та спрощено задачу
розрахунку електростатичного поля з урахуванням симетрiї розташування електродiв
у системах електронної оптики. Для абстрактної групи восьмого порядку видiлено
три незалежнi структури вiдповiдного класу систем. Розширено область використан-
ня методу редукцiї порядку моделi на основi теорiї скiнченних груп у разi чисельного
розв’язування iнтегральних рiвнянь зведенням вихiдної крайової задачi, яка не мiс-
тить групи симетрiї, до двох. Гранична поверхня однiєї з них володiє скiнченною
групою симетрiї, а друга — допускає достатньо просте чисельне розв’язування. Та-
ке спрощення задачi спрямоване на пiдвищення точностi обчислювальних методiв,
усунення джерел нестiйкостi цих методiв та пришвидшення обчислень. Для пiдтвер-
дження дiєвостi запропонованого алгоритму розглянуто модельну задачу розрахунку
електростатичного поля квадрупольної лiнзи. На прикладi її розв’язування продемон-
стровано усi переваги розробленого обчислювального алгоритму. Проведено чисельнi
експерименти. Для перевiрки достовiрностi отриманих результатiв розраховано елек-
тростатичне поле вiдповiдних плоских наближень.

Ключовi слова: нанотехнологiї, система електронної оптики, рiвняння Лапласа,
абелева група симетрiї, перетворення Фур’є, еквiпотенцiальнi лiнiї.
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