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In the paper, the control system synthesis by means of the full state vector is considered
when using fractional derivatives in the description of this system. To conduct research in
the synthesized system with fractional derivatives in the Caputo–Fabrizio representation, a
fundamental matrix of the system is formed, which also allows us to analyze the influence
of initial conditions on the processes within the system. In particular, the finding of
the fundamental matrix of the system in the case of multiple roots of a characteristic
polynomial, which are obtained by transforming the synthesized system to the binomial
form, is demonstrated. The influence of the fractional derivative index and the location of
the roots of the characteristic polynomial transformed to the binomial form on the system
operation is analyzed.
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1. Introduction

The development of control theory in recent decades has been characterized by the creation and
application of new approaches to the control of nonlinear systems, in particular back-stepping, passivity
base control, feedback linearization, fuzzy logic control [1–3]. In the synthesis of control actions in
such approaches, the theory of control by means of the full state vector of the system is widely
used. At the same time, despite the widespread use of derivatives and integrals of fractional order
to describe processes in various dynamic systems [4, 5], including electromechanical systems [6–8],
the main focus of researchers while creating control systems is focused on the synthesis of fractional-
order PID controllers [9–12]. On the one hand, due to the increase in the number of parameters
for adjusting fractional-order controllers there are greater opportunities for the formation of effective
control regularities but, on the other hand, the complexity of adjusting such systems increases. As
noted in [10], the use of fractional-order PID controllers increases the robustness of the system, improves
the performance of systems with time delay, provides flexibility in the synthesis of systems based on
various efficiency criteria. One of the most popular methods of synthesis of fractional-order PID
controller is to determine its parameters by solving a system of nonlinear equations that express
the relationships associated with the margin of stability of the system by phases, the gain at the
cutoff frequency, the sensitivity function and robustness to change the gain within a limited range.
Another popular approach being evidenced by the analysis of methods for the synthesis of systems
with fractional controllers [9, 11] is the use of modern optimization algorithms to optimize the formed
quality functional of the system. In [13], the problem of controller synthesis in a system with fractional
derivatives is proposed to be solved using the desired characteristic forms of fractional order. In
contrast to integer systems, the standard form is used for the synthesis of the direct channel controller
rather than feedback coefficients for the state variables. The use of fractional-order derivatives in
discontinuous control systems, as shown in [14,15] involves the use of PDα switching surfaces and the
replacement of the sgn function by the PI fractional-order controller with output signal limitation.
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In [16, 17], the application of fractional-order controllers in control systems synthesized by the back-
stepping method is shown. For the synthesis of parameters, an approach based on the Lyapunov
function is used [18]. A similar approach based on the Lyapunov function and matrix inequalities is
used for the synthesis of control systems by means of the full state vector [19–22]. As it is known, this
procedure is complex, provides a synthesis of a stable system but does not allow forming the desired
dynamic characteristics.

Thus, the analysis of publications suggests that in the case of systems described by models with
derivatives of fractional order, there is no method of synthesis of systems by means of the full state
vector, which provides the formation of the desired dynamic characteristics.

2. Theoretical foundations

In [23], the fractional-order derivative is proposed to be represented in the following form

Dα
t f(t) =

dαf(t)

dtα
=

1

1 − α

∫ t

0
exp

(

− α

1 − α
(t− τ)

)

f ′(τ) dτ ,

where 0 < α 6 1. In [24], it is noted about the limited application of the Caputo–Fabrizio transfor-
mation for the study of systems, in particular the need to fulfill the condition f(0) = 0, which follows
from the following

CFDα
0

[
CFJα

0 f(t)
]

= f(t) − exp

(

− α

1 − α
t

)

f(0).

This remark is not critical in solving the problem of the control action synthesis, because in classical
control theory for the synthesis of control systems they traditionally use models in increments of
variables and do not take into account the initial conditions.

Another caveat to the use of the Caputo-Fabrizio operator and other non-singular kernel opera-
tors [24, 25] is the possibility of obtaining equivalent system models using only integer derivatives. In
the synthesis of control systems, the possibility of transition to the model with integer derivatives al-
lows us to apply the classical methods of synthesis of control actions without going into the frequency
domain and without applying the approximations required when using singular kernel operators to
describe the derivative of fractional order.

In the case of a linear system

CFD
α
t x(t) = Ax(t) +Bu(t),

after applying the Laplace transform, we obtain

s

(1 − α)s + α
X(s) = AX(s) +BU(s), sX(s) = α [AX(s) +B U(s)] + (1 − α)s [AX(s) +BU(s)] .

Hence, the model in integer derivatives has the form

dx(t)

dt
= α [Ax(t) +B u(t)] + (1 − α)

[

A
dx(t)

dt
+B

du(t)

dt

]

,

(I − (1 − α)A)
dx(t)

dt
= α [Ax(t) +B u(t)] + (1 − α)B

du(t)

dt
,

dx(t)

dt
= A∗x(t) +B∗u(t) +B∗∗du(t)

dt
,

where A∗ = (I − (1 − α)A)−1αA, B∗ = (I − (1 − α)A)−1αB, B∗∗ = (I − (1 − α)A)−1(1 − α)B.
Thus, a linear system with a fractional-order derivative, using the Caputo–Fabrizio operator, can be
represented by a system with integer derivatives in which there is an additional forcing action based
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on the control signal and the parameters of the system model change. Classical synthesis methods,
including the full state vector control, can be easily applied to such a system.

For the above-mentioned linear system with fractional-order derivatives, under the full state vector
control u(t) = Uz −

∑n
i=1 k1ixi(t) and the representation of the fractional-order derivative using the

operator Caputo–Fabrizio, after applying the Laplace transform we obtain [26]

1

1 − α

(
1

s+ β
(sX(s) − x0)

)

= (A−BK)X(s) +B Uz(s), (1)

where β = α/(1 − α); is a vector of feedback coefficients with respect to the system state variables;
is a matrix of control actions; Uz(s) is an job signal at the system input.

The expression (1) after simple transformations can be written as follows

(s (I − (1 − α)(A −BK)) − α(A−BK))X(s) = x0 + αB Uz(s) + αB sUz(s). (2)

Traditionally, the synthesis of control action is carried out under zero initial conditions. In the case
Uz = const and by putting N = (I − (1 − α)(A −BK))−1, the transfer function of the system (2) has
the form:

W (s) =
X(s)

Uz(s)
= (s I − αN(A−BK))−1αN B. (3)

Synthesis of feedback coefficients with respect to the state variables occurs by the method of modal
control based on the use of a given arrangement of system poles, by equating the coefficients of the char-
acteristic polynomial of the system (3) H(p) = det (s I − αN(A−BK)) to the desired characteristic
polynomial of the system.

3. Application of the proposed approach

Let us demonstrate the application of the proposed approach to the synthesis of systems with fractional-
order derivatives on the example of a third-order system:







dαx1(t)
dtα

dαx2(t)
dtα

dαx3(t)
dtα







=





0 −1
J1

0

c 0 −c
0 1

J2
0









x1(t)
x2(t)
x3(t)



+





1
J1
0
0



M +





0
0
−1
J2



Mc. (4)

For α>1, Eqs. (4) describe a two-mass system of Figs. 1 excluding the action of external and internal
friction af1 = b12 = af2 = 0 and, respectively, J1 and J2 are moments of inertia of the first and second
masses, c is the coefficient of elasticity of the shaft; Mc is a moment of loading; M is a control action.

ω1 ω2

M∗

M∗

M

Mc

J1 J2

c12

b12

af1 af2

Fig. 1. Block diagram of a two-mass electromechanical system.

In the case of full state vector control, the system model will have the form
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The transfer function of the system W (s) = X3(s)
Mz(s)

obtained on the basis of Eq. (3) will have the form:

W (s) =
b2s

2 + b1s+ b0
Aden (s3 + a2s2 + a1s+ a0)

, (5)

where b2 = α c(α− 1)2, b1 = 2α2c(1 − α), b0 = α3c,

Aden = J1J2 + c(J1 + J2)(1 − α)2 + c(k1 + k3)(1 − α)3 + cJ2k2(1 − α)2 + J2k1(1 − α),

a2 =
α

Aden

(

2c(1 − α)(J1 + J2 + J2k2) + J2k1 + 3c(1 − α)2(k1 + k3)
)

,

a1 =
1

Aden
α2c (J1 + J2 + J2k2 + 3(1 − α)(k1 + k3)) , a0 =

1

Aden
α3c(k1 + k3).

For α→ 1, the transfer function (5) will have the form

W (s) =
c

J1J2

(

s3 + J2k1
J1J2

s2 + c(J1+J2+J2k2)
J1J2

s+ c(k1+k3)
J1J2

)

and correspond to the transfer function obtained from the model of a two-mass system without taking
into account the action of external and internal friction:

W (s) =
X(s)

Uz(s)
= (s I −A+BK)−1B.

Let the desired characteristic polynomial have the form Hdes(s) = (s+ ω0)
3, then the system of

equations for finding the feedback coefficients with respect to the state variables will have the form:







α

Aden

(

2c(1 − α) (J1 + J2 + J2k2) + J2k1 + 3c(1 − α)2(k1 + k3)
)

= 3ω0;

1

Aden
α2c (J1 + J2 + J2k2 + 3(1 − α)(k1 + k3)) = 3ω2

0;

1

Aden
α3c(k1 + k3) = ω3

0.

(6)

As a result of solving the system of equations (6), we obtain:

k1 =
3J1ω0

α− ω0 + αω0
,

k2 =
3J1J2ω

2
0

J2c(α− ω0 + αω0)2
− J1 + J2

J2
,

k3 =
J1J2ω

3
0

c(α− ω0 + αω0)3
− 3J1ω0

α− ω0 + αω0
.

(7)

For α→ 1 the values of the coefficients

k1 = 3J1ω0,

k2 =
3J1J2ω

2
0

J2c
− J1 + J2

J2
,

k3 =
J1J2ω

3
0

c
− 3J1ω0

correspond to the settings of the coefficients of the two-mass system obtained without taking into
account the internal and external viscous friction.
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As a result of the inverse Laplace transform, the expression for (t) in the case of full state vector
control for t0 = 0 will be written as:

X(t) = eαN(A−B K)tN X(0) +

∫ t

0
eαN(A−B K)(t−τ)αN B U(τ) dτ , (8)

where eαN(A−BK)t is the matrix exponent. The matrix αN(A−BK) has the following form:

αN(A−BK) =






A11 A12 A13
c(α−ω0+αω0)

3

α2

(3α+2αω0−2ω0)(α−1)ω2
0

α2 A23
c(α−1)(α−ω0+αω0)

3

α2J2

(α−2αω0+2ω0)(α−ω0+αω0)
2

α2J2
A33




 ,

where

A11 = − c(α−1)(α−ω0+αω0)
3

α2J2
− 3αω0(α−ω0+αω0)+(α−1)2ω3

0
α2 ,

A12 = (α−2αω0+2ω0)(α−ω0+αω0)
2

α2J2
− (3α+2αω0−2ω0)ω2

0
α2c ,

A13 =
c2(α−1)(α−ω0+αω0)

3
+3c αω0(α−ω0+αω0)−J2

2ω3
0

α2J2c
,

A23 = − c(α−ω0+αω0)
3−(α−1)J2ω3

0
α2 ,

A33 =
(α−1)c(α−ω0+αω0)

3−(α−1)J2ω3
0

α2J2
.

To analyze the processes in the synthesized system (8), we use the approach described in [27],
which provides the possibility to take into account the influence of initial conditions on the system.
The matrix exponent is defined according to the expression:

eαN(A−BK)t = Φ(t) Φ(0)−1,

where Φ(t) is the fundamental matrix of the system, which is defined as follows:

Φ(t) = [x1(t) x2(t) x3(t)] .

In the case of multiple roots (the system is configured for the binomial form):

x1(t) = v1e
λt, x2(t) = (v1 t+ v2)e

λt, x3(t) =

(

v1
t2

2
+v2 t+ v3

)

eλt,

where λ is the eigenvalue of the matrix αN(A − BK); v1, v2, v3 are eigenvectors of the matrix
αN(A−BK), which, as shown in [28], are determined from the system of equations:

(αN (A−BK) − λ I)3v3 = 0,

(αN (A−BK) − λ I) v3 = v2,

(αN (A−BK) − λ I) v2 = v1.

Since (αN(A−BK) − λ I)3 = 0, then any nonzero vector v3 will be the solution of the first equation
of the system. Then, accordingly, for v3 = [1 0 0]T the eigenvectors v1 and v2 will be equal:

v1 =







(α−ω0+αω0)
2[J2ω2

0+c(α−ω0+αω0)
2]

J2·α2

− c ω0(α−ω0+αω0)
3

α2

c(α−ω0+αω0)
4

J2α2






,
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v2 =







−(α−ω0+αω0)[J2 ω0(2α−ω0+αω0)+c(α−1)(α−ω0+αω0)
2]

J2 α2

c(α−ω0+αω0)
3

α2

− c(α−1)(α−ω0+αω0)
3

J2 α2






.

The matrix Φ(0) = [v1 v2 v3], and the matrix Φ(0)−1

Φ(0)−1 =







0 −α(α−1)

c(α−ω0+αω0)
3

J2 α
c(α−ω0+αω0)

3

0 α
c(α−ω0+ω0)

2
J2 αω0

c(α−ω0+αω0)
3

1 2ω0
c(α−ω0+αω0)

c(α−ω0+αω0)
2−J2 ω2

0

c(α−ω0+αω0)
2






.

The expression (8) can be rewritten as follows:

X(t) = Φ(t) Φ(0)−1N X(0) +

∫ t

0
Φ(t− τ) Φ(0)−1αNBU(τ) dτ.

Given that

αNB =








(c(α−1)2+J2)(α−ω0+αω0)
3

α2 J1·J2
c(α−1)(α−ω0+αω0)

3

α2 J1

c(α−1)2(α−ω0+αω0)
3

α2 J1 J2







,

Φ(0)−1 αNB =
[

0 − α−1
J1

α−ω0+α·ω0
J1

]T
,

for (0) = 0 we obtain:

X(t) =























∫ t

0

(α−ω0+αω0)
3









(c·(α−ω0+αω0)
2+J2 ω2

0)(t−τ)2

−4(α−1)(α−ω0+αω0)c(t−τ)

−4J2 ω0(t−τ)+2c(α−1)2+2J2









2α2J1J2
e−ω0(t−τ)U(τ) dτ

∫ t

0

c(α−ω0+αω0)
3









(α−ω0+αω0)ω0(t−τ)2

+(4ω0−2α−4αω0)(t−τ)

+2α−2









2α2 J1J2
e−ω0(t−τ)U(τ) dτ

∫ t

0

c(α−ω0+αω0)
3









(α−ω0+αω0)
2(t−τ)2

−4(α−1)(α−ω0+αω0)(t−τ)

+2(α−1)2









2α2J1J2
e−ω0(t−τ)U(τ) dτ























.

After performing the integration, the expression for the base point 3 will have the form:

x3(t) = −

c(α− ω0 + αω0)
3





(α−ω0+αω0)
2ω2

0
t2

2
e−ω0t

+ω0

(
α2−ω2

0(α−1)2
)
t e−ω0t

+α2e−ω0t−α2





α2J1J2 ω3
0

U.

The analysis of graphs in Fig. 2 shows that the dynamics of processes in the system changes sig-
nificantly depending on the index of the fractional order α and on the location of the roots, which is
determined by ω0. Therefore, the control action synthesized by the method of modal control does not
provide the desired dynamics of the system. We analyze the causes of this situation using the transfer
function of the system W (s) = X3(s)

U(s) .
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Fig. 2. Dependence of change of base point of the system when changing α for ω0 = 0.75 and ω0 = 1.25.

The transition matrix of the system is determined as follows:

(s I − αN (A−BK))−1αNB =









(α−ω0+αω0)
3(J2 s2+c(α+(1−α)s)2)

α2J1 J2(s+ω0)
3

c(α−ω0+αω0)
3s(α+(1−α)s)

α2J1(s+ω0)
3

c(α−ω0+αω0)
3(α+(1−α)s)2

α2J1J2(s+ω0)
3









,

hence the transfer function

W (s) =
X3(s)

U(s)
=
c(α− ω0 + αω0)

3(α+ (1 − α)s)2

α2J1 J2(s+ ω0)
3 .

5

-5

-10

10

1

0

0

0
α

ω0

(α− ω0 + αω0)
3

Fig. 3. Change of coefficient (α− ω0 + αω0)3 in
change of α and ω0.

From the obtained transfer function of the system
it follows that the dynamics of the system is signif-
icantly influenced by the polynomial of the numerator
(α+ (1 − α)s)2. Multiple zeros of the transfer func-
tion z = −α/(1 − α) for small α are close to the imag-
inary axis and cause significant fluctuations in the ini-
tial coordinate of the system. Traditionally, the influ-
ence of zeros of the transfer function is compensated
by the use of an appropriate filter at the input of the
system, which leads to a deterioration of its dynamic
characteristics. Another possible approach, as shown
in [29], is the formation of the desired characteristic
polynomial taking into account the compensation of
zeros of the transfer function. On the other hand,
the statics of the system depends on the coefficient
(α− ω0 + αω0)3, the influence of which can be the-
oretically eliminated by appropriate correction of the
job signal.

Shown in Figs. 4–7 dependences demonstrate that the more distant zeros and poles of the system
are, the greater fluctuations are observed when the order of the fractional derivative decreases. Along
with this, due to the forcing action of the zeros of the transfer function, it is possible (as shown in
Figs. 4 and 5) to improve the dynamic characteristics of the system.
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α = 0.7; 4, α = 0.5, and 5, α = 0.35.

Fig. 5. Dependence of change of base point of system
with correction of input signal for ω0 = 1.25 and with
change of α: 1, α → 1; 2, α = 0.85; 3, α = 0.7; 4,

α = 0.5, and 5, α = 0.35.
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change of α: 1, α → 1; 2, α = 0.85; 3, α = 0.7; 4,

α = 0.5, and 5, α = 0.35.

Fig. 7. Dependence of change of base point of system
with correction of input signal for ω0 = 15 and with
change of α: 1, α → 1; 2, α = 0.85; 3, α = 0.7; 4,

α = 0.5, and 5, α = 0.35.

4. Conclusions

The proposed approach to the synthesis of systems with fractional derivatives using the correction
factor 1/(α− ω0 + αω0)

3 allows forming the desired dynamic characteristics of the system according
to the job signal.

Multiple zeros of the transfer function z = −α/(1 − α) for small α and significant spacing with the
poles of the transfer function cause significant fluctuations of the base point of the system.
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Синтез керування за повним вектором стану в системах з
похiдними дробового порядку при застосуваннi оператора

Капуто–Фабрiцiо

Лозинський А. О., Лозинський О. Ю., Каша Л. В.

Нацiональний унiверситет “Львiвська полiтехнiка”,
вул. С. Бандери, 12, 79013, Львiв, Україна

У роботi розглянуто синтез системи керування за повним вектором стану у випад-
ку використання в описi системи похiдних дробового порядку. Для проведення до-
слiджень в синтезованiй системi з дробовими похiдними у представленнi Капуто–
Фабрiцiо сформовано фундаментальну матрицю системи, що дозволяє аналiзувати
також i вплив початкових умов на процеси в системi. Зокрема, продемонстровано
знаходження фундаментальної матрицi системи у випадку кратних коренiв харак-
теристичного полiнома, якi отримуються при налаштуваннi синтезованої системи на
бiномiальну форму. Проаналiзовано вплив показника дробової похiдної та розмiщен-
ня коренiв характеристичного полiнома, налаштованого на бiномiальну форму, на
роботу системи.

Ключовi слова: похiдна дробового порядку, фундаментальна матриця, модальне
керування.
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