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Unsteady processes of isothermal natural gas flow, emerging in a long pipeline when there
is switching-over from one stationary process to another stationary process, have been
considered in this paper. The one-dimensional system of gas dynamics equations is used
for that purpose. It includes equations for conservation of mass and momentum written
relative to of dimensionless mass and flow densities. Three boundary-value problems for-
mulated for this system define three models for control of the transient processes. The
problems differ by the boundary (control) functions imposed at the ends of the gas pipeline.
A unified model for the control functions is introduced. According to this model, such a
function is defined by four real parameters. That restricts the class of control functions by
the smooth ones monotonically varying from the value characteristic for the first stationary
regime to the other one specific for the second stationary regime. The transient processes
realized with the use of the models for various values of control parameters are analyzed
numerically in this paper. Application of the considered mathematical models and ob-
tained results of conducted case-studies for planning the transient regimes of pipelines
operation are discussed in the paper.
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1. Introduction

Main gas pipelines are very effective for natural gas transmission on large distances [1]. Optimally they
operate in stationary regimes. But non-stationary processes are also used in the operation of these gas
transportation facilities.

Unsteady gas flows in a long pipeline were considered by many authors with various purposes, in
particular, to examine approximations of gas state equations and their impact on solutions of non-
stationary problems [2, 3], to clear up the role of thermal processes in pipeline gas dynamics [4, 5], to
describe propagation of small disturbances of pressure in the gas flowing in the pipeline [6–8], to study
transient processes emerging at a local depressurization of the pipe [9, 10].

Unsteady processes are more often used in the operation of a gas pipeline to switch-over it from
an actual stationary regime to another prescribed one. With this aim, one should increase or decrease
the mechanical power transferring to the flow, changing operation regimes of compressor stations.
That causes variations of the pressure and flow rate at the inflow and outflow of each pipeline section
between two compressor stations. The transient process emerging at that in the section will depend
on parameters being controlled at the section’s inflow and outflow (pressure or flow rate), and on the
time dependences of the controlled parameters.
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Numerical modeling transient processes in a long gas pipeline 221

There are many ways to transfer the gas pipeline from one to another stationary regime. The aim
of the paper is to study numerically how the algorithm of controlling by the transient process impacts
this process’s parameters.

2. Models for control functions of transient processes

We consider a section of a gas main as a long pipeline. Its inner diameter is Dpipe, the length is
L. We suppose the profile of the pipeline elevation H(x) and the coefficient of pipeline hydraulic
resistance λ(x) are known functions of coordinate x along the pipeline trace. As well, we will assume
that gas composition and physical-chemical property of all its components, needed for calculation the
gas thermodynamic properties, are also known. In isothermal approximation, the movement of the gas
in the pipeline is governing by two partial differential equations (PDE), describing the conservation of
mass and momentum, as well as the thermal equation of state [6]. In dimensionless variables, these
equations can be written as

∂ρ

∂τ
= −Ma · ∂ρv

∂ξ
, (1)

∂ρv

∂τ
= −Ma · ∂

∂ξ

(
ρv2 +

Zt
Ma2

p

)
−Ma · ρdγ

dξ
−Ma · β |v| vρ, (2)

p = z θ ρ. (3)

Here τ ≡ t/tt and ξ ≡ x/L stand for the dimensionless time variable and coordinate along the pipeline
trace, ρ ≡ D/Dt, p ≡ P/Pt and v ≡ V/Vt, are dimensionless gas parameters: density, pressure and
velocity correspondingly, Dt, Pt and Vt are typical for this pipeline value of corresponding dimensional
gas parameters: density D, pressure P and velocity V ; θ is dimensionless temperature (we put θ ≡ 1 in
considered here isothermal approximation T = const); z ≡ Z/Zt stands for normalized compressibility
factor of the gas, where Zt = Zt (Dt, T ) is the value of the compressibility factor Z = Z (D,T ),
calculated at Dt and T ; Ma ≡ Vt/Ct is the Mach number, where Ct is typical sonic velocity, defined
from thermal equation of state P = Z(D,T )RgTD as Ct2 = (∂P/∂D)|Z=1,D=Dt

= RgT , where
Rg ≡ R/µg, R is universal gas constant, µg is molar mass of the gas. Parameters β = β(ξ), γ = γ(ξ)
in (2) are defined as

γ(x/L) =
gH(x)

Vt
2 , β(x/L) =

λ(x)L

2Dpipe
, (4)

where g is the gravity acceleration.
Equations (1) and (2) contain three dependent variables: ρ(ξ, τ), p(ξ, τ) and v(ξ, τ). Applying

relation (3), we can reduce them to the closed system of two PDF for key functions ρ(ξ, τ) and j(ξ, τ):

PDEρ :
∂ρ

∂τ
= −Ma · ∂j

∂ξ
,

PDEj :
∂j

∂τ
= −Ma · ∂

∂ξ

(
j2ρ−1 +

Z

Ma2
ρ

)
−Ma · ρdγ

dξ
−Ma · β |j| jρ−1, (5)

where j ≡ J/Jt = ρv is dimensionless density of mass flow, Jt is the typical value of mass flow density
J = ρV .

As we can see, thanks to such choice of the key functions, the first equation of the system (5)
appears linear.

In stationary case, when ∂ρ/∂τ = ∂j/∂τ ≡ 0, from the first equation (5) we obtain ∂j/∂ξ = 0 →
j = const, and the second one leads to first order non-linear ordinary differential equation (ODE) for
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stationary density distribution ρ(ξ) in the pipeline:

ODEρ :
dρ

dξ
= −

βρj2 + ρ3 ∂γ∂ξ

j2 + Ztρ2

Ma2

(
z + ρ∂z∂ρ

) , (6)

To determine density distribution ρ(ξ) in the pipeline in stationary state, one should define a value
of dimensionless density of mass flow j, and then formulate and solve an initial value problem (IVP)
for ODE (6). Two such IVP can be considered — in the first one the initial condition (IC) is prescribed
on the left end ξ = 0 of the segment and, in the second one — on the right segment’s end ξ = 1:

IC1 : ρ|ξ=0 = ρin, IC2 : ρ|ξ=2 = ρout, (7)

where ρin and ρout are given real values.
The problems IVP1 = {ODEρ, IC1} and IVP2 = {ODEρ, IC2} represent two models for control by

the stationary flow process. Their sets of control parameters are ΠI =
{
j, ρin

}
and ΠII =

{
j, ρin

}

correspondingly. This means that, choosing, for instance, model IVPI and prescribing a values for both
elements of set ΠI, we fully determine stationary flow in the pipeline.

To determine the functions ρ(ξ, τ) and j(ξ, τ) of a transient process Transient1−2 one should first
determine two stationary processes Stationar1 and Stationar2. Here Stationar1 is the starting for
Transient1−2 stationary process, whereas Stationar2 is the target stationary process for it. “Deter-
mine a stationary process” means here that one should choose a model (IVPI or IVPII) and define
values for elements of corresponding set (ΠI or ΠII) of control parameters. Then one should formulate
a boundary problem (BVP) for system (5). For that, it is necessary to define boundary conditions
(BC) and initial conditions for the system.

Since system (5) is of hyperbolic type, we should prescribe two boundary and two initial values for
it. We will consider the next BC for system (5)

BCI : ρ|ξ=0 = ρin (τ) , ρ|ξ=1 = ρout (τ) ,

BCII : ρ|ξ=0 = ρin (τ) , j|ξ=1 = jout (τ) , (8)

BCIII : j|ξ=0 = jin (τ) , ρ|ξ=1 = ρout (τ) .

Here ρin(τ), ρout(τ), jin(τ) and jout(τ) are prescribed functions.
The initial conditions for system (5) we take in the form

IC : ρ|τ=0 = ρ1(ξ), j|τ=0 = j1. (9)

Here j1 is the value of dimensionless flow density for stationary process Stationar1, ρ1(ξ) is dimensionless
density distribution in this process. Function ρ1(ξ) is the solution of IVPI or IVPII (depending on the
used model for control by the stationary process).

With this, we can define three boundary-value problems:

BVPI = {PDEρ,PDEj,BCI, IC} ,
BVPII = {PDEρ,PDEj,BCII, IC} , (10)

BVPIII = {PDEρ,PDEj,BCII, IC} .

Boundary-value problems (10) determine tree models for control by transient process Transient1−2.
Functions ρin(τ), ρout(τ), jin(τ) and jout(τ) of boundary conditions (8) are external or control func-
tions. Defining a pair of them specific for a model BVPK, K ∈ {I, II, III}, we determine an algorithm for
control by the transient process. Defining, for instance, the functions ρin(τ) and ρout(τ), we determine
the algorithm for control by the transient process in correspondence with the model BVPI.
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3. Models for control functions of transient processes

Four control functions of transient processes ψin/out ∈
{
ρin/out, jin/out

}
should satisfy some conditions.

The first condition is continuity requirement. It follows from the nature of compressor stations which
are very inertial systems. Hence the pressure and flow rate at their inputs and outputs cannot change
rapidly.

Other conditions follow from the requirement of compatibility of the control functions of process
Transient1−2 with the control parameters of both stationary processes Stationar1 and Stationar2. These
conditions look like

ρin
∣∣
τ=τρ

in

start

= ρin1 , ρout
∣∣
τ=τρ

out

start

= ρout1 ,

ρin
∣∣
τ=τρ

in

end

= ρin2 , ρout
∣∣
τ=τρ

out

end

= ρout2 ,

jin
∣∣
τ=τ j

in

start

= j1, jout
∣∣
τ=τ j

out

start

= j1,

jin
∣∣
τ=τ j

in

end

= j2, jout
∣∣
τ=τ j

out

end

= j2. (11)

Here τρ
in/out

start/end is the time moment at which variation of mass density at the pipeline’s inflow/outflow

is start/over, τ j
in/out

start/end is the time moment at which variation of flow density at the inflow/outflow is

start/over, ρin/out1/2 is the value of mass density at the pipeline’s inflow/outflow in stationary process
1/2, j1/2 is the value of mass flow density in stationary process 1/2.

To satisfy conditions (11), we restrict the class of control functions by monotonic increas-
ing/decreasing ones. Each function ψin/out(τ), τ ∈ [0, τTr], where τTr is duration of the transient

process, is monotone within the interval τψ
in/out

var ≡
(
τψ

in/out

start , τψ
in/out

end

)
⊂ [0, τTr] and remains constant

values outside τψ
in/out

var :

dψin/out(τ)/dτ 6= 0, τ ∈ τψ
in/out

var ,

ψ
in/out

(τ) = ψ
in/out
1 = const, τ ∈

[
0, τψ

in/out

start

]
,

ψ
in/out

(τ) = ψ
in/out
2 = const, τ ∈

[
τψ

in/out

end , τTr

]
. (12)

where ψin/out1/2 is the value of parameter ψ at the pipeline inflow/outflow in stationary process 1/2.
To satisfy the restrictions we can present the model of control function ψ(τ) by piece-wise linear

approximation

ψ(τ) =





ψ1, 0 6 τ 6 τψstart,

ψ1 +
ψ2 − ψ1

τψend − τψstart

(
τ − τψstart

)
, τψstart < τ < τψend,

ψ2, τψend 6 τ 6 τTr.

(13)

But the first derivative of function (13) has jumps at the moments τ = τψstart and τ = τψend. To avoid
this, we approximate (13) by analytical function of the form

ψ(τ) = ψ1 +
ψ2 − ψ1

2

(
tanh

(
aψ(τ − τψs )

)
+ 1
)
. (14)

We cannot satisfy the conditions (12) with function (14) exactly. Therefore, instead of conditions
ψ
(
τψstart

)
= ψ1, ψ

(
τψend

)
= ψ2, we will subordinate functions (14) to the conditions

∣∣∣ψ
(
τψstart

)
− ψ1

∣∣∣ 6 ε,
∣∣∣ψ2 − ψ

(
τψend

)∣∣∣ 6 ε, (15)

where ε is a small positive number.

Mathematical Modeling and Computing, Vol. 6, No. 2, pp. 220–238 (2019)



224 ChekurinV. F., KhymkoO.M.

This brings to the next formulas for parameters aψ and τψs of function (14)

τψs =
τψstart + τψend

2
, aψ =

2

τψend − τψstart
atanh

(
1− 2ε

|ψ2 − ψ1|

)
. (16)

With the use of the models (13) and (14), we can fundamentally constrain the class of control
functions ψ(τ). Each ψ(τ) ∈

{
ρin(τ), ρout(τ), jin(τ), jout(τ)

}
can be defined now by four real constants,

namely — ψ1, ψ2 and τψstart, τ
ψ
end. The first pair ψ1, ψ2 are control parameters of the stationary processes

Stationar1 and Stationar2. The second pair τψstart, τ
ψ
end are the time parameters, which determine the

rate of function ψ(τ) changing.
Each model BVPK, K ∈ {I, II, III} depends on two controls functions. Hence, the set of control

functions of model K is defined by the set ΠK of 8 real parameters:

ΠI =
{
ρin1 , ρ

out
1 , ρin2 , ρ

out
2 , τρ

in

start, τ
ρout

start , τ
ρin

end , τ
ρout

end

}
,

ΠII =
{
ρin1 , j1, ρ

in
2 , j2, τ

ρin

start, τ
jout

start , τ
ρin

end , τ
jout

end

}
,

ΠIII =
{
j1, ρ

out
1 , j2, ρ

out
2 , τ j

in

start, τ
ρout

start , τ
jin

end , τ
ρout

end

}
. (17)

4. Internal parameters and functionals of the transient process

The course of any transient process Transient1−2 depends on chosen model BVPK and numerical
values of all elements of set ΠK associated with this model. In the aggregate, BVPK and ΠK de-
fine the algorithm of controlling by the transient process, that can be written as Transient1−2 =

Transient1−2 (BVPK,ΠK). It means that assigning different numerical values to the parameters τψstart,
τψend of a set ΠK, we define different transient processes, switching-over the pipeline between the same
two stationary regimes Stationar1 and Stationar2 in correspondence with model BVPK.

Two internal functions ρ(ξ, τ) and j(ξ, τ), being the solution of boundary-value problem BVPK, fully
determine the transient process, controlling by the algorithm {BVPK,ΠK}. The boundary functions
used in BVPK are external or control functions for this model. For instance, the functions ρin(τ) and
ρout(τ), calculated by models (13) or (14) with the use of the data contained in set ΠI, are control
functions for the model BVPI. But the functions jin(τ) and jout(τ) are local internal functions for this
model: they can be calculated from the solution {ρ(ξ, τ), j(ξ, τ)} of the boundary-value problem BVPI

as jin(τ) = j(0, τ), jout(τ) = j(1, τ).
Similarly, for the model BVPII, ρin(τ) and jout(τ) are the control functions: they should be calcu-

lated by model (13) or (14) with the use the data containing in the set ΠII, whereas jin(τ) and ρout(τ)
are the local internal functions this model. The pair jin(τ) and ρout(τ) are the external functions for
the model BVPIII, whereas ρin(τ) and jout(τ) are the local internal functions for this model.

Besides the local functions of the transient processes, one can consider its integral parameters. We
define here some such parameters.

The first one is the total mass M (t) of the gas that occupies the inner volume of the pipeline at
the moment t:

M(t) = S

∫ L

0
D(x, t) dx = Mt

∫ 1

0
ρ (ξ, t/tt) dξ = MtM(t/tt), (18)

where Mt = SLDt, S is the area of the pipeline duct’s cross-section, M(τ) is dimensionless mass of
the gas:

M(τ) =

∫ 1

0
ρ(ξ, τ) dξ. (19)

Dimensionless mass M1/2 for process Stationar1/2 is calculated as

M1/2 =

∫ 1

0
ρ1/2(ξ) dξ. (20)
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Numerical modeling transient processes in a long gas pipeline 225

The second internal integral parameter we consider here is the power WR (t) of viscous friction
force at the moment t:

WR(t) = WR
t W

R (t/tt) , (21)

where WR
t = MtV

3
t /L, WR(τ) is dimensionless power of viscous friction force:

WR(τ) =

∫ 1

0
β(ξ)

j3(ξ, τ)

ρ2(ξ, τ)
dξ. (22)

Corresponding parameters for processes Stationar1 and Stationar1 are calculated as

WR
1/2 =

∫ 1

0
β(ξ)

j31/2(ξ)

ρ21/2(ξ)
dξ. (23)

One more internal integral parameter of the transient processes is the work AR(t) of viscous friction
force:

AR(t) =

∫ t

0
WR(t) dt = ARt A

R(t/tt), (24)

where ARt = MtV
2
t , AR(τ) is dimensionless work of viscous friction force:

AR(τ) ≡Ma

∫ τ

0
WR(τ) dτ =Ma

∫ τ

0

∫ 1

0
β(ξ)

j3(ξ, τ)

ρ2(ξ, τ)
dξ dτ . (25)

Now we introduce functional for process Transient1−2 i.e. — scalar parameters, the values of which
give certain quantitative characteristics of the transient process.

The first is the duration τTr of the transient process. We define it as

τTr = τSt − τstart, (26)

where τstart is the time moment, when the transient process has been started, τSt is a moment of estab-

lishing of the stationary process Stationar2. Parameter τstart can be defined as τstart = min
(
τψ

in

start, τ
ψout

start

)
.

To detect the moment τSt we can use the properties of internal parameters of transient processes. As
the process Transient1−2 determines the transition from Stationar1 to Stationar2, its internal parameters
are compatible with corresponding parameters of the both stationary processes. In terms of local
functions ρ(ξ, τ) and j(ξ, τ), this compatibility can by expressed by the relations:

ρ(ξ, τstart) = ρ1(ξ), j(ξ, τstart) = j1, ρ(ξ, τSt) = ρ2(ξ), j(ξ, τSt) = j2. (27)

The first pair of these relations has been used to define the function of the initial conditions. The
second one can be applied to determinate the moment τSt.

If to use the local functions acting on the pipeline ends, then the compatibility relations for models
BVPK will be

jin (τstart) = j1, jout (τstart) = j1, jin (τSt) = j2, jout (τSt) = j2, K = I,

jin (τstart) = j1, ρout (τstart) = ρout1 , jin (τSt) = j2, ρout (τSt) = ρout2 , K = II,

ρin (τstart) = ρin1 , jout (τstart) = j1, ρin (τSt) = ρin2 , jout (τSt) = j2, K = III. (28)

We can use the second pairs of these relations involving parameter τSt to determinate it.
It should be stressed that the end phase of the process Transient1−2 is of relaxation type. It means

that function jin(τ), for instance, exponentially approaches to value j2 with growing τ and might never
reach it. Hence equations jin(τ) = j2 will has no solution at finite τ . But at that, function

∣∣jin(τ)− j2
∣∣

will quickly decay with growing τ . Hence we can determine τSt, for instance, as τSt :
∣∣jin(τ)− j2

∣∣ < ε
∀τ > τSt, where ε is given small positive real number. In correspondence with that we determine
duration τSt as
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τSt = max
(
argmin

τ

(∣∣∣∣jin(τ)− j2
∣∣− ε

∣∣) , argmin
τ

(∣∣∣∣jout(τ)− j2
∣∣− ε

∣∣)
)
, K = I,

τSt = max
(
argmin

τ

(∣∣∣∣jin(τ)− j2
∣∣− ε

∣∣) , argmin
τ

(∣∣∣∣ρout (τ)− ρ2 (1)
∣∣− ε

∣∣)
)
, K = II,

τSt = max
(
argmin

τ

(∣∣∣∣ρin (τ)− ρ2(0)
∣∣ − ε

∣∣) , argmin
τ

(∣∣∣∣jout (τ)− j2
∣∣− ε

∣∣)
)
, K = III. (29)

To evaluate the energy expended by the transient process, we will use the work of viscous friction
force executed during the process: ARTr = MtV

2
t A

R
Tr, where ARTr is dimensionless work defined as

ARTr = AR(τSt)−AR(τstart). (30)

Parameter ARTr is a functional of the transient process.
To evaluate the amount of the gas transmitted via the pipeline during the transient process, we

will use two parameters. The first one Min
Tr defines the mass of gas entered into the pipeline at its inlet

and the second Mout
Tr is the mass of gas delivered into the gas transmission system at the outlet

Min
Tr = S

∫ tend

tstart

J in(t) dt = MtM
in
Tr , Mout

Tr = S

∫ tend

tstart

Jout(t) dt = MtM
out
Tr . (31)

Here M in
Tr and Mout

Tr are corresponding dimensionless parameters:

M in
Tr =Ma

∫ τSt

τstart

jin(τ) dτ , Mout
Tr =Ma

∫ τSt

τstart

jout(τ) dτ . (32)

The values, average over the transient process duration, of dimensionless mass flow density at the
inlet and outlet

j̄inTr =
M in

Tr

Ma · τTr
, j̄outTr =

Mout
Tr

Ma · τTr
(33)

are also functionals of the transient process. They enable us to compare the efficiency of the transient
process and the stationary processes 1 and 2.

Parameters QinTr and QoutTr

QinTr =
ART r

Min
T r

= V 2
t

ARTr
M in

Tr

= V 2
t Q

in
Tr, QoutTr =

ART r

Mout
T r

= V 2
t

ARTr
Mout

Tr

= V 2
t Q

out
Tr (34)

define the specific energy, expended for entering the gas into the pipeline through the inlet and delivered
it into the gas transmission system through the outlet of the pipeline.

Dimensionless parameters QinTr and QoutTr are functionals of the transient process. They can be used
to evaluate the power efficiency of the transient process Transient1−2(BVPK,ΠK) by comparing them
to corresponding parameters Q1 and Q2 of the stationary processes Stationar1 and Stationar2 calculated
as

Q1 =
W1

j1
= j21

∫ 1

0

β(ξ)

ρ21(ξ)
dξ, Q2 =

W2

j2
= j22

∫ 1

0

β(ξ)

ρ22(ξ)
dξ. (35)

5. Case study of the models and algorithms for control by transient processes

In this section, we consider the results of the numerical study of transient processes executed due to
three models BVPK by various algorithms. Totally, we have studied 12 various algorithms. In all
cases, the same two stationary processes, called “low flow stationary process” and “high flow stationary
process”, were used. They are determined by the next control parameters:

— low flow stationary process: ρin1 = 0.7, ρout1 = 0.3, j1 = 0.6372;
— high flow stationary process: ρin2 = 0.9, ρout2 = 0.3, j2 = 0.8443.
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In Fig. 1 one can see the dimensionless mass density and flow density in the pipeline for these
stationary processes.

ξ

j1

j2

ρ1(ξ)

ρ2(ξ)

0 0.1 0.2 0.3 0.4

0.4

0.5
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0.7
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0.8

0.8

0.9

0.9

1

Fig. 1. The graphs of control parameters for
two stationary processes used in the case studies.

In all cases, we used the model for control functions
in form (14).

The algorithms switching-over the pipeline from the
low flow stationary process into the high flow stationary
process as well as that switching-over the pipeline in
reverse direction were considered.

The problems BVPK, K = I, II, III were solved nu-
merically. For that, a uniform grid X was created on
section [0, 1]. Then, with the use of finite difference
method, the problems BVPK were reduced to corre-
sponding initial value problems IVPK for systems of or-
dinary differential equations relative to the node values
ρ(ξi, τ) j(ξi, τ), ξi ∈ X of the key functions. The prob-
lems IVPK were solved by the Runge-Kutta method
applying the known algorithm RKF-45 [11]. Obtained in such manner solutions contain node values
ρ(ξi, τj) and j(ξi, τj) of the key functions at discrete time moments τj . The solutions were used to
calculate the internal parameters of transient processes.

The results of numerical studies presented in this chapter were obtained for the horizontal pipeline
with length 100 km and diameter 1.420m. The next values for the typical gas state parameters were
used: pressure Pt = 6.665MPa, temperature Tt = 300K, density Dt = 48.2016 kg/m3 . The typical
mass flow density was taken Jt = 467.8117 kg/(m2 ·s), typical gas velocity Vt = 9.7053m/s, typical
sonic velocity, Mach number and time period are correspondingly: Ct = 396.6253m/s, Ma = 0.0245
and tt = 252.1271 s. The equivalent height of inner surface irregularities of the pipeline wall was taken
equal to 3.3 · 10−5.

5.1. Control model BVPI

External functions ρin(τ) and ρout(τ) are control in model BVPI. First, we considered the case of
pipeline transition from the state with low flow into that with high flow. Since outlet density of both
stationary processes Stationar1 and Stationar2 are the same, so ρout(τ) = const. Therefore, it was
enough to define the values of time control parameters in set ΠI only for function ρin(τ). So, we chose
this set in the form:

Π1
I =

{
ρin1 = 0.7, ρout1 = 0.3, ρin2 = 0.9, ρout1 = 0.3, τρ

in

start = 25, τρ
in

end = 75
}
. (36)

In Fig. 2, the graphs of functions of the transient process Transient1−2

(
BVPI,Π

1
I

)
are shown. In

Fig. 2a one can see the graphs of the control function ρin(τ) and two end internal functions — jin(τ)
and jout(τ), calculated with the use of obtained solution. The duration of the transient process
Transient1−2

(
BVPI,Π

1
I

)
, calculated due to the first formula (28) with precision ε = 0.02 equals 68.18.

Fig. 2b illustrates how integral parameters — dimensionless mass M of the gas filling the pipeline
(curve 1) and dimensionless power of viscous friction force WR (curve 2) change with time τ .

The graphs in Figs. 2c and 2d show distributions of dimensionless mass density and flow in the
pipeline at various time moments.

To estimate impact the rate of control parameter ρin changing on the transient process, we applied

control function ρin(τ) with shorter period ∆τρ
in ≡ τρ

in

end − τρ
in

start of variation — instead of 50 we chose

∆τρ
in

= 30, other control parameters have remained the same:

Π2
I
=
{
ρin1 = 0.7, ρout1 = 0.3, ρin2 = 0.9, ρout1 = 0.3, τρ

in

start = 25, τρ
in

end = 55
}
. (37)

In Fig. 3 we can see the plots of the functions of the transient process Transient1−2

(
BVPI,Π

2
I

)
. This

process duration equals 53.84.
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Fig. 2. The graphs of the functions of the transient process Transient1−2
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Fig. 5. The graphs of functions of the transient process Transient2−1
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)
.
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We also studied two control algorithms for switching-over the pipeline from the stationary state of
high flow into that of low flow. In the first one, the period ∆τρ

in
of control function varying was taken

50, in another — 30:

Π3
I =

{
ρin1 = 0.9, ρout1 = 0.3, ρin2 = 0.7, ρout1 = 0.3, τρ

in

start = 25, τρ
in

end = 75
}
, (38)

Π4
I =

{
ρin1 = 0.9, ρout1 = 0.3, ρin2 = 0.7, ρout1 = 0.3, τρ

in

start = 25, τρ
in

end = 55
}
. (39)

The durations of these process are 66.22 and 49.93 correspondingly. The graphs of the transient pro-
cesses Transient2−1

(
BVPI,Π

3
I

)
and Transient2−1

(
BVPI,Π

3
I

)
are shown on Figs. 4 and 5 correspondingly.

5.2. Control model BVPIII

External functions jin(τ) and ρout(τ) are the control in this model. Outlet density of both stationary
processes are the same, so it was enough to define the values of time control parameters in sets ΠIII

only for function jin(τ). We considered here two cases with control parameters:

Π1
III

=
{
jin1 = 0.6372, ρout1 = 0.3, jin2 = 0.8443, ρout2 = 0.3, τ j

in

start = 25, τ j
in

end = 75
}
, (40)

Π2
III =

{
j1 = 0.8443, ρout1 = 0.3, j2 = 0.6372, ρout2 = 0.3, τ j

in

start = 25, τ j
in

end = 75
}
. (41)

The graphs of these transient processes are shown on Figs. 6 and 7 correspondingly.
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Fig. 6. The graphs of functions of the transient process Transient2−1
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)
.

The durations of these transient processes are 125.75 and 123.50 correspondingly.
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5.3. Control model BVPII

In this model external functions ρin(τ) and jout(τ) control by transients processes.
First, we considered the case, when both control functions start at the same time moment and

durations of their variation are equal: τρ
in

delay = τ j
out

delay, ∆τ
ρin = ∆τ j

out
. For that, we chose the next set

of control parameter for external functions:

Π1
II =

{
ρin1 = 0.7, j1 = 0.6372, ρin2 = 0.9, j2 = 0.8443, τρ

in

start = 25, τρ
in

end = 75, τ j
out

start = 25, τ j
out

end = 75
}
.

(42)
The graphs of this transient process functions are shown on Fig. 8.

On Fig. 8a we can see the graphs of two control functions — ρin(τ) and jout(τ), and two end internal
functions of the process — jin(τ) and ρout(τ). The duration of the process is τTr ≈ 153.70.

In Fig. 8b, where internal integral functions M(τ) and WR(τ) are presented, we observe the
essential raising of the power of viscous friction force at the beginning phase of the process
Transient1−2

(
BVPII,Π

1
II

)
. We can explain this by the rapid raising of the flow at the pipeline’s inflow

in this phase (see Fig. 8d) and the corresponding growth of the friction force.
To estimate the impact of the control function jout(τ) rate on the transient process, we shortened

the interval ∆τ j
out

of its varying from 50 till 30, taking the next set of parameters for the control
functions

Π2
II =

{
ρin1 = 0.7, j1 = 0.6372, ρin2 = 0.9, j2 = 0.8443, τρ

in

start = 25, τρ
in

end = 75, τ j
out

start = 25, τ j
out

end = 55
}
.

(43)
The graphs of this transient process are shown on Fig. 9.
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The duration of the process is τTr ≈ 175.67.
Here we can observe intense decreasing of outflow density (see Fig. 9a) and more rapid growth of

the power of viscous friction force at the beginning phase of the transient process (see Fig. 9b).
The next numeric experiment was intended to study the influence of time shift between control

functions acting at the pipeline’s inflow and outflow on the transient process. For that, we considered
an algorithm of switching-over of the pipeline from the state of low flow into that of high flow in the
case when the control function at outflow is lag in relation to that at the inflow. The next set of
parameters of control functions was used in this case

Π3
II
=
{
ρin1 = 0.7, j1 = 0.6372, ρin2 = 0.9, j2 = 0.8443, τρ

in

start = 25, τρ
in

end = 75, τ j
out

start = 50, τ j
out

end = 80
}
.

(44)
The graphs of the transient process functions are shown in Fig. 10.
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Fig. 10. The graphs of functions of the transient process Transient1−2

(
BVPII,Π

3
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)
.

As we can see from the graphs, the lag in 25 units of dimensionless time between control functions,
acting at the inflow and outflow of the pipeline, makes the transient process more “quiet”. That appears,
in particular, in more smooth dependencies ρout(τ) and WR(τ) as compared to those arising in the
process Transient1−2

(
BVPII,Π

2
II

)
.

In the frame of the control model BVPII, we also studied numerically two algorithms of switching-
over the pipeline from the state of high flow into the state of low flow.

First, we considered the case of synchronous starts of control functions acting at the inflow and
outflow, using the next set of control parameters:

Π4
II =

{
ρin1 = 0.9, j1 = 0.8443, ρin2 = 0.7, j2 = 0.6372, τρ

in

start = 25, τρ
in

end = 75, τ j
out

start = 25, τ j
out

end = 55
}
.

(45)
The graphs of the functions of the transient process are shown in Fig. 11.
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The duration of this transient process isτTr ≈ 169.56.
The next case was intended to estimate how lag in the start of control function acting at the pipeline

inflow will impact the transient process. We used the next set of control parameters for that

Π5
II =

{
ρin1 = 0.9, j1 = 0.8443, ρin2 = 0.7, j2 = 0.6372, τρ

in

start = 25, τρ
in

end = 75, τ j
out

start = 0, τ j
out

end = 30
}
.

(46)
The graphs of the functions of the transient process are shown in Fig. 12.

The duration of this process is τTr ≈ 169.56.
One more case we considered was intended to estimate how the lag of the start of the control func-

tion, acting at the pipeline’s outlet, impacts the transient process. The next set of control parameters
was used for that

Π6
II
=
{
ρin1 = 0.9, j1 = 0.8443, ρin2 = 0.7, j2 = 0.6372, τρ

in

start = 25, τρ
in

end = 75, τ j
out

start = 50, τ j
out

end = 80
}
.

(47)
By this algorithm, the control function jout(τ), acting at the outflow, starts with a lag of 25 units

of dimensionless time in relation to control function ρin(τ) at the inflow.
The graphs of the functions of the transient process are shown in Fig. 13.
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Fig. 13. The graphs of functions of the transient process Transient1−2

(
BVPII,Π
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)
.

Comparing the graphs in Fig. 13 with corresponding that presented in Fig. 12, we can conclude,
that the delay in control at outflow makes the transient process more “quiet” and cuts its duration.

5.4. Quantitative comparison of the transient processes

To compare considered in this chapter algorithms, we calculated for each of them the functionals,
introduced by formulas (28), (31), (32), (34). In Table 1 the control parameters of the transient
processes are presented. In Table 2 the values of functionals for these processes are consolidated.
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Table 1. The control parameters of the transient processes.

Algorithm Direction ∆τ in ∆τ out τ outdelay

BVPI,Π
1
I

1–2 50 – 0
BVPI,Π

2
I

1–2 30 – 0
BVPI,Π

3
I

2–1 50 – 0
BVPI,Π

4
I

2–1 30 – 0
BVPIII,Π

1
III

1–2 50 – 0
BVPIII,Π

2
III

2–1 50 – 0
BVPII,Π

1
II

1–2 50 50 0
BVPII,Π

2
II

1–2 50 30 0
BVPII,Π

3
II

1–2 50 30 25
BVPII,Π

4
II

2–1 50 30 0
BVPII,Π

5
II

2–1 50 30 −25

BVPII,Π
6
II

2–1 50 30 25

Table 2. The functionals of the transient processes.

Algorithm Direction τTr ATr, 10
3 M in

Tr j̄inTr Mout
Tr j̄outTr QinTr, 10

3 QoutTr , 10
3

BVPI,Π
1
I

1–2 68.18 1.84 1.42 0.85 1.20 0.72 1.29 1.53
BVPI,Π

2
I

1–2 53.84 1.51 1.18 0.90 0.95 0.72 1.28 1.59
BVPI,Π

3
I

2–1 66.22 1.66 1.02 0.63 1.24 0.76 1.63 1.33
BVPI,Π

4
I

2–1 49.43 1.21 0.71 0.58 0.94 0.77 1.71 1.29
BVPIII,Π

1
I

1–2 125.75 3.31 2.45 0.80 2.23 0.72 1.35 1.48
BVPIII,Π

2
III

2–1 123.50 3.11 2.06 0.68 2.28 0.75 1.51 1.37
BVPII,Π

1
III

1–2 153.60 5.78 3.26 0.87 3.04 0.81 1.77 1.90
BVPII,Π

2
II

1–2 175.67 8.10 3.77 0.88 3.55 0.82 2.15 2.28
BVPII,Π

3
II

1–2 93.39 2.66 1.38 0.85 1.70 0.75 1.39 1.56
BVPII,Π

4
II

2–1 135.52 2.11 1.60 0.58 1.18 0.64 1.10 0.98
BVPII,Π

5
II

2–1 169.56 2.33 2.35 0.57 1.80 0.62 0.99 0.91
BVPII,Π

5
II

2–1 67.31 1.70 1.05 0.64 1.26 0.76 1.62 1.36

6. Conclusion

Three mathematical models for the unsteady gas-dynamic processes of switching-over the pipeline from
an actual stationary regime to another (target) stationary regime have been studied numerically in
isothermal approximation. A boundary-value problem for the gas-dynamic equation system, describing
the motion of the gas in the pipeline, corresponds to each model. The problems differ by the boundary
functions, prescribed at the ends of the pipeline. In the problem BVPI for instance, dimensionless
densities ρin(τ) and ρout(τ) are defined as the boundary data. In this case, we say, that the transient
process realized in the correspondence by the model BVPI, is controlled by these functions, acting at
the pipeline’s ends. In the model BVPII, they are functions ρin(τ) at the inflow and dimensionless
mass flow density jout(τ) at the outflow, whereas in the model BVPI — the flow jin(τ) and density
ρin(τ) are the control functions.

A unified model for the control functions was used in the study. The model restricts their class by
the smooth functions, which monotonically vary from the value characteristic for the first stationary
regime to another one specific for the target stationary regime. By the model, each control function
ψ(τ) is defined by four real constants. They are two values, which ψ(τ) acquires in the first and second
stationary regimes, and two parameters (τψstart and τψend), defining the period of the function variation.

With the use of the control functions model, any transient process, realized by model BVPK,K =
I, II, III is fully defined by a set ΠK of eight parameters (four ones for each control function of the
model BVPK). Prescribing numerical values for the set ΠK elements, we define an algorithm for control
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by a transient process realized in correspondence with the model BVPK. The transient process realized
by any algorithm can be characterized by several numerical parameters (functionals). They are the
time duration τTr, the work ARTr of viscous friction force executed during the process, the amounts Min

Tr

and Mout
Tr of the gas entered into the pipeline at its inlet and delivered into the gas transmission system

at the outlet, etc. The functionals allow evaluating some parameters of effectiveness of the transient
process.

Results of case studies of twelve various algorithms of control by transient processes are presented in
the paper. They are four algorithms for control model BVPI, two ones for BVPIII, and six — for BVPII.
The functionals were calculated for each case. The presented in Figs. 2–13 graphs make it possible to
judge how the used model and parameters of control functions impact the transient processes. The data
in Table 2, show that integral characteristics of transient process effectiveness depend on the chosen
model and the algorithm of control by this process.

The mathematical models and results of the case studies, presented in the paper, can be used
for development of strategy and practice for planning of transient regimes of pipeline operation. In
particular, one can use them to check a planned transient process for its consistency with restrictions
on the permissible values of the pressure and flow rate, to choose the algorithm, which provides a
better efficiency of the pipeline, etc.

The class of control functions, used for modeling the transient process, can be extended by non-
monotonic functions and corresponding expanding the sets of control parameters ΠK. That will give
new possibilities for transient processes controlling.

Involving into consideration a mathematical model for compressor stations will make it possible
to use as the controls for transient processes the parameters determining regimes of their operation,
namely — the power, developed by the compressors, their rotary speeds, consumed fuel, etc. Using the
mathematical model, which determines among other parameters the gas temperature at compressor
station’s outflow, will enable considering the heat processes in the gas moving in the pipeline.
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У статтi розглянуто нестацiонарнi процеси iзотермiчної течiї газу, що виникають у
довгому трубопроводi пiд час його переходу з одного стацiонарного режиму на iн-
ший. Дослiдження проведено з використанням одновимiрної моделi динамiки газу, в
яку входять рiвняння збереження маси та iмпульсу газу, записанi вiдносно безроз-
мiрних густин маси та потоку. Для цiєї системи сформульовано три крайовi задачi,
якi визначають три моделi керування перехiдними процесами. Задачi вiдрiзняються
граничними функцiями, заданими на кiнцях трубопроводу. Запропоновано унiфiко-
вану модель для функцiй керування. За цiєю моделлю будь-яка функцiя керування
визначається чотирма дiйсними параметрами. Виконано чисельний аналiз перехiдних
процесiв, з використанням рiзних моделей керування за рiзних значень параметрiв
керування. У статтi розглянуто деякi можливостi застосування таких математичних
моделей та результати проведених числових дослiджень для планування перехiдних
режимiв роботи магiстральних газопроводiв.

Ключовi слова: газова динамiка, довгий трубопровiд, перехiднi процеси.
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