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Within the framework of the modified proton ordering model for the quasi-one-dimensional
hydrogen bonded ferroelectrics of the CsH2PO4 type with taking into account the linear
in the strains ε1, ε2, ε3, and ε5 contributions into the energy of the proton subsystem,
without tunneling, using the two-particle cluster approximation, we study the influence
of uniaxial pressures pi, hydrostatic pressure ph, and shear stress σ5 on the phase tran-
sition, polarization, transverse dielectric permittivity, elastic constants and piezoelectric
coefficients of the quasi-one-dimensional CsH2PO4 ferroelectric crystals.
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1. Introduction

Investigation of the effects of external pressures and fields is one of the topical problems of the ferro-
electrics physics. Using high pressures in experimental studies allows one to obtain additional valuable
information about the details of the behavior of the physical characteristics of ferroelectric compounds
and to search for new physical effects, not observed at ambient pressure. It also gives a deeper under-
standing of the phase transition mechanisms in the studied ferroelectric crystals.

The CsH2PO4 (CDP) crystals belong to ferroelectric materials with hydrogen bonds.
Exploring the shape of the P-E-hysteresis curves at lowering temperature at different values of

hydrostatic pressure, it has been established that at pressure p = pk = 0.33 GPa and temperature
Tck = 151 K in CsH2PO4 [1, 2] the double hysteresis loops appear, that is, the antiferroelectric phase
transition takes place. Neutron diffraction experiments revealed doubling of the unit cell along the
a-axis in the antiferroelectric phase of CsH2PO4 occurs, and the lattice parameters are the following
a = 15.625 Å, b = 6.254 Å, c = 4.886 Å, β = 108.08◦. A significant relative displacements of the Cs+1

ions and PO−3
4 groups in the (a, c) plane are observed, along with rotations of PO4 tetrahedra by 36.8◦

in the opposite directions around the b-axis going through the P atom. The protons on the bonds
goind along the b-axis are ordered antiparallel in the neighboring chains. The strain and uncompensated
dipole moment of the PO−3

4 groups agree with such ordering. Hence, in the antiferroelectric phase the
sublattice polarizations are directed along the b-axis and totally cancel each other.

The determined in [3] atomic coordinates allowed the authors to identify the structure of the
antiferroelectric phase either as the P21 or P21/a group. From the Raman spectra of CsH2PO4 obtained
at p = 0.8 GPa and T = 83 K the conclusion was made [4] that the structure of the antiferroelectric
phase should be centrosymmetrical, and the P21/a group was suggested.

The influence of hydrostatic pressure on the transition temperature in the partially deuterated
Cs(H1−xDx)2PO4 ferroelectrics was explored in [1, 2, 5–8].
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The temperature dependences of spontaneous polarization of the CsH2PO4 at different values of
hydrostatic pressure were measured in [2], and those of the longitudinal static dielectric permittivity
in [2, 5–7].

An attempt of a theoretical description of the transitions between the paraelectric and ferroelectric
phases and between the paraelectric and antiferroelectric phases in CsH2PO4 and CsD2PO4, as well
as of the experimental points for ε22(0, T, p), has been made in [9]. In the used model the crystal
is described as pseudospin Ising chains. The interactions within the chains is taken into account
exactly, whereas for the dipole-dipole interactions between the chains the mean field approximation
is used. The expressions for the reduced spontaneous polarization, equations for the temperatures
of the ferroelectric and antiferroelectric transitions, expressions for ε−1

22 (0, T, p) were obtained. To
describe the experimental Tc(p) dependence it has been assumed that the interaction between the
chains changes its sign, when the pressure exceeds the critical one, whereas the intrachain interaction
decreases J11 = J11(0)−kp. No attempt to describe within the proposed theory the experimental data
of [1, 2, 8] was made.

The generalized model of the CsH2PO4 crystal has been proposed in [10], within which, using the
two-particle cluster approximation for the short-range configurational interactions between protons on
the shorter hydroge bonds, and with taking into account the long-range interactions between these
bonds, the thermodynamic and dynamic characteristics of the CsH2PO4 type crystals were calculated.
Influence of hydrostatic pressure on the considered compounds is studied, following [11,12], by assuming
monotonous dependences of the model parameters on pressure.

In [13,14] the model of the deformed CsH2PO4 crystal is proposed, where the interaction between
the pseudospins in the chains is taken into account in the two-particle cluster approximation and
between the chains in the mean field approximation. It also takes into account the strains εi, ε5, present
in the crystal even at zero pressures [15]. The temperature dependences of the static and dynamic
dielectric permittivity of mechanically free crystal and piezoelectric characteristics were calculated for
the ferroelectric phase and elastic characteristics for both phases. However, since experimental data
for the piezoelectric characteristics are absent, the performed in [14] calculations of these quantities are
just some qualitative estimations. Only the calculated in [16] “seed” coefficients of piezoelectric strain
d 0

2l allow us to obtain adequate with respect to the sign and magnitude results for the piezoelectric
characteristics.

In the present paper, using the proposed in [13] model of a deformed crystal of the CsH2PO4 type,
we study the influence of the uniaxial pressures pi, hydrostatic pressure ph, and shear stress σ5 with
the magnitudes up to 0.5 GPa on the phase transition and physical characteristics of the quasi-one-
dimensional CDP ferroelectrics and of the hydrostatic pressure ph as high as 3 GPa on its piezoelectric
characteristics.

2. The Hamiltonian of the CsH2PO4 crystal

We shall consider the system of protons in the CsH2PO4 crystals, moving in the short O-H. . . O bonds,
forming zig-zag chains along the b-axis. As the primitive cell of the Bravais lattice we choose the
elementary cell of the antiferroelectric phase (T < TN and p > pk) Its projection onto the (001)
plane is shown in Fig. 1. It corresponds to the antiferroelectric phase (T < TN and p > pk), and
it is larger than the actual cells at p < pk. This cell is formed by two chains, each containing two
neighboring PO4 tetrahedra along with two short hydrogen bonds, belonging to one of them (the “А”
type tetrahedron). The hydrogen bonds, attached to the other tetrahedron (of the “В” type), belong
to the nearest structure elements, surrounding it.

The Hamiltonian of the proton subsystem of CsH2PO4 with taking into account the short-range and
long-range interactions consists of the “seed” and pseudospin parts. The “seed” energy Useed describes
the heavy ion lattice and does not explicitly depends on the configuration of the proton subsystem. The
pseudospin part takes into account the short-range Ĥshort and long-range ĤMF interactions between
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Fig. 1. Primitive cell of the CsH2PO4 crystal.

protons that sit near the PO4 groups, as well as the effective interaction with the electric field E2.
Hence,

Ĥ = NUseed + Ĥshort + Ĥlong + ĤE + Ĥ ′
E, (1)

where N is the total number of the primitive cells of the Bravais lattice.
The “seed” energy is expressed via the lattice strains εi, (i = 1, 2, 3), ε5, electric field E2 and consists

of the elastic, piezoelectric, and dielectric parts

Useed = v2

{
1

2

3∑

i,j=1

cE0
ij εiεj +

3∑

i=1

cE0
i5 εiε5 −

3∑

i=1

e02iE2εi − e025E2ε5 −
1

2
χε022E

2
2

}
, (2)

where cE0
ij , cE0

i5 , cE0
55 , e02i, e

0
25, χ

ε0
22 are the “seed” elastic constants, the piezoelectric voltage coefficients,

and the dielectric susceptibility of mechanically clamped crystal.
The Hamiltonian of the short-range interactions is

Ĥshort = −2w
∑

qq′

(
σAq1
2

σAq2
2

+
σBq1
2

σBq2
2

)
(
δRqRq′

+ δRq+r,Rq′

)
. (3)

The first and second Kronecker symbols corresponds to the proton interactions in the chains near
the “А” and “В” type tetrahedra, respectively; r is the position vector of the proton bond within the
cell. The parameter w, describing the short-range interactions between protons within the same chain,
is expanded in the strains εi, ε5 up to the linear terms

w = w0 +
∑

l

δ2lεl, (l = 1, 2, 3, 5). (4)

Ĥlong is the mean field Hamiltonian of the long-range dipole-dipole and indirect lattice mediated
interactions between protons

Ĥlong =
1

2

∑

qq′

ff ′

2∑

l=1

J llff ′(qq
′)
〈σ(l)qf 〉

2

〈σ(l)q′f ′〉
2
−
∑

qq′

ff ′

2∑

l=1

J llff ′(qq
′)
〈σ(l)q′f ′〉

2

σ
(l)
qf

2

− 1

2

∑

qq′

ff ′

∑

ll′

K ll′

ff ′(qq
′)
〈σ(l)qf 〉

2

〈σ(l
′)

q′f ′〉
2
−
∑

qq′

ff ′

∑

ll′

K ll′

ff ′(qq
′)
〈σ(l

′)
q′f ′〉
2

σ
(l)
qf

2
. (5)
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Here the two first terms describe the effective long-range interactions between protons of the same
sublattice “A” or “B”, whereas the two subsequent terms correspond to interactions between protons of
different sublattices “A” and “B”. Expanding the constants of the long-range interactions in the strains
εi, εj and retaining only linear terms,

J11 = J22 =J1 +
∑

l

ϕ̄1lεl, J12 = J21 =J2+
∑

l

ϕ̄2lεl, (6)

K11 = K22 = K1 +
∑

l

ϕ1lεl, K12 = K21 = K2 +
∑

l

ϕ2lεl,

where Jff ′ =
∑

Rq−Rq′
Jff ′(qq

′), Kff ′ =
∑

Rq−Rq′
Kff ′(qq

′) are the Fourier transforms of the long-

range interaction constants, taking into account the symmetry of the single-particle distribution func-
tions at ferroelectric ordering

〈σAq1〉 = 〈σAq2〉 = η1, 〈σBq1〉 = 〈σBq2〉 = η2 (7)

we obtain
Ĥlong = NH0 + Ĥ2, (8)

whereas the expressions for H0, H2 read

Ĥ0 = ν1(η21 + η22) + 2ν2η1η2, (9)

Ĥ2 =
∑

q

{
−(2ν1η1 + 2ν2η2)

(
σAq1
2

+
σAq2
2

)
− (2ν2η1 + 2ν1η2)

(
σBq1
2

+
σBq2
2

)}
. (10)

Here the following notations are used

ν1 =
1

8
(J11 + J22 + 2J12) = ν01 +

∑

l

ψl1εl, ν01 =
1

4
(J1 + J2), ψl1 =

1

4
(ϕ̄1l + ϕ1l), (11)

ν2 =
1

8
(K11 +K22 + 2K12) = ν02 +

∑

l

ψl2εl, ν02 =
1

4
(K1 +K2), ψl2 =

1

4
(ϕ̄2l+ϕ2l). (12)

The fourth term in (1) describes the interaction of pseudospins with the electric field

ĤE = −
∑

q

µyE2

(
σAq1
2

+
σAq2
2

+
σBq1
2

+
σBq2
2

)
, (13)

where µy is the projection of the effective dipole moment of a pseudospin on the axis y.
The therm Ĥ ′

E in the Hamiltonian (1) describes the mentioned above dependence of the longitudinal
components of the dipole moments on the pseudospin mean values

Ĥ ′
E = −

∑

qf

s2fµ
′E2

σqf
2

= −
∑

qf

(
1

N

∑

q′

σq′f

)2

µ′E2
σqf
2
. (14)

where N is the number of unit cells; σqf is the shortened notation of the σAq1, σ
A
q2, σ

B
q1, σ

B
q2 pseu-

dospins. The corrections to the dipole moments have the form s2fµ
′, and not sfµ′, because of the

symmetry considerations: the system energy should not change at reversing the signs of the field and
all pseudospins.

The term Ĥ ′
E, just like the long-range interactions, is taken into account in the mean field approx-

imation

Ĥ ′
E = −

∑

qf

(
1

N

∑

q′

σq′f

)2

µ′E2
σqf
2
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= − 1

N2

∑

qf

∑

q′

∑

q′′

σqfσq′fσq′′f
µ′E2

2

≈ − 1

N2

∑

qf

∑

q′

∑

q′′

(
(σqf + σq′f + σq′′f )η2f − 2η3f

) µ′E2

2

= −3
∑

q

4∑

f=1

σqf
2
η2fµ

′E2 +N

4∑

f=1

η3fµ
′E2. (15)

When Eq. (7) is taken into account, the expression (15) is simplified

Ĥ ′
E = −3

∑

q

µ′E2

(
η21σ

A
q1

2
+
η21σ

A
q2

2
+
η22σ

B
q1

2
+
η22σ

B
q2

2

)
+ 2N

(
η31 + η32

)
µ′E2. (16)

The thermodynamic characteristics of CDP are calculated using the two-particle cluster approxi-
mation (TPCA).

3. Static longitudinal dielectric, piezoelectric, elastic and thermal characteristics of
CsH2PO4

The thermodynamic potential of the proton subsystem of CDP per one primitive cell can be written
as

g = v2 Useed +H0 + 2
(
η31 + η32

)
µ′E2 + 2kBT ln 2− 2w − v2

∑

l

σlεl

− kBT ln(1− η21)− kBT ln(1− η22)− 2kBT lnD, (17)

where

η1 =
1

D

[
sinh(y1 + y2) + sinh(y1 − y2) + 2a sinh y1

]
,

η2 =
1

D

[
sinh(y1 + y2)− sinh(y1 − y2) + 2a sinh y2

]
.

(18)

Here the following notations are used

D = cosh(y1 + y2) + cosh(y1 − y2) + 2a cosh y1 + 2a cosh y2 + 2a2,

a = e
− w

kBT ,

y1 =
1

2
ln

1 + η1
1− η1

+ βν1η1 + βν2η2 +
1

2
β
(
µyE2 + 3η21µ

′E2

)
,

y2 =
1

2
ln

1 + η2
1− η2

+ βν2η1 + βν1η2 +
1

2
β
(
µyE2 + 3η22µ

′E2

)
.

Using the equilibrium conditions, we obtain the system of equations for the strains εj

σl = cE0
l1 ε1 + cE0

l2 ε2 + cE0
l3 ε3 + cE0

l5 ε5 − e021E2 −
2δl
v2

+
4δl
v2D

M

− 1

v2
ψl1
(
η21 + η22

)
− 2

v2
ψl2η1η2, (19)

where
M =

[
a cosh y1 + a cosh y2 + 2a2

]
.
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From the thermodynamic potential (17) expressions for different thermodynamic characteristics
can be easily obtained. Thus the longitudinal polarization P2 reads

P2 = −
(
∂g

∂E2

)

σi

=
∑

j

e02jεj + χε022E2 +
µy
v2

(
η1 + η2

)
+
µ′

v2

(
η31 + η32

)
. (20)

The isothermal static susceptibility of mechanically clamped crystal is

χεT22 =

(
∂P2

∂E2

)

εi

= χε022 +
βµ̃21y
2v2∆

{
D(κ11 + κ12)− (ϕ̃2 − βν2)(κ11κ22 − κ2

12)
}

+
βµ̃22y
2v2∆

{
D(κ12 + κ22)− (ϕ̃1 − βν2)(κ11κ22 − κ2

12)
}
, (21)

where the following notations are used

∆ = D2 −D [ϕ̃1κ11 + ϕ̃2κ22 + 2βν2κ12] +
[
ϕ̃1ϕ̃2 − (βν2)2

] (
κ11κ22 − κ2

12

)
,

ϕ̃1 = ϕ1 + 3η1βµ
′E2, ϕ̃2 = ϕ2 + 3η2βµ

′E2, ϕ1 =
1

1− η21
+ βν1, ϕ2 =

1

1− η22
+ βν1,

µ̃1y = µy + 3µ′η21 , µ̃2y = µy + 3µ′η22 ,

κ11 = cosh(y1 + y2) + cosh(y1 − y2) + 2a cosh y1 − η21D,
κ12 = cosh(y1 + y2)− cosh(y1 − y2)− η1η2D,
κ22 = cosh(y1 + y2) + cosh(y1 − y2) + 2a cosh y2 − η22D.

The isothermal piezoelectric voltage coefficients are

eT2l =

(
∂P2

∂εl

)

E2

= e02l +
1

v2

(
µ̃1yη

′(l)
1 + µ̃2yη

′(l)
2

)
, (l = 1, 2, 3, 5),

where

η
′(l)
1 =

β

∆

{
(ψl1η1 + ψl2η2)[D(κ11 + κ12)− (ϕ̃2 − βν2)(κ11κ22 − κ2

12)]

− δl[Dρ1 − ρ1(βν2κ12 + ϕ̃2κ22) + ρ2(βν2κ11 + ϕ̃2κ12)]
}
,

η
′(l)
2 =

β

∆

{
(ψl2η1 + ψl1η2)[D(κ22 + κ12)− (ϕ̃1 − βν2)(κ11κ22 − κ2

12)]

− δl[Dρ2 + ρ1(βν2κ22 + ϕ̃1κ12)− ρ2(βν2κ12 + ϕ̃1κ11)]
}
,

ρ1 = 2a sinh y1 − η1[2a cosh y1 + 2a cosh y2 + 4a2],

ρ2 = 2a sinh y2 − η2[2a cosh y1 + 2a cosh y2 + 4a2].

The piezoelectric stress constants are obtained by differentiation of electric field over strains at constant
polarization:

h2i = −
(
∂E2

∂εi

)

P2

=
e2i
χε22

. (22)

The calculations of the isothermal elastic constants at constant field yield

cEil =

(
∂σi
∂εi

)

E2

= cE0
ij −

2

v2

(
ψi1η1 + ψi2η2 +

δi
D
κc1ϕ1 +

δi
D
κc2βν2

)
η
′(l)
1

− 2

v2

(
ψi1η2 + ψi2η1 +

δi
D
κc1βν2 +

δi
D
κc2ϕ2

)
η
′(l)
2

− 2βδi
υ2D

[
ψl1(κc1η1 + κc2η2) + ψl2(κ

c
2η1 + κc1η1)

]
− 4βδiδl

D
ρc, (23)
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where

κc1 = sinh(y1 + y2) + sinh(y1 − y2)− η1[cosh(y1 + y2) + cosh(y1 − y2)− 2a2],

κc2 = sinh(y1 + y2)− sinh(y1 − y2)− η2[cosh(y1 + y2) + cosh(y1 − y2)− 2a2],

ρc = 2a2 +

[
cosh(y1 + y2) + cosh(y1 − y2)− 2a2

]

D

[
a cosh y1 + a cosh y2 + 2a2

]
.

Other dielectric, piezoelectric, and elastic characteristics of CsH2PO4 can be obtained from the found
above characteristics. Thus, the isothermal piezoelectric strain constants are

dT2i =
∑

j

sEije
T
2j , (i, j = 1, 2, 3, 5). (24)

The matrix of the isothermal susceptibilities at constant field sEij is inverse to the matrix of elastic
constants cEij :

ĈE =




cE11 cE12 cE13 cE15
cE12 cE22 cE23 cE25
cE13 cE23 cE33 cE35
cE15 cE25 cE35 cE55


 , ŜE = (ĈE)−1.

The isothermal piezoelectric strain coefficients are

gT2i =
∑

j

sPijh
T
2j . (25)

4. Comparison of numerical calculations with the experimental data. Discussion of the
obtained results

It should be noted that the developed in the previous sections theory, strictly speaking, is valid for
the deuterated quasi-one-dimensional ferroelectrics only. However, the thermodynamic and dynamic
properties of hydrogen bonded ferroelectrics with tunneling Ω are determined by the effective tunneling
parameter Ω̄, renormalized by the short-range interactions [17]. Since Ω̄≪ Ω, the essential suppression
of tunneling by the short-range interactions takes place. We shall assume that the presented in the
previous sections results are valid for CDP crystals as well.

In order to calculate within the proposed theory the temperature dependences of the corresponding
physical characteristics of the CDP crystal at different pressures, we need to set the values of the
following parameters:

the two-particle cluster parameter w;
long-range interaction parameters νs;
effective dipole moments µ2;
deformation potentials δi, δ5, ψis, ψ5s;
“seed” dielectric susceptibilities χε022;
“seed” coefficients of piezoelectric напруги e02i, e

0
25;

“seed” elastic constants cE0
ij , cE0

i5 , cE0
55 .

In the fitting procedure we use the experimental data for the physical characteristics of CDP,
namely, for Ps(T ) [15], εi(T ), ε5(T ) [15].

The “seed” piezoelectric voltage coefficients e02i, e
0
25 are determined from the expressions e02l =∑l

i=1 C
E
il d

0
2l, where the values of d 0

2l are taken from [16], which are calculated relative to the axis
OX (d021 = 14.59 · 10−8 esu/dyn, d022 = −6.33 · 10−8 esu/dyn, d023 = −1.39 · 10−8 esu/dyn2, d025 =
−11.93 · 104 esu/dyn2). As a result, we obtain e021 = 2.2767 · 104 esu/cm2, e022 = −1.2286 · 104 esu/dyn,
e023 = 3.6323 · 104 esu/dyn, e025 = −0.5079 · 104 esu/cm2. The elastic constants Cil are calculated, using
Eq. (23). The physical characteristics are calculated in the vicinity of the transition temperature with
an accuracy of 0.002 К.
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The primitive cell volume of CDP is taken to be v2 = 0.467 · 10−21 cm3.
The value of the effective dipole moment is assumed to be dependent on hydrostatic pressure p as

µy = µ0y + kpp. In the present work we take kp = 0.2 · 10−18 esu·cm3

dyn
The obtained optimal set of the model parameters is given in Tables 1.

Table 1. The set of the theory parameters for the CDP crystal.

Tc, K w
kB

ν1
kB

, K ν2
kB

, K µy, 10−18, K µ′, 10−18, esu · cm χε022, esu · cm

153 640.3 1.75 0.45 2.7 0.5 0.443

δ1
kB

δ2
kB

, K δ3
kB

, K δ5
kB

, K ψ11

kB
, K ψ21

kB
, K ψ31

kB
, K ψ51

kB
, K

187.6 −67.7 288.2 −22.2 175.8 −63.5 270.2 −20.8

The “seed” parameters c0Eil are [18]: c0E11 = 28.83 · 1010 dyn
cm2 , cE0

12 = 11.4 · 1010 dyn
cm2 , cE0

13 = 42.87 · 1010

dyn
cm2 , cE0

22 = 26.67 · 1010 dyn
cm2 , cE0

23 = 14.5 · 1010 dyn
cm2 , cE0

33 = 65.45 · 1010 dyn
cm2 , cE0

15 = 5.13 · 1010 dyn
cm2 ,

cE0
25 = 8.4 · 1010 dyn

cm2 , cE0
35 = 7.50 · 1010 dyn

cm2 , cE0
55 = 5.20 · 1010 dyn

cm2 .
Let us discuss the obtained results. We shall analyze the influence of hydrostatic ph = −σ1 = −σ2 =

−σ3 and uniaxial pi = −σi pressures and shear stress p = −σ5 on the thermodynamic characteristics
of the CDP crystal.

Let us note, that we are not aware of any experimental studies of the uniaxial pressures pi = −σi or
shear stress p = σ5 effects on the thermodynamic characteristics of these crystals. The obtained here
results, therefore, estimate the effects of these stresses only qualitatively. Experimental measurements
will allow us to determine the values of the model parameters more precisely and describe the new
experimental data quantitatively.

Fig. 2 illustrates the dependence of the transition temperature Tc on hydrostatic and uniaxial pres-
sures and the shear strain σ5.
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Fig. 2. Dependence of the tempera-
ture Tc of the transition between the
paraelectric and ferroelectric phase of
CDP on the uniaxial pressures p1 — 1,
p2 — 2, p3 — 3, hydrostatic pressure p
— h, � — [1], • — [5] and shear stress

σ5 — 5.

Pressures p1, ph and stress σ5 decreases the transition tem-
perature Tc, whereas the uniaxial pressures p2, p3 increase it.
The rate of the pressure changes dTc

dp1
is the largest.

The calculated with the accepted values of the model pa-
rameters dependences Tc(p) quantitatively well describe the ex-
perimental data of [1] both at p < pk and p > pk, as well as
the data of [5]. The transition temperature in the CDP crystals
decreases with the rate dTc

dp = −56 K/GPa [8]; −85 K/GPa [1];
−110 K/GPa [5]; −68 K/GPa [7].

The temperature dependences of the strains εl of the CDP
crystal at ambient pressure are presented in Fig. 3a, whereas the
influence of the pressure ph, shear stress σ5, and uniaxial pres-
sures p1, p2, p3 on these dependences is illustrated in Figs. 3b–3f.

The calculations show that the temperature and pressure
curves of the strains εi and ε5 are determined, mainly, by the
values of the “seed” elastic constants cE0

ij [18], whereas the effects
of the deformation potentials δi, δ5, ϕi, ϕ5 on the strains εi and
ε5 are very insignificant.

The pressure-induced changes in the strains εl change the values of the theory parameters w, ν1,
ν2, shifting thereby the transition temperature. With increasing p1, ph, and σ5 the parameter of the
short-range interactions w decreases, with w1 < w5 < wh and, correspondingly Tc1 < Tc5 < Tch,
whereas with increasing p2 and p3 the parameter w increases, with w2 > w3 and Tc2 > Tc3.

The effects of the pressures of different symmetries on the temperature dependences of spontaneous
polarization Ps and longitudinal static dielectric permittivity ε22(T, p) are illustrated in Figs. 4 and 6,
respectively.
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Fig. 3. The temperature dependences of the strains εl of the CDP crystals in absence of external pressures (a);
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Fig. 4. The temperature dependence of spontaneous polarization of CDP under uniaxial pressures p1 (a), p2
(b), p3 (c), hydrostatic pressure (d), shear stress σ5 (e) of the following magnitudes (GPa): 0.0 — 0, � [1], 0.1

— 1, 0.3 — 2, 0.5 — 3.

In these figures we plot the temperature dependences of spontaneous polarization Ps, static di-
electric permittivity ε22(T, p) at ambient pressure and under applied uniaxial pressures, hydrostatic
pressure, and shear stress σ5, each with a magnitude of 0.5 GPa. The applied pressures p1, ph, the stress
σ5 and the pressures p2 and p3 shift the curves of Ps, ε22(T, p) to lower and to higher temperatures,
respectively.

In order to compare the effects of pressures pi, ph, and stress σ5 on Ps, ε22(T, p), we calculate these
characteristics of CDP as functions of the temperature difference ∆T = T − Tc (see Figs. 5, 7).

Increasing pressures p1, ph and stress σ5 decreases the magnitude of saturation polarization Ps,
with Ps1 < Psh < Ps5, but increases the dielectric permittivity ε22(T, p) and ε22(5) > ε22(1) > ε22(h).

Mathematical Modeling and Computing, Vol. 7, No. 1, pp. 64–78 (2020)



Influence of uniaxial and hydrostatic pressures and shear stress σ5 on the phase transition . . . 73

120 130 140 150
0

1

2

3

4

0

1

3

2
5

-80 -70 -60 -50 -40 -30
2.6

2.7

2.8

2.9

3

3.1

1

0

23

5

∆T , KT , K

Ps, 10−2 C/m2Ps, 10−2 C/m2

h

h
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— 1, p2 — 2, p3 — 3, hydrostatic — h, shear stress σ5 — 5.

On the other hand, pressures p2 and
p3 increase the polarization Ps3 and Ps2
with Ps3 < Ps2, but decrease the permit-
tivity ε22(2) and ε22(3).

The temperature dependences of the
elastic constants cEil , piezoelectric e2l and
strain d2l coefficients, piezoelectric volt-
age h2l and strain g2l constants at am-
bient pressure and under applied uniax-
ial pressures, hydrostatic pressure, and
shear stress σ5, each with a magnitude of
0.5 GPa, are shown in Figs. 8, 9, 10. Also
the figures contain the curves calculated
at the values of hydrostatic pressure of
2 GPa, 3 GPa as well at 3.1 GPa, the pressure above the critical one.
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Fig. 9. The temperature dependences of the piezoelectric voltage e2l and strain d2l coefficients: at ambient
pressure – 0, at pressures of different symmetries, each with the magnitude of 0.5 GPa: uniaxial p1 — 1, p2 —
2, p3 — 3, shear stress σ5 — 5, and under hydrostatic pressure (GPa): 0.5 — h0.5, 2 — h2, 3 — h3, 3.12 — h3.12,

3.15 — h3.15.

The applied pressures p1, ph and the stress σ5 shift the temperature curves of cEil , e2l, d2l, h2l, and
g2l to lower temperatures, whereas the pressures p2 and p3 shift the curves to higher temperatures.
The elastic constants cE11, c

E
22, c

E
33, C

E
13 have minima at T = Tc, whereas cE23, c

E
12, c

E
15, c

E
25 have maxima.

At hydrostatic pressure above the critical one ph > phcr the jumps of the elastic constants cEil and
the maximal values of the piezomoduli e2l, d2l decrease; at pressures ph > 3.4 GPa the jumps of cEil
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vanish, whereas the piezomoduli e2l, d2l coincide with their “seed” values. At pressures above phcr the
temperature curves of the piezoelectric voltage and strain constants have downward jumps at T = TN .

With increasing pressures p2 and p3 the jumps of the elastic constant cE33 increase, whereas the
pressures p1, ph, and stress σ5 decrease cE33 (Fig. 8).
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Fig. 10. The temperature dependences of the piezoelectric voltage h2l and strain g2l constants: at ambient
pressure — 0, at pressures of different symmetries, each with the magnitude of 0.5 GPa: uniaxial p1 — 1, p2 —
2, p3 — 3, shear stress σ5 — 5, and under hydrostatic pressure (GPa): 0.5 — h0.5, 2 — h2, 3 — h3, 3.12 — h3.12,

3.15 — h3.15.

The values of the piezomodules e21, e23, d21, h21, h23, g21 and the absolute values of e22, e25, d22,
d23, d25, h22, h25, g22, g23, g25 decrease with increasing pressures p2 and p3 and increase with pressures
p1, ph and stress σ5 (Figs. 11, 12, 13).
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Fig. 13. Dependence of the piezoelectric voltage h2l and strain g2l constants on the temperature difference
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h0.5, 2 — h2, 3 — h3.

5. Conclusions

In the present work, within the framework of the modified proton ordering model for the quasi-one-
dimensional hydrogen bonded ferroelectrics of the CsH2PO4 type, with taking into account the linear
over the strains εi and ε5 contributions into the energy of the proton system, and within the two-
particle cluster approximation, we study the influence of hydrostatic and uniaxial pressures and shear
stress σ5 on the phase transition and physical properties of the CDP crystal. It is established that these
stresses change the strains εi, ε5, which leads to the stress dependences of the transition temperature
and other characteristics of these crystals.

The behavior of spontaneous polarization, static dielectric permittivity, elastic constants, and piezo-
electric coefficients at pressures up to 0.5 GPa, as well as the behavior of elastic constants and piezo-
electric coefficients under hydrostatic pressure below and above the critical one is explored.
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У межах модифiкованої моделi протонного впорядкування квазiодновимiрних сегне-
тоелектрикiв з водневими зв’язками типу CsH2PO4 з врахуванням лiнiйних за дефор-
мацiями εi та ε5 внескiв в енергiю протонної системи, але без врахування тунелювання
в наближеннi двочастинкового кластера, дослiджено вплив одновiсних pi та гiдроста-
тичного ph тискiв, зсувної напруги σ5 на фазовий перехiд, поляризацiю, поперечну
дiелектричну проникнiсть, пружнi сталi та п’єзомодулi сегнетоелектрика CsH2PO4.
За належного вибору мiкропараметрiв отримано добрий кiлькiсний опис вiдповiдних
експериментальних даних для цих кристалiв.

Ключовi слова: сегнетоелектрики, дiелектрична проникнiсть, п’єзомодулi, зсув-

на напруга.
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