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The paper deals with the singularly perturbed Korteweg–de Vries equation with vari-
able coefficients. The equation describes wave processes in various inhomogeneous media
with variable characteristics and small dispersion. We consider the general algorithm of
construction of asymptotic solutions of soliton type to the equation and present its approx-
imate solutions of this type. We analyze properties of the constructed asymptotic solution
depending on a small parameter. The results are demonstrated by the examples of the
studied equation. We show that for an adequate description of qualitative properties of
soliton type solutions to the singularly perturbed KdV equation with variable coefficients
it is necessary to construct at least the first asymptotic approximation, that is, expansion
containing both the main and the first term.
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1. Introduction

In mathematical simulation of complex processes non-linear models are often used. Meaningful example
of the similar model is the Korteweg–de Vries (KdV) equation [1]

ut + 6uux + uxxx = 0. (1)

In 1895 this equation was proposed for describing solitary wave discovered by Russell [2]. The KdV
equation has become a subject for studying by many researchers in the XX century after description
of elastic collision of nonlinear waves that are named as solitons [3]. Later it was found that the same
mechanism of collisions is peculiar to many other non-linear models. In particular, soliton waves were
found in models of a plasma [3, 4], solid-state physics [5], biological systems [6, 7], optic systems [8],
etc.

The classical KdV equation (1) describes propagation of waves in homogeneous media with non-
linear dispersion. In more general case, when the medium is heterogeneous and its characteristics
depend on both time and space variables, we come to considering the Korteweg–de Vries equation with
variable coefficients. For example, Maslov V.P., Dobrokhotov Yu. S. and Omelyanov G.A. studied the
KdV type equation of the following form [9,10]

ut + (ρ1 + 3ρ2u)ux + ε2ρ3uxxx + ρ4u = 0, x ∈ R, t ∈ [0;T ], (2)
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where ρ1 =
√
gH(x), ρ2 =

√
gH−1(x)/2, ρ3 =

√
gH5(x)/6, ρ4 = ρ1x/2 and H(x) > 0 is the depth of

a non-perturbed liquid, g is acceleration of the gravity, ε is a small parameter, which characterizes a
value of dispersion. They found approximate (asymptotic) solutions of equation (2) by means of the
non-linear WKB method [11].

The constructed asymptotic solutions of equation (2) were called the soliton-like solutions [10],
because these solutions are close to soliton solutions by their structure. Thus, the constructed ap-
proximate solutions describe a small deformation of soliton solutions of the KdV equation with certain
constant coefficients. As a result, the concept of soliton-like solutions of integrable type equations with
variable coefficients and small perturbation was proposed.

It should be also mentioned that the non-linear WKB method was proposed in [11] to construct
the main term of asymptotic expansion for a quasiperiodic solution of the KdV equation with singular
perturbation. Later, the technique turned out to be fruitful for studying various non-linear equations
close to integrable ones. In particular, a number of problems were considered for the KdV equation
with variable coefficients of the following form [12–14]

εnuxxx = a(x, t, ε)ut + b(x, t, ε)uux, (3)

where n is a natural number, the functions a(x, t, ε), b(x, t, ε) are written as asymptotic series

a(x, t, ε) =

∞∑

j=0

aj(x, t)ε
j , b(x, t, ε) =

∞∑

j=0

bj(x, t)ε
j , (4)

the functions aj(x, t), bj(x, t) are infinitely differentiable with respect to variables (x, t) ∈ R × [0;T ]
for all j > 0, and ε > 0 is a small parameter.

Namely, the authors found that structure of asymptotic solutions of equation (3) depends essentially
on a degree of the small parameter and we developed the algorithms for construction of different kinds
of asymptotic soliton-like solutions of equation (3). Such solutions contain both regular and singular
parts of the asymptotics, and, moreover, its singular part reflects soliton wave properties. In addition,
the main term of the singular part of the asymptotics is a rapidly decreasing function of the phase
variable, while in the general case other terms tend to zero when the phase tends to infinity only in
the positive direction and do not have similar properties in the negative direction.

In this paper, we study asymptotic soliton-like solutions of equation (3) for n = 2. We consider
the case when the singular part of the asymptotics tends to zero as its phase tends to infinity in
both positive and negative directions. In other words, these functions belong to the space of rapidly
decreasing functions of the phase variable. These asymptotic expansions for the KdV equation (3)
are called as asymptotic soliton type solutions. It is clear that asymptotic soliton type solutions is a
particular case of asymptotic soliton-like solutions which has the important physical sense.

Our main purpose is to perform comparative analysis of the asymptotic soliton type solutions
with the corresponding exact solutions of the KdV equation (3). To this purpose we initially briefly
describe the algorithm of the constructing asymptotic one-phase soliton-like solutions of equation (3)
and analyze its basic stages. We select the asymptotic one-phase solutions of soliton type among
these approximate solutions. Further we consider in details the properties of the asymptotic solutions
when small parameter ε tends to zero. For this we consider the asymptotic solutions of soliton type
of equation (3) with certain variable coefficients as the example. We show that for an adequate
description of qualitative properties of soliton type solutions of the singularly perturbed KdV equation
with variable coefficients it is necessary to construct at least the first asymptotic approximation, i.e.,
the expansion containing both the main and the first terms.
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2. Preliminary notes and notations

Asymptotic one-phase soliton-like solution of equation (3) can be written as [12]

u(x, t, ε) = UN (x, t, ε) + VN (x, t, τ, ε) +O
(
εN+1

)
, (5)

where

UN (x, t, ε) =

N∑

j=0

εjuj(x, t) (6)

is the regular part of the asymptotics and the functions uj(x, t), j = 0, N , are infinitely differentiable,
and

VN (x, t, τ, ε) =

N∑

j=0

εjVj(x, t, τ), τ =
x− ϕ(t)

ε
, (7)

is the singular part of the asymptotics.
Here ϕ(t) ∈ C∞([0;T ]) is a scalar function which defines the so-called discontinuity curve [9, 10]:

Γ = {(x, t) ∈ R × [0;T ] : x = ϕ(t)}. The value x − ϕ(t) in (7) is called a phase of the one-phase
soliton-like function (5).

It should be noted that the regular part of the asymptotics is the background function and the
singular part of the asymptotics reflects soliton properties of the desired approximate solution. The
latter is taken into account on defining the functional spaces, to which terms of the singular part (5)
should belong. Therefore, the functions V0(x, t, τ) ∈ G0

1, Vj(x, t, τ) ∈ G1, j = 1, N , where G0
1, G1 are

the functional spaces described below.
The spaces G0

1, G1 are defined as follows [10]. G1 = G1(R× [0;T ]×R) is a linear space of infinitely
differentiable functions f = f(x, t, τ), (x, t, τ) ∈ R× [0;T ]×R, such that for any non-negative integers
n, p, q, r, uniformly with respect to (x, t) on every compact set K ⊂ R× [0;T ] the following conditions
hold

1◦. the relation

lim
τ→+∞

τn
∂p

∂xp
∂q

∂tq
∂r

∂τ r
f(x, t, τ) = 0, (x, t) ∈ K,

takes place;

2◦. there exists an infinitely differentiable function f−(x, t) such that

lim
τ→−∞

τn
∂p

∂xp
∂q

∂tq
∂r

∂τ r
(
f(x, t, τ)− f−(x, t)

)
= 0, (x, t) ∈ K.

The space G0
1 = G0

1(R × [0;T ] × R) is a space of functions f = f(x, t, τ) from the space G1 such
that the following condition

lim
τ→−∞

f(x, t, τ) = 0

holds uniformly with respect to variables (x, t) on every compact K ⊂ R× [0;T ].

Remark 1. A function from the space G0
1 is a rapidly decreasing with phase variable τ function,

while a function from the space G1 is a step-like function, i.e. it is a rapidly decreasing function when
the phase variable τ → +∞ and it has non-zero limit when τ → −∞.

3. Scheme of construction of the asymptotic solution

Initially, we look for the asymptotic one-phase soliton-like solutions of equation (3) as (5), and later we
select the asymptotic one-phase soliton type solutions among them. It should be noted that the regular
part of the asymptotics is the same. So, in contrast to paper [12] we have to find the singular part of
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the asymptotics, all terms of which belong to the space G 0
1 . Since the coefficients of equation (3) have

general form, it is clear that the problem has no solution for arbitrary functions a(x, t, ε), b(x, t, ε). It
means that some additional conditions for coefficients of equation (3) must hold.

3.1. Determination of terms of the regular part

According to the non-linear WKB technique [9,11,12], for the functions uj(x, t), j = 0, N , we have the
following system of partial differential equations

a0(x, t)
∂u0
∂t

+ b0(x, t)
∂u0
∂x

u0 = 0, (8)

a0(x, t)
∂uj
∂t

+ b0(x, t)u0(x, t)
∂uj
∂x

+ b0(x, t)uj(x, t)
∂u0
∂x

= fj(x, t, u0, u1, . . . , uj−1), j = 1, N, (9)

where fj(x, t, u0, u1, . . . , uj−1), j = 1, N , are calculated recurrently. In particular, we have

f1(x, t, u0) = −a1(x, t)
∂u0
∂t

− b1(x, t)u0
∂u0
∂x

,

f2(x, t, u0, u1) = −a2(x, t)
∂u0
∂t

− b2(x, t)u0
∂u0
∂x

− a1(x, t)
∂u1
∂t

− b1(x, t)
∂

∂x
(u0 u1)− b0(x, t)u1

∂u1
∂x

.

Quasi-linear equation (8) is the Hopf equation with variable coefficients [15], while equation (9)
is linear. Their solutions can be easily found in general form by means of the method of characteris-
tics [16]. So, the terms of the regular part of asymptotic (5) are supposed to be known.

3.2. Determination of terms of the singular part of the asymptotic soliton-like solutions

The terms of the singular part of asymptotic (5) satisfy the following system of partial differential
equations

∂3V0
∂τ3

+ a0(x, t)
∂V0
∂τ

ϕ′(t)− b0(x, t)

(
u0
∂V0
∂τ

+ V0
∂V0
∂τ

)
= 0, (10)

∂3Vj
∂τ3

+ a0(x, t)
∂Vj
∂τ

ϕ′(t)− b0(x, t)

(
u0
∂Vj
∂τ

+
∂

∂τ
(V0Vj)

)
= Fj(x, t, τ), (11)

where Fj(x, t, τ) = Fj(t, V0(x, t, τ), . . . , Vj−1(x, t, τ), u0(x, t), . . . , uj(x, t)), are recurrently found by the
functions u0(x, t), u1(x, t), . . ., uj(x, t), V0(x, t, τ), V1(x, t, τ), . . ., Vj−1(x, t, τ), j = 1, N .

The singular terms should satisfy the equations (10), (11) as well as to have certain properties that
are peculiar to soliton solutions. In other words, these functions must belong to the space G0

1. It is
also necessary to find the function ϕ = ϕ(t) defined the discontinuity curve Γ.

The problem is solved in the following special way.

1. Firstly, the function ϕ(t) is supposed to be apriori known and equations (10), (11) are studied on
the discontinuity curve Γ.

2. On studying the function V0(x, t, τ), . . . , Vj−1(x, t, τ), j = 1, N , on the curve Γ we get the second or-
der nonlinear ordinary differential equation for the function ϕ = ϕ(t). So, further the function ϕ(t)
is supposed to be known on an interval [0;T ].

3. In the next stage, the functions V0(x, t, τ), . . . , Vj−1(x, t, τ), j = 1, N , are constructed in such a way
that the terms of the singular part (5) of the obtained solution belong to the space G0

1.

Let us consider these stages in details.
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3.2.1. Singular terms on the discontinuity curve

We use the notation vj = vj(t, τ) = Vj(x, t, τ)
∣∣
x=ϕ(t)

, j = 0, N . The functions vj = vj(t, τ), j = 1, N ,
satisfy partial differential equations

∂3v0
∂τ3

+ a0(ϕ, t)
∂v0
∂τ

ϕ ′(t)− b0(ϕ, t)

[
u0(ϕ, t)

∂v0
∂τ

+ v0
∂v0
∂τ

]
= 0, (12)

∂3vj
∂τ3

+ a0(ϕ, t)
∂vj
∂τ

ϕ′(t)− b0(ϕ, t)

[
u0(ϕ, t)

∂vj
∂τ

+ vj
∂v0
∂τ

+ v0
∂vj
∂τ

]
= Fj(t, τ), (13)

where Fj(t, τ) = Fj(t, V0(x, t, τ), . . . , Vj−1(x, t, τ), u0(x, t), . . . , uj(x, t))
∣∣
x=ϕ(t)

, are found recurrently

after determining the functions u0(x, t), u1(x, t), . . ., uj(x, t), V0(x, t, τ), V1(x, t, τ), . . ., Vj−1(x, t, τ),
j = 1, N . In particular,

F1(t, τ) = a0(ϕ, t)
∂v0
∂t

+b0(ϕ, t)u0x(ϕ, t)v0−
[
a1(ϕ, t)ϕ

′(t)− b1(ϕ, t)u0(ϕ(t), t) − b0(ϕ, t)u1(ϕ, t)
] ∂v0
∂τ

− τ
[
a0x(ϕ, t)ϕ

′(t)− b0x(ϕ, t)u0(ϕ, t)− b0(ϕ, t)u0x(ϕ, t)
] ∂v0
∂τ

+ b1(ϕ, t)
∂v0
∂τ

v0 + τb0x(ϕ, t)
∂v0
∂τ

v0.

Let us pass to the analysis of equations (12), (13). Solutions of equation (12) can be found explicitly.
The solution in the space G0

1 can be written as follows

v0(t, τ) = −3
A(ϕ,ϕ′, t)

b0(ϕ, t)
cosh−2

(√
A(ϕ,ϕ′, t)

τ + c0(t)

2

)
, (14)

where
A(ϕ,ϕ′, t) = −a0(ϕ, t)ϕ′(t) + b0(ϕ, t)u0(ϕ, t), ϕ = ϕ(t). (15)

It is supposed here that A(ϕ,ϕ′, t) > 0 for all t ∈ [0;T ], where c0(t) is an integration constant.
Let us consider now equation (13) for the functions vj(t, τ), j = 1, N . According to constructing

F1(t, τ) ∈ G0
1, while the function Fj(t, τ) belongs only to the space G1 for every j = 2, N .

The solution of equation (13) belongs to the space G1 due to property Fj(t, τ) ∈ G0
1, j = 1, N , and

the orthogonality condition [12]

∫ +∞

−∞
Fj(t, τ) v0(t, τ) dτ = 0, j = 1, N. (16)

These assumptions are supposed further to be fulfilled.

3.2.2. Determination of the phase function

From condition (16) for j = 1 we get the differential equation for the function ϕ(t) as

15a0(ϕ, t) b0(ϕ, t)
d

dt
A(ϕ,ϕ′, t) +

[
(10a0x(ϕ, t) b0(ϕ, t) − 36a0(ϕ, t) b0x(ϕ, t))ϕ

′ + 10b20(ϕ, t)u0x(ϕ, t)

+3(b20(ϕ, t))xu0(ϕ, t)− 20a0(ϕ, t)b0t(ϕ, t)
]
A(ϕ,ϕ′, t) = 0. (17)

The relation (17) is the non-linear ordinary differential equation with variable coefficients defined
only by the functions a0(x, t), b0(x, t), u0(x, t). It is assumed further that differential equation (17)
has a solution. This is possible under rather general conditions for the functions a0(x, t), b0(x, t). So,
we can suppose that equation (17) has a solution on certain finite time interval [0;T ]. Note, that in
the case of the classical KdV equation with singular perturbation (1) corresponding the equation for
finding the function ϕ = ϕ(t) is simple dϕ

dt = a2, where a is an arbitrary non-zero constant.
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3.2.3. Representation of the singular terms on the discontinuity curve

Under orthogonality condition (16), solution of equation (13) can be written as [9]

vj(t, τ) = νj(t)ηj(t, τ) + ψj(t, τ), j = 1, N, (18)

where the function ηj(t, τ) ∈ G1 and lim
τ→−∞

ηj(t, τ) = 1; ψj(t, τ) ∈ G0
1.

Here, we denote

νj(t) = [a0(ϕ(t), t)ϕ
′(t)− b0(ϕ(t), t)u0(ϕ(t), t)]

−1 lim
τ→−∞

Φj(t, τ),

Φj(t, τ) =

∫ τ

−∞
Fj(t, ξ) dξ + Ej(t), (19)

where the integration constant Ej(t) satisfies the following condition

lim
τ→+∞

Φj(t, τ) = 0.

In particular, we have

Φ1(t, τ) = 6

[
a0(ϕ, t)

d

dt

(√
A(ϕ,ϕ′, t)

b0(ϕ, t)

)
+
√
A(ϕ,ϕ′, t)u0x +

A(ϕ,ϕ′, t)
√
A(ϕ,ϕ′, t)

b20(ϕ, t)
b0x(ϕ, t)

+

√
A(ϕ,ϕ′, t)

b0(ϕ, t)

[
a0x(ϕ, t)ϕ

′ − (b0(ϕ, t)u0(ϕ, t))x
]
](

1− tanh

(√
A(ϕ,ϕ′, t)

τ + c0(t)

2

))

− 3

[
a0(ϕ, t)

b0(ϕ, t)

τ + c0(t)

2

d

dt
A(ϕ,ϕ′, t) − A(ϕ,ϕ′, t)

b0(ϕ, t)

[
a1(ϕ, t)ϕ

′ − (b0(ϕ, t)u0(ϕ, t))x
]

+
A(ϕ,ϕ′, t)

b0(ϕ, t)
a0(ϕ, t)c

′
0(t)− τ

A(ϕ,ϕ′, t)

b0(ϕ, t)

[
a0x(ϕ, t)ϕ

′ − (b0(ϕ, t)u0(ϕ, t))x
]]

× cosh−2

(√
A(ϕ,ϕ′, t)

τ + c0(t)

2

)
+

9

2

A2(ϕ,ϕ′, t)

b20(ϕ, t)
[b0x(ϕ, t)τ + b1(ϕ, t)]

× cosh−4

(√
A(ϕ,ϕ′, t)

τ + c0(t)

2

)
− 3

A(ϕ,ϕ ′, t)
√
A(ϕ,ϕ′, t)

b20(ϕ, t)
b0x(ϕ, t)

× tanh

(√
A(ϕ,ϕ ′, t)

τ + c0(t)

2

)
cosh−2

(√
A(ϕ,ϕ′, t)

τ + c0(t)

2

)
, (20)

where ϕ = ϕ(t).

3.3. Determination of terms of the singular part of the asymptotic soliton type solutions

It should be noted that the function vj(t, τ), j = 1, N , belongs to the space G0
1 if and only if the

condition
lim

τ→−∞
Φj(t, τ) = 0, j = 1, N, (21)

is satisfied. Thus, the functions vj(t, τ), j = 0, N can be taken as terms of the singular part of
asymptotics (5) Vj(x, t, τ), j = 0, N . So, the terms of the singular part of asymptotic (5) are also
defined and they are functions of soliton type of the phase variable.

Remark 2. From formula (20) and condition (21) we conclude that the coefficients a0(ϕ, t), b0(ϕ, t)
as well as the main term of the regular part u0(ϕ, t) and the phase function ϕ(t) satisfy the following
relation
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a0(ϕ, t)
d

dt

(√
A(ϕ,ϕ′, t)

b0(ϕ, t)

)
+
√
A(ϕ,ϕ′, t)u0x +

√
A(ϕ,ϕ′, t)

b0(ϕ, t)

[
a0x(ϕ, t)ϕ

′ − (b0(ϕ, t)u0(ϕ, t))x
]

+
A(ϕ,ϕ′, t)

√
A(ϕ,ϕ′, t)

b20(ϕ, t)
b0x(ϕ, t) = 0, t ∈ [0;T ]. (22)

Formula (22) must be taken into account on construction of asymptotic soliton type solutions of the
KdV equation (3) with certainly selected coefficients in the form of a condition for coefficients a0(x, t),
b0(x, t), the main term of the regular part of asymptotics u0(x, t) and the phase function ϕ(t).

4. Small deformations of the soliton type solutions

Let us show the obtained results for the KdV equation with variable coefficients and singular perturba-
tion when its coefficients match condition (22). We consider the case of the zero background, i.e. when
UN (x, t) ≡ 0. In this case, the asymptotic one-phase soliton type solutions contain only the singular
part describing soliton properties of the solutions.

4.1. The case of constant coefficients
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Fig. 1. The discontinuity curve x − a2t = 0
as a = 1.

In the case of constant coefficients, by means of the calibre
transformation the equation (3) is reduced to the classical
KdV equation with singular perturbation (1). Asymptotic
solution of equation (1), constructed by means of the non-
linear WKB method, contains only the main term of the
singular part of asymptotics (5) in the following form

u(x, t, ε) =
a2

2
cosh−2

(aτ
2

)
, τ =

x− a2t

ε
, (23)

where a > 0 is an arbitrary constant.
Moreover, formula (23) represents the exact solution

of equation (1).
Here, the phase is given by the function ϕ(t) = a2t,

defined for all values of t. The discontinuity curve is given
by the equation x− a2t = 0 (see Fig. 1).
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Fig. 2. Solution (23) as a = 1 and ε = 1. Fig. 3. Solution (23) as a = 1 and ε = 0.1.
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4.2. The particular case of variable coefficients

Let us consider a particular case, when coefficients a0(x, t), b0(x, t) are such that a0(x, t) = a0(x),
b0(x, t) = b0(x), where a0(x) b0(x) 6= 0 for all x ∈ R. We search terms of the singular part of
asymptotic one-phase soliton type solution of the singularly perturbed KdV equation (3) for n = 2
and zero background.

The equation (17) for the function ϕ = ϕ(t) becomes simple and relation (22) is written as

d

dt
A(ϕ,ϕ′, t) = −2A(ϕ, t)

[
2
b′0(ϕ)

b0(ϕ)
− a′0(ϕ)

a0(ϕ)

]
ϕ′. (24)

Equalities (17) and (24) should be compatible. It is valid for the following differential condition

12 a0(ϕ) b
′
0(ϕ) = 5 b0(ϕ) a

′
0(ϕ).

Hence, we have the relation
a50(x) = ρ b120 (x), (25)

where ρ is an arbitrary real non-zero constant.
As a consequence we obtain equation for the phase function ϕ = ϕ(t) in the following form

(a0(ϕ))
2/3 dϕ

dt
= ρ1, (26)

where ρ1 is an arbitrary real non-zero constant.
Equation (26) has a solution in a neighborhood of the initial point t = 0. It should be noted that

a solution can exist on either finite or semi-infinite and infinite interval. It depends on the function
a0(ϕ) [17].

As it was above mentioned, the main term of the singular part of asymptotic solution (5) is defined
by the formula V0(x, t, τ) = v0(t, τ), where v0(t, τ) is written as (14). The functions vj(t, τ), j = 1, N ,
can be found explicitly from equation (13) by the method of variations. Since vj(t, τ) ∈ G 0

1 for all
j = 1, N , we can assume

Vj(x, t, τ) = vj(t, τ) =

(∫ τ

τ0

Φj(t, τ1)v0τ (t, τ1) dτ1 + c1

)
v0τ (t, τ)

∫ τ

τ0

v−2
0τ (t, τ1) dτ1

−
(∫ τ

τ0

Φj(t, τ1)v0τ (t, τ1)

∫ τ1

τ0

v−2
0τ (t, ξ) dξ dτ1 + c2

)
v0τ (t, τ), (27)

where the functions Φj(t, τ), j = 1, N , are defined by formula (19), c1, c2 are arbitrary real constants,
τ0 ∈ R is a fixed point.

4.3. Example

Let us show the above-mentioned algorithm of construction of the asymptotic soliton type solutions
by the example. We assume the coefficients of equation (3) as

a(x, t, ε) = −
(
x2 + 1

)3/2
, b(x, t, ε) =

(
x2 + 1

)5/8
. (28)

Thus, we consider the equation

ε2uxxx = −
(
x2 + 1

)3/2
ut +

(
x2 + 1

)5/8
uux. (29)
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Condition (25) holds for ρ = −1. In (26) we take ρ1 = 1 and obtain the equation for the phase
function (

ϕ2 + 1
) dϕ
dt

= 1. (30)

For the initial condition ϕ(0) = 0, the solution of equation (30) exists for all t, and it can be written
as

ϕ(t) =
3

√
3

2
t+

√
1 +

9

4
t2 +

3

√
3

2
t−

√
1 +

9

4
t2. (31)

From formula (15) we find A(ϕ,ϕ ′, t) =
√
ϕ2(t) + 1 > 0.

The main term of the singular part of the asymptotic solution is written as follows

V0(t, τ) = −3
(
ϕ2(t) + 1

)−1/8
cosh−2 ψ(t, τ), (32)

where ψ(t, τ) =
(
ϕ2(t) + 1

)1/4
τ/2.

Assuming c0(t) = 0 in (20), we find

Φ1(t, τ) =
ϕ(t)

(ϕ2(t) + 1)5/8

[
21

2
τ +

45

8
τ cosh−2 ψ(t, τ) − 15

4

tanhψ(t, τ)

(ϕ2(t) + 1)1/4

]
cosh−2 ψ(t, τ).

It is easy to verify that the function Φ1(t, τ) satisfies condition (21). Moreover, Φ1(t, τ) is rapidly
decreasing function of the phase variable τ , i.e. Φ1(t, τ) ∈ G 0

1 .
Using formula (27), we obtain

V1(x, t, τ) = v1(t, τ) =
15

(ϕ2(t) + 1)9/8
τ

4

[
37

2

(
cosh2 ψ(t, τ) − cosh−2 ψ(t, τ)

)
− 1

]
cosh−4 ψ(t, τ)

+
3ϕ(t)

(ϕ2(t) + 1)11/8
tanhψ(t, τ) cosh−2 ψ(t, τ)

×
[
3

8
+

155

8
cosh−2 ψ(t, τ) +

1

32
cosh−4 ψ(t, τ) +

165

2
ln |coshψ(t, τ)|

]

− 3ϕ(t)

(ϕ2(t) + 1)7/8

[
525

32
τ2 cosh−4 ψ(t, τ) +

5

8

]
tanhψ(t, τ) cosh−2 ψ(t, τ). (33)

−10 −5 0 5 10

−1

−2

1
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x

t

Fig. 4. The discontinuity curve (31).

We observe that V1(x, t, τ) is rapidly decreasing func-
tion of the phase variable τ , i.e. V1(x, t, τ) ∈ G0

1.
In similar way we can find other terms of the singular

part of the asymptotics.
Below we show figures representing the asymptotic ap-

proximation of soliton type solutions of the KdV equa-
tion (29). From their analysis one can conclude that for
an adequate description of qualitative properties of the
soliton type solutions of the singularly perturbed KdV
equation with variable coefficients it is necessary to con-
struct at least the first asymptotic approximation, i.e., the
expansion containing both the main and the first terms.
The latter property is compatible with asymptotic accu-
racy of the constructed approximate solutions [12].
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Fig. 5. The main term (32) as ε = 1. Fig. 6. The main term (32) as ε = 0.5.
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Fig. 7. The main term (32) as ε = 0.1. Fig. 8. The first order approximation as ε = 1.
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Fig. 9. The first order approximation as ε = 0.5. Fig. 10. The first order approximation as ε = 0.1.
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5. Conclusions

The general algorithm of construction of the asymptotic soliton type solutions of the Korteweg–de
Vries equation describing the wave processes in inhomogeneous media with variable characteristics and
a small dispersion is given. In particular, the procedure of defining the regular and singular parts of the
asymptotics is described. We obtained the conditions for coefficients of the above mentioned equation,
under which the equation has asymptotic soliton type solutions.

The effect of a small parameter on the form of the constructed asymptotic solution is studied. The
obtained results are shown by the example of explicit determination of the first order approximation of
its asymptotic soliton type solution. In addition we consider the properties of the approximate solutions
depending on a small parameter magnitude. We show that for an adequate description of qualitative
properties of asymptotic soliton type solutions of the singularly perturbed KdV equation with variable
coefficients it is necessary to construct at least the first asymptotic approximation, i.e., expansion
containing both the main and the first terms. The latter property is compatible with asymptotic
accuracy of the constructed approximate solutions.
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Асимптотичнi розв’язки солiтонного типу для сингулярно
збуреного рiвняння Кортевега-де Фрiза зi змiнними

коефiцiєнтами

Самойленко В. Г.1, Самойленко Ю. I.1, Лимарченко В. О.1, Вовк В. С.1, Зайцева К. С.2
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вул. Володимирська, 64, Київ, 01601, Україна

2Київський унiверситет iменi Бориса Грiнченка,
вул. Бульварно-Кудрявська, 18/2, Київ, 04053, Україна

У статтi розглянуто сингулярно збурене рiвняння Кортевега–де Фрiза зi змiнними
коефiцiєнтами, яке описує хвильовi процеси в рiзних неоднорiдних середовищах зi
змiнними характеристиками та малою дисперсiєю. Розглянуто загальний алгоритм
побудови асимптотичних розв’язкiв солiтонного типу i подано такi розв’язки для цьо-
го рiвняння. Проаналiзовано властивостi побудованого асимптотичного розв’язку за-
лежно вiд малого параметра. Результати продемонстровано на прикладах. Показано,
що для адекватного опису якiсних властивостей асимптотичного розв’язку солiтон-
ного типу для сингулярно збуреного рiвняння Кортевега–де Фрiза зi змiнними кое-
фiцiєнтами необхiдно будувати щонайменше перше асимптотичне наближення, тобто
розклад, що мiстить як головний, так i перший члени асимптотики.

Ключовi слова: рiвняння Кортевега–де Фрiза, сингулярне збурення, асимптотич-
ний розв’язок, розв’язок солiтонного типу.
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