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The two-dimensional stationary problems of heat conduction and thermoelasticity for a
semi-infinite elastic body containing an inclusion and a crack are considered. For this
purpose, mathematical models of these two-dimensional problems in the form of a system
of singular integral equations (SIEs) of the first and the second kinds are constructed. The
numerical solution of the system of integral equations in the case of a half plane containing
an inclusion and thermally insulated crack due to local heating by a heat flux is obtained
using the method of mechanical quadratures. We present graphical dependencies of stress
intensity factors (SIFs), which characterize the distribution of intensity of stresses on the
tops of a crack, on the elastic and thermoelastic characteristics of an inclusion and a
matrix, as well as on a relative position of a crack and an inclusion. The obtained results
are subsequently used to determine the critical values of a heat flux at which a crack starts
to grow. This model is the development of known models of two-dimensional stationary
problems of heat conduction and thermoelasticity for piecewise-homogeneous bodies with
cracks.
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1. Introduction

The two-dimensional problems of thermoelasticity for semi-infinite bodies with cracks have already
been investigated in the literature. In particular, the thermoelastic state of a half plane containing an
internal rectilinear crack at different temperature and force conditions imposed on the crack tips and
on the edge of the half plane was analyzed in [1–3]. The method of SIE was used for the analysis of the
plane thermoelastic state in a half space containing an internal arbitrary oriented rectilinear crack [4],
a periodic system of cracks of this sort [5], internal curvilinear crack [6], edge crack [7] or an inclusion
and a crack [8, 9] due to local heating over a part of its free surface by a heat flux.

The SIE of heat conduction and thermoelasticity with special Cauchy-type kernels for a plane with
thermally insulated cracks or heat-conducting cuts located in a circular foreign inclusion [10], as well
as for bodies with thermal cylindrical inclusions and crack [11] are deduced by the method of functions
of a complex variable. The solutions of the thermoelasticity problem for a plane with a crack on the
basis of the finite element method [12] and the Fourier integral transform method [13] were presented.

However, the problems of thermoelasticity remain poorly investigated for nonhomogeneous semi-
infinite bodies with cracks (cuts) and in the available literature, there can be found no solutions for
multi-component bodies with cracks and, in particular, for the two-component bodies with cracks.

The aim of this article is: (i) to construct a two-dimensional mathematical model of the stationary
problems of heat conduction and thermoelasticity for an elastic half plane containing an inclusion and
a crack in the form of a system of singular integral equations (SIE); (ii) to determine the numerical
solutions of SIE (employing the method of mechanical quadratures) in the particular case of a circular
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inclusion and thermally insulated crack when a half plane is heated at a part of its free edge by a
constant-intensity heat flux. This makes it possible to determine stress intensity factors (SIF) at the
tops of the crack.

2. Statement of the problem

In this paper, we consider an elastic half plane containing an elastic circular inclusion with contour L1

and internal rectilinear thermally insulated crack L2 (see Fig. 1). We assume that contours Ln, n = 1, 2
do not have common points. Each contour is connected with a local coordinate systems xkOkyk, and
the points Ok are determined in the coordinate system xOy by complex coordinates z0n = x0n + iy0n,
the relationship between these coordinate systems is specified by the relations z = zn + z0n, z = x+ iy,
zn = xn + iyn. A domain of bounded width located on the edge on the half plane is heated by a heat
flux with intensity q. The other parts of the edge of half plane are thermally insulated. We also assume
that the edge of the half plane is free from external loads and that temperature and stresses vanish at
infinity. The problem is studied under the conditions of a stationary temperature field.

Consider the problem of heat conduction with the following conditions of thermal contact. We will
assume that along the inclusion contour L1 the conditions for an ideal thermal contact (temperatures
and heat fluxes are equal) are given:

λ
∂T+

∂n
= λ1

∂T−

∂n
, T+ = T−, t1 = z1 ∈ L1 (1)

and the crack lips L1 are thermally insulated

∂T±

∂n
= 0, t2 = z2 ∈ L2. (2)

Here n is the outer normal to the closed contour L1 or to the left face of the cut L2, λ (λ1) is the
coefficient of thermal conductivity of the matrix (inclusion); T (x, y) stands for the temperature; tk are
the complex coordinates of points on the contours Lk in local coordinate systems; the plus and minus
indices indicate the boundary values of the corresponding values on the left and on the right of the
approach to the contour Ln, n = 1, 2.

In the problem of thermoelasticity we assume that the conditions of perfect mechanical contact are
satisfied along of the inclusion contour L1

[N(t1) + i S(t1)]+ = [N(t1) + i S(t1)]−;

[u(t1) + iv(t1)]+ = [u(t1) + iv(t1)]− , t1 ∈ L1.
(3)

Suppose that the half plane is subjected to the action of a stationary temperature field T (x, y).
Assume that the crack lips L1 are not in contact and are free of the loads in the process of deformation

[N(t2) + i S(t2)]± = 0, t2 ∈ L2. (4)

In the relations (3), (4), N1(tn) and S(tn), n = 1, 2 are the normal and the tangential components
of the load and u(t1), v(t1) are the components of displacement.

3. Problem solution

3.1. System of integral equations of the problem of heat conduction

We represent the total temperature in the half plane with an inclusion and crack in the form

T (x, y) = T0(x, y) + T ∗(x, y),
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where T0(x, y) is the temperature in the homogeneous half plane without an inclusion and a crack
caused by the heat flux q and T ∗(x, y) is the perturbed temperature generated by an inclusion and a
crack. The temperature field T0(x, y) is described by the formula [5]

T0(x, y) = − 1

πλ

∫ c

−c
q ln

√
(x− ζ)2 + y2dζ + C, |x| <∞, |y| < 0, (5)

where C is an arbitrary constant.
We represent the temperature T ∗(x, y) in the form of T∗(x, y) = Ref(z), and we use the complex

temperature potential F (z) = f ′(z) [8]

F (z) =
1

π

∫

L1

[
1

ζ1 − z
− 1

ζ1 − z

]
µ(t1) ds+

1

πi

∫

L2

[
1

ξ2 − z
− 1

ζ2 − z

]
γ′(t2) dt2, (6)

where ζk = tk+z0k (k = 1, 2), µ(t1) is an unknown real function on the contour of inclusion L1, γ′(t2) is
the derivative of the unknown jump of temperature in passing through the crack contour L2, ζ2 is the
quantity complex conjugate to ζ2, ds is an element of arc of the contour L1, f(z) is analytic function
of the complex variable µk(tk), k = 1, N .

By satisfying the boundary conditions (1) and (2) with the help of the complex temperature po-
tential (6), we obtain the system of two singular integral equations of the first and the second kind for
the two unknown functions µ(t1) on the contour of an inclusion and γ′(t2) on the contour of a crack

µ(τ1) +
1

π

∫

L1

Im [K11(t1, τ1) + L11(t1, τ1)] µ (t1) ds

+
1

π

∫

L2

Im [K12(t2, τ1)− L12(t2, τ1)] γ′(t2) dt2 = −∆1Im
[
F0(η1) e

i(β1)
]
, τ1 ∈ L1, (7)

1

π

∫

L1

Im [K21(t1, τ2) + L21(t1, τ2)]µ(t1) ds

+
1

π

∫

L2

Im [K22(t2, τ2)− L22(t2, τ2)] γ′(t2) dt2 = −Im [F0(η2)] , τ2 ∈ L2.

Here

Knk(tk, τn) =
∆ne

iβn

i(ζk − ηn)
, Lnk(tk, τn) =

∆ne
iβn

i(ζ̄k − ηn)
, (k = 1, 2; n = 1, 2) ,

ηn = τn + z0n, eiβn = dτn/ds, ∆1 =
λ1 − λ
λ1 + λ

, ∆2 = 1,

F0(z) =
∂T0(x, y)

∂x
− i ∂T0(x, y)

∂y
,

where the temperature T0(x, y) is given by the relation (5).
The solution of the system of integral equations (7) must satisfy the condition

∫

L2

γ′(t2) dt2 = 0, (8)

which provide continuity of temperature by passing the contours of a crack. Under condition (8), the
system of integral equations (7) for an arbitrary right-hand side has a unique solution.

Note that the choice of the complex potential in the form (6) ensures the identical satisfaction of
the second equality in the condition (1) on the basis of such a choice of analytic continuation from the
matrix region in the inclusion region, in which the equality of temperatures for the approach on the
left and on the right to the contour of inclusion.
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3.2. System of integral equations of the problem of thermoelasticity

By satisfying the boundary conditions (3), (4) with the help of the complex potentials [8], we obtain
in the problem of thermoelasticity the system of two singular integral equations of the first and the
second kind for the two unknown functions Q1(t1) on the contour of an inclusion and Q2(t2) on the
contour of a crack

A1Q1(τ1) +
1

2π

∫

L1

[
R11(t1, τ1)Q1(t1) dt1 + S11(t1, τ1)Q1(t1) dt1

]

+
1

2π

∫

L2

[
R12(t2, τ1)Q2(t2)dt2 + S12(t2, τ1)Q2(t2) dt2

]
= P1(τ1), τ1 ∈ L1, (9)

1

2π

∫

L1

[
R21(t1, τ2)Q1(t1) dt1 + S21(t1, τ2)Q1(t1) dt1

]

+
1

2π

∫

L2

[
R22(t2, τ2)Q2(t2) dt2 + S22(t2, τ2)Q2(t2) dt2

]
= P2(τ2), τ2 ∈ L2 ,

where

Rnk(tk, τn) = R1
nk(tk, τn)

− eiαk

{
Bn

T nk
+
Cn(ξ̄k − ξk)

T 2
nk

+
dτn
dτn

Cne
−2iαn

[
(2ηn − ξk − η̄n) (ξ̄k − ξk)

T 3
nk

]
− 1

Tnk

}
,

Snk(tk, τn) = S1
nk(tk, τn) + e−iαk

[
Bn(ξk − ξ̄k)

T̄ 2
nk

+
Cn
Tnk
− dτn
dτn

Cne
−2iαn

Hkn

T
2
nk

]
,

R1
nk(tk, τn) = ei αk

[
Bn
Hkn

− dτn
dτn

Cne
−2i αn

H̄kn

]
S1
nk(tk, τn) = −Cne−iαk

[
1

H̄kn
− dτn
dτn

e−2iαnHkn

H̄2
kn

]
;

Hkn = ξk − ηn, Tnk = ξk − ηn, (k = 1, 2; n = 1, 2)

A1 = 0.5
[
1 + χ1 + Γ1(1 + χ)

]
, B1 = χ1 − Γ1χ, C1 = 1− Γ1, B2 = 1, C2 = −1,

P1(τ1) = Γ1βtf
−(η1)− β1t f+(η1), P2(τ2) = 0,

χ = 3− 4µ, βt = αtE, χ1 = 3− 4µ1, βt1 = αt1E1, Γ1 = G1/G.

Q1(t1) = g1(t1), t1 ∈ L1

Q2(t2) = g′2(t2) +
iβt

1 + χ
[f+(t2)− f−(t2)] , t2 ∈ L2.

(10)

The functions f±(η1) are defined as the limiting values of potential f(z). The unknown function
g′2(t2), which is the derivative of the jump of displacements in passing through the crack contour, is
sought in the class of Hölder function with integrable singularities at the crack tips.

Here are the following designations: χ = (3− µ)/(1 + µ), βt = αtE(1 + µ) are for a plane stressed
state; αt, G, E(αt1, G1, E1) are the coefficient of linear thermal expansion, shear modulus, Young’s
modulus, µ(µn) is Poisson’s ratio material of the matrix (the inclusion), respectively.

The system of integral equations (9) has a unique solution for an arbitrary right-hand side under
the condition ∫

L2

g′2(t2) dt2 = 0. (11)

By using the relation (10), we represent the condition in the form
∫

L2

Q2(t2) dt2 = − 2iβt

1 + χ

∫

L2

t2 γ
′(t2) dt2. (12)

Condition (12) ensures the uniqueness of the displacements by passing the contours of cracks.
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We note that the choice of complex potentials in the form [8] ensures the identical satisfaction
of the first equality in the condition (3) on the contours of inclusions on the basis of such a choice
of an analytic continuation from the matrix region in the inclusion region, in which the stresses are
continuous for the approach to the contours of inclusions on the left and on the right.

The algorithm used for the solution of the analyzed problem can be described as follows: the
system of integral equations (7), (8) of the problem of heat conduction is used to find the functions
µ(t1) and γ′(t2). Substituting these functions in the system of equations (9), (12) of the problem of
thermoelasticity allows us to find the unknown functions Q1(t1) and Q2(t2). Then the stress intensity
factors (SIF) KI and KII , which are the real quantities that characterize the stress-deformed state in
the vicinity of the crack tips, are found according to the formula [14]

K±
I − iK±

II = ∓ lim
t2→l±2

[√
2π
∣∣t2 − l±2

∣∣Q2 (t2)

]
,

where the lower signs correspond to the left of crack tip (l−2 ), and the upper ones correspond to the
right crack tip (l+2 ). The numerical solution of the system of equations (7), (8), and (9), (12) is found
by the method of mechanical quadratures [14].

4. Numerical analysis

We consider an elastic half plane containing an elastic circular inclusion of radius R and internal
rectilinear thermally insulated crack of length 2l. The crack is parallel to the edge of the half plane
and its center is located in the Ox-axis. The centers of the inclusion and the crack are located on the
distance h to the edge of half plane and the distance between them is equal to d. Assume that half
plane is heated in a region of width 2c of the free edge due to a uniformly distributed heat flux of
constant intensity q = const. The center of thermal action is located in the origin of the coordinate
system xOy (see Fig. 1).

R/h = 0.3

R

q

x

y

d

−c c

h2l

0

Fig. 1. Schematic diagram of hea-
ting of a half plane containing an

inclusion and a crack.

The plots of the dependencies of the dimensionless stress inten-
sity factors (SIFs)

k±1 = K±
I λ(1 + χ)/qβtl

√
l, k±2 = K±

IIλ(1 + χ)/qβtl
√
l

on the distance between the center of the inclusion and the crack
d∗ = d/h for values of dimensionless parameters c/h = 0.25,
l/h = 0.5, R/h = 0.3 are depicted in Fig. 2. The solid lines corre-
spond to the left tip of the crack (k−1 , k

−
2 ), whereas the dashed lines

correspond to its right tip (k+1 , k
+
2 ).

The numerical analysis was carried out for two types of matrix-
inclusion composites (aluminum- steel and steel-aluminum). We

used the following values of the parameters: (E = 192 GPa, αt = 17.0 · 10−6 K−1, λ = 16.7 W/(m ·K),
µ = 0.283) for steel and (αt = 23.8 · 10−6K−1, E = 68 GPa, λ = 209 W/(m · K), µ = 0.34) for
aluminum [16].

For the aluminum-steel (matrix-inclusion) composition SIFs k±1 at both crack tips decrease as the
inclusion approaches the crack (Fig. 2a). For the SIFs k±2 we observe different picture: if the inclusion
approaches the crack, then the SIF k−2 for the crack tip located closer to the inclusion decreases and
the quantity |k+2 | increases (Fig. 2b). For the steel-aluminum (matrix-inclusion) composition SIFs k±1
at both crack tips also decrease as the inclusion approaches the crack (Fig. 2c). At the same time,
the SIF k−2 (for the crack tip located closer to the inclusion) increases and the quantity |k+2 | decreases.
Moreover, if the distance between the centers of the inclusion and crack is d∗ = 5, then the influence of
the inclusion is quite weak and the values of the SIFs k±1 and k±2 are practically equal to their values
obtained for the homogeneous half plane containing a crack [5].
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Fig. 2. Dependencies of dimensionless SIFs k±1 and k±2 on the
distance between the centers of the inclusion and the crack d∗ =
d/h for the two types of matrix–inclusion composites: aluminum-

steel (a, b) and steel-aluminum (c, d).

In the considered problem, the lips
of the crack are not in contact. Then,
according to the σθ-criterion (based on
the hypothesis of the initial growth
of the crack) from equations of the
boundary equilibrium [17] it is possi-
ble to find the critical values of the
heat flux qcr at which the growth of
the crack and the local destruction of
the body begin according to the for-
mula

qcr = Kq
K1C

cos3 θ∗2
(
k±1 − 3k±2 tan θ∗

2

) ,

Kq =
(1 + χ)λ

αtEl
√
πl
,

where K1C is a constant of mate-
rial that characterizes the resistance
of the material to the destruction and
is determined experimentally; θ∗ =

2 arctan
k±1 −

√

(k±1 )
2
+8(k±2 )

2

4k±2
is an angle

of initial growth of the crack.
In the partial case for the aluminum-

steel (matrix-inclusion) composition we obtain: if d∗ = 2, then qcr = 2.01KqK1c, if d∗ = 5, then
qcr = 1.61KqK1c; for the steel-aluminum (matrix-inclusion) composition we obtain: if d∗ = 2, then
qcr = 2.19KqK1c, if d∗ = 5, then qcr = 2.30KqK1c.

5. Conclusions

1. The two-dimensional mathematical models of the problems of stationary heat conductivity and
thermoelasticity for an elastic half plane with an inclusion and a crack in the form of a system of
singular integral equations (SIEs) of the ?rst kind for the contour of the crack and a system of the
second kind for the contour of the inclusion are constructed. This approach allows us to obtain a
numerical solution of the system of SIEs by applying the method of mechanical quadratures.
2. Numerical solution of the system of SIEs in the particular case of a half plane with a circular inclusion
and rectilinear thermally insulated crack due to a heat flux of constant intensity is obtained. On the
basis of this solution, stress intensity factors (SIFs) at the crack tips are calculated, which in the future
will be used to determine the critical values of the heat flux at which the crack begins to grow.
3. Based on the analysis of the obtained critical values qcr of the heat flux, it follows: if the more rigid
inclusion (steel-inclusion) approaches the crack, then the critical value of the heat flux qcr increases (at
which the growth of the crack in the left tip begins); if the less rigid inclusion (aluminum-inclusion)
approaches the crack, then, on the contrary, it causes the decreasing of qcr. A similar situation is
observed for the right tip of the crack.

[1] Sekine H. Thermal stress singularities at tips of a crack in a semi–infinite medium under uniform heat flow.
Engineering Fracture Mechanics. 7 (4), 713–729 (1975).

[2] Sekine H. Thermal stresses near tips of an insulated line crack in a semi–infinite medium under uniform
heat flow. Engineering Fracture Mechanics. 9 (2), 499–507 (1977).

Mathematical Modeling and Computing, Vol. 7, No. 1, pp. 88–95 (2020)



94 Zelenyak V.M.

[3] Tweed I., Lowe S. The thermoelastic problem for a half-plane with an internal line crack. International
Journal of Engineering Science. 17 (4), 357–363 (1979).

[4] Konechnyj S., Evtushenko A., Zelenyak V. The effect of the shape of distribution of the friction heat flow
on the stress-strain state of a semispace. Trenie i Iznos. 23, 115–119 (2002).

[5] Matysiak S. J., Evtushenko A. A., Zelenyak V. M. Frictional heating of a half–space with cracks. I. Single
or periodic system of subsurface cracks. Tribology International. 32 (5), 237–242 (1999).

[6] Zelenyak V. M., Kolyasa L. I. Thermoelastic state of a half plane with curvilinear crack under the conditions
of local heating. Materials Science. 52, 315–322 (2016).

[7] Konechny S., Evtushenko A., Zelenyak V. Heating of the semispace with edge cracks by friction. Trenie i
Iznos. 22, 39–45 (2001).

[8] Matysiak S., Evtushenko A., Zelenyak V. Heating of a half space containing an inclusion and a crack.
Materials Science. 40, 467–474 (2004).

[9] Hasebe N., Wang X., Saito T., Sheng W. Interaction between a rigid inclusion and a line crack under uniform
heat flux. International Journal of Solids and Structures. 44 (7–8), 2426–2441 (2007).

[10] KitG. S., Krivtsun M. G. Plane thermoelasticity problems for bodies with cracks. Kiev, Naukova dumka
(1983), (in Russian).

[11] KitH. S., Chernyak M. S. Stressed state of bodies with thermal cylindrical inclusions and cracks (plane
deformation). Materials Science. 46, 315–324 (2010).

[12] Chen H., Wang Q., Liu G., Sun J. Simulation of thermoelastic crack problems using singular edge-based
smoothed finite element method. International Journal of Mechanical Sciences. 115–116, 123–134 (2016).

[13] Choi H. J. Thermoelastic interaction of two offset interfacial cracks in bonded dissimilar half-planes with a
functionally graded interlayer. Acta Mechanica. 225, 2111–2131 (2014).

[14] Savruk M. P. Two-dimensional elasticity problem for bodies with cracks. Kiev, Naukova dumka (1981), (in
Russian).

[15] Erdogan F., Gupta G. D., Cook T. S. Numerical solution of singular integral equations. In: Sih G. C. (eds)
Methods of analysis and solutions of crack problems. Mechanics of fracture, vol. 1. Springer, Dordrecht.
368–425 (1973).

[16] Podstrigach Ya. S., Burak Ya. Y., Hachkevych O. R., Chernyavskaya L. V. Thermoelasticity of electrically
conductive bodies. Kiev, Naukova Dumka (1977), (in Russian).

[17] Panasyuk V. V., Savruk M. P., Datsyshin A. P. Stress distribution around cracks in plates and shells. Kiev,
Naukova Dumka (1976), (in Russian).

Mathematical Modeling and Computing, Vol. 7, No. 1, pp. 88–95 (2020)



Mathematical modeling of stationary thermoelastic state in a half plane containing an inclusion . . . 95

Математичне моделювання стацiонарного термопружного стану в
пiвплощинi з включенням i трiщиною за дiї локального

нагрiвання тепловим потоком

Зеленяк В. М.

Нацiональний унiверситет “Львiвська полiтехнiка”,

вул. С. Бандери, 12, Львiв, 79013, Україна

Розглянуто двовимiрнi стацiонарнi задачi теплопровiдностi та термопружностi для
напiвнескiнченного пружного тiла, що мiстить включення та трiщину. Для цього по-
будовано математичнi моделi цих двовимiрних задач у виглядi системи сингулярних
iнтегральних рiвнянь (СIР) першого та другого роду. Числовий розв’язок системи iн-
тегральних рiвнянь одержано методом механiчних квадратур у разi пружної пiвпло-
щини, що локально нагрiвається тепловим потоком i мiстить кругове виключення та
теплоiзольовану прямолiнiйну трiщину. Отримано графiчнi залежностi коефiцiєнтiв
iнтенсивностi напружень (КIН), якi характеризують розподiл iнтенсивностi напру-
женнь у вершинах трiщини, залежно вiд пружних та термопружних характеристик
включення та матрицi, вiд вiдносного положення трiщини та включення. Отриманi
результати використанi для визначення критичних значень теплового потоку, за яко-
го трiщина починає рости. Ця модель є розвитком вiдомих моделей двовимiрних ста-
цiонарних задач теплопровiдностi та термопружностi для кусково-однорiдних тiл з
трiщинами.

Ключовi слова: термопружнiсть, коефiцiєнт iнтенсивностi напружень, сингу-

лярне iнтегральне рiвняння, включення, теплопровiднiсть, трiщина, тепловий по-

тiк.
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