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The paper is devoted to the investigation of statistical properties of the sample estimator
of the beta coefficient in the case when the weights of benchmark portfolio are constant and
for the target portfolio, the global minimum variance portfolio is taken. We provide the
asymptotic distribution of the sample estimator of the beta coefficient assuming that the
asset returns are multivariate normally distributed. Based on the asymptotic distribution
we construct the confidence interval for the beta coefficient. We use the daily returns on the
assets included in the DAX index for the period from 01.01.2018 to 30.09.2019 to compare
empirical and asymptotic means, variances and densities of the standardized estimator for
the beta coefficient. We obtain that the bias of the sample estimator converges to zero
very slowly for a large number of assets in the portfolio. We present the adjusted estimator
of the beta coefficient for which convergence of the empirical variances to the asymptotic
ones is not significantly slower than for a sample estimator but the bias of the adjusted
estimator is significantly smaller.
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1. Introduction

Diversification of income sources and risks is one of the key concepts not only of financial institutions
activity but also of the activity of the majority of people. From a theoretical point of view, diversifica-
tion can be realized by the construction of a portfolio. The first paper, where the problem of portfolio
construction had been considered, was the paper by G.Markowitz [1]. In this work, the method of port-
folio construction based on the optimization of its characteristics was described from a scientific point
of view. The main concept introduced by Markowitz is an efficient portfolio, that is, a portfolio for
which it is impossible to reduce the risk without decreasing its return, or equivalent, it is impossible to
increase the return without increasing the risk. The set of such portfolios forms an efficient frontier [2].
Portfolios from the efficient frontier play a crucial role in the portfolio theory. Many papers are devoted
to the analysis of these portfolios: the maximum expected utility portfolio is considered in [3–5]; the
portfolio with the maximum Sharpe ratio is analyzed in [6–9]; the minimum VaR and the minimum
CVaR portfolios are considered in [10–12]. But the most important role among the portfolios of the
efficient frontier plays the global minimum variance portfolio. The properties of weights (wGMV ) and
the characteristics of this portfolio have been studied by many scientists [13–16]. It is shown that the
expected return and the variance of the GMV portfolio are two out of three parameters that uniquely
determine the efficient frontier [17]. The GMV portfolio risk is the smallest among the portfolios on
the efficient frontier, that is, it is impossible to construct a portfolio with a lower level of risk than the
risk of GMV portfolio in the set of the selected assets. It is clear that the return of this portfolio is also
the lowest among the portfolios of the efficient frontier. However, the investors who are interested in
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portfolio return will not choose GMV portfolio as an investing strategy. Naturally, the question arises,
how can an investor check whether the GMV portfolio risk differs significantly from the risk of another
portfolio? If it turns out that, the risk of considered portfolios does not differ significantly then there
is an opportunity to construct a portfolio with the risk level that is statistically equal to the minimum
possible level. The goal of the paper is to construct such a test. We construct the test based on the
β-coefficient, a quantitative characteristic that describes the relationship between portfolios risk levels
(or equivalently between the portfolios expected returns).

The β-coefficient plays a crucial role in CAPM theory and is an important practical tool for port-
folios comparison. In [18] probabilistic properties of the β-coefficient estimator are investigated in the
case of constant weights of the compared portfolios. These results are not applicable in the case of
the global minimum variance portfolio since the weights of this portfolio depend on unknown param-
eters of the asset returns distribution. Therefore, in practice investor uses estimates of these weights.
From the probability theory and mathematical statistics, it is known that the estimators of unknown
parameters of the asset returns distribution and, as consequence, values, which depend on them, are
random values. From this point of view in order to investigate the properties of the β-coefficient, it is
sufficient to know the distribution of its estimator. In the paper, we find the asymptotic distribution
of the sample estimator of the beta coefficient in the case when the weights of the benchmark portfolio
are constant and the investor’s portfolio is the GMV portfolio provided that the asset returns are
multivariate normally distributed. The assumption of normality is often used in financial literature
because of its attractive theoretical properties [19]. The asymptotic distribution is recommended for
considering in the case when the exact distribution can not be obtained [20].

The rest of the paper is organized as follows. In the next chapter, we present the theoretical results
of the paper. We deduce the asymptotic distribution of the sample estimator of beta coefficient and
based on this result we present the test for values of beta. The empirical results based on the returns
of 30 stocks included in the DAX index are presented in the section 3. Here we check the convergence
of the empirical distributions of the beta-coefficient estimator to the asymptotic one. The concluding
remarks are given in the section 4.

2. Theoretical results

Let us assume that the investor’s and benchmark portfolios consist of the same k assets. We denote
by Xt = (X1t,X2t, . . . ,Xkt)

′ the k-dimensional vector of asset returns at time point t, i.e., Xit =
100 ln(Pit/Pi(t−1)) stands for the return of i-th asset at time point t, where Pit denotes the price of
the i-th asset at time point t. From [18] assuming that Xt follows a weakly stationary process with
the mean E(Xt) = µ and the covariance matrix Var(Xt) = Σ we get that the beta coefficient can be
calculated in the following way

β =
w

′
bΣw

w′
bΣwb

, (1)

where w stands for the weights of an investor portfolio and wb stands for the weights of the benchmark
portfolio. The results in [18] were obtained for the case when the weights w and wb are constant and
do not depend on parameters of the asset return process. In the current paper, we consider the case
where the investor portfolio is the global minimum variance portfolio. In other words an investor
constructs one’s portfolio by unconditional minimization of the variance of the portfolio. The weights
of such portfolio are given by [13]

w = wGMV =
Σ

−1
1

1′Σ
−1

1
, (2)

where 1 denotes the k-dimensional vector of ones. Inserting (2) instead of the vector of weights of
investor’s portfolio w in (1) we get

βGMV =
1

(1′Σ−1
1)(w′

bΣwb)
, (3)
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The method for beta coefficient calculation presented in (3) can not be used directly, because the
distribution parameters of the vector of asset returns Xt, µ and Σ are unknown in practice. They
should be first somehow estimated. We make use of the sample estimators of the parameters µ and
Σ. Let the sample of the historical values of the asset return vector X1,X2, . . . ,Xn be available, then
the sample estimators of µ and Σ are given by

µ̂ =
1

n

n∑

i=1

Xi, Σ̂ =
1

n− 1

n∑

i=1

(Xi − µ̂)(Xi − µ̂)′. (4)

Using the estimators (4) the estimator of βGMV can be written in the following way

β̂GMV =
1

(
1′Σ̂

−1
1
)(
w′

bΣ̂wb

) , (5)

It is a well known fact of the mathematical statistics that the estimator (5) is a random variable.
The best way to investigate its properties is to determine its distribution. In the next theorem the
asymptotic distribution of the sample estimator of beta coefficient (5) is presented. In [20] it is
recommended to consider an asymptotic distribution of an estimator in case where a finite sample
distribution can not be obtained.

Theorem 1. Let us form a portfolio within k assets. Denote by Xt k-dimensional vector of asset
returns included into the portfolio at time point t. Assume that Xt follows k-dimensional normal
distribution with parameters µ and Σ. Then for n→ ∞

√
n
(
β̂GMV − βGMV

) d−→ N(0, σ2),

where

σ2 =
4

(1′Σ−1
1)2(w′

bΣwb)2
− 4

(1′Σ−1
1)3(w′

bΣwb)3
, (6)

n is the size of the sample of historical values of the vector of asset returns Xt used for constructing
the sample estimators of the parameters µ and Σ (4), β̂GMV is given in (5), βGMV is the precise value

of the beta coefficient, the symbol
d−→ denotes the convergence in distribution, wb are the weights of

the benchmark portfolio.

Proof. Denote by θ = (µ′, vech(Σ)′)′ a vector of unknown parameters of the asset returns dis-
tribution and by θ̂ = (µ̂′, vech(Σ̂)′)′ its sample estimator. The operator vech transforms an ar-
bitrary square symmetric matrix = (aij) of dimension k × k into a k(k + 1)/2-dimension vector
vech(A) = (a11, . . . , ak1, . . . , aii, . . . , aki, . . . , akk)′ [21]. From the delta method [22] we obtain that

√
n
(
β̂GMV − βGMV

) d−→ N(0,G′
ΩG),

where G = (∂βGMV /∂µ, ∂βGMV /∂vech(Σ))′ is k(k+ 3)/2-dimensional vector and Ω is an asymptotic
covariance matrix of the random vector

√
n(β̂ − β) and is given by [22]

Ω =

(
Σ 0k×k(k+1)/2

0k(k+1)/2×k D
+
k (Ik2 + Kk)(Σ ⊗Σ)D+ ′

k

)

, (7)

where 0m×l is m × l-dimensional null matrix, Ik2 is k2 × k2-dimensional identity matrix, D
+
k =

(D′
kDk)−1

D
′
k, Dk is k2 × k(k + 1)/2-dimensional matrix such that Dkvech(A) = vecA for arbi-

trary square symmetric matrix of dimension k × k, the oherator vec transforms an arbitrary m × l-
dimensional matrix B into a k2-dimensional vector by stacking matrix columns one under another
vecB = (b11, . . . , bm1, . . . , b1i, . . . , bmi, . . . , bml)

′, Kk — k2 × k2-dimensional matrix such that for an
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arbitrary matrix C of dimension k × k it holds that KkvecC = vecC′. The additional information
concerning matrix operators can be found in [21].

Using the rules of matrix differential calculus [21] we obtain

∂βGMV

∂µ
= 0k, (8)

∂βGMV

∂vech(Σ)
= − 1

(
1′Σ

−1
1
)(

w′
bΣwb

)2D
′
k(wb ⊗ wb)

+
1

(
1′Σ

−11
)2(

w′
bΣwb

)D
′
k

(
Σ

−1 ⊗Σ
−1
)
D

+ ′

k D
′
k(1⊗ 1). (9)

Here we use the facts described in [21]

∂(a′Σb)

∂vech(Σ)
= D

′
k(b⊗ a),

∂(a′Σ−1
b)

∂vech(Σ)
= −D

′
k(Σ−1 ⊗Σ

−1)D+ ′

k D
′
k(b⊗ a).

Taking into account the form of matrix Ω (7) we obtain

G
′
ΩG = (∂βGMV /∂µ)′Σ(∂βGMV /∂µ)

+ (∂βGMV /∂vech(Σ))′D+
k

(
Ik2 + Kk

)
(Σ⊗Σ)D+ ′

k (∂βGMV /∂vech(Σ)).

The equality (8) implies that

(∂βGMV /∂µ)′Σ(∂βGMV /∂µ) = 0.

From (9) we obtain

(∂βGMV /∂vech(Σ))′D+
k

(
Ik2 + Kk

)
(Σ⊗Σ)D+ ′

k (∂βGMV /∂vech(Σ))

=

(

1
(
1′Σ

−1
1
)2(

w′
bΣwb

)D
′
k

(
Σ

−1 ⊗Σ
−1
)
D

+ ′

k D
′
k(1⊗ 1) − 1

(
1′Σ

−1
1
)(
w′

bΣwb

)2D
′
k(wb ⊗wb)

)′

×D
+
k

(
Ik2 + Kk

)
(Σ⊗Σ)D+ ′

k

×
(

1
(
1′Σ

−11
)2(

w′
bΣwb

)D
′
k

(
Σ

−1 ⊗Σ
−1
)
D

+ ′

k D
′
k(1⊗ 1) − 1

(
1′Σ

−1
1
)(
w′

bΣwb

)2D
′
k(wb ⊗wb)

)

=
1

(
1′Σ

−1
1
)4(

w′
bΣwb

)2 (1′ ⊗ 1
′)DkD

+
k

(
Σ

−1 ⊗Σ
−1
)
DkD

+
k

(
Ik2 + Kk

)
(Σ⊗Σ)D+ ′

k

×D
′
k

(
Σ

−1 ⊗Σ
−1
)
D

+ ′

k D
′
k(1⊗ 1)

+
1

(
1′Σ

−1
1
)2(

w′
bΣwb

)4 (w′
b ⊗w

′
b)DkD

+
k

(
Ik2 + Kk

)
(Σ⊗Σ)D+ ′

k D
′
k(wb ⊗wb)

− 2
(
1′Σ

−1
1
)3(

w′
bΣwb

)3 (w′
b ⊗w

′
b)DkD

+
k

(
Ik2 + Kk

)
(Σ⊗Σ)D+ ′

k

×D
′
k

(
Σ

−1 ⊗Σ
−1
)
D

+ ′

k D
′
k(1⊗ 1) =

1

4
(
1′Σ

−1
1
)4(

w′
bΣwb

)2

× (1′ ⊗ 1
′)
(
Σ

−1 ⊗Σ
−1
)(
Ik2 + Kk

)3
(Σ⊗Σ)

(
Σ

−1 ⊗Σ
−1
)
(1⊗ 1)

+
1

4
(
1′Σ

−1
1
)2(

w′
bΣwb

)4 (w′
b ⊗w

′
b)
(
Ik2 + Kk

)3
(Σ⊗Σ)(wb ⊗wb)
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− 2

4
(
1′Σ

−1
1
)3(

w′
bΣwb

)3 (w′
b ⊗w

′
b)
(
Ik2 + Kk

)3
(Σ⊗Σ)

(
Σ

−1 ⊗Σ
−1
)
(1⊗ 1).

Here we use the following properties of matrix operators DkD
+
k = 1

2

(
Ik2 +Kk

)
= Nk, Nk(A⊗A) =

(A ⊗ A)Nk, Nk = N
2
k = N

′
k, DkD

+
k (A ⊗ A)Dk = (A ⊗ A)Dk for an arbitrary k × k-dimensional

matrix A. Taking into account that Kk(A⊗A) = (A⊗A) we obtain

(∂βGMV /∂vech(Σ))′D+
k

(
Ik2 + Kk

)
(Σ⊗Σ)D+ ′

k (∂βGMV /∂vech(Σ))

=
4

(1′Σ−1
1)2(w′

bΣwb)2
− 4

(1′
Σ

−1
1)3(w′

bΣwb)3
,

which completes the proof of the theorem. �

Table 1. Empirical n ∈ {120, 250, 500, 1000, 2000, 3000, 5000} and asymptotic means and variances of√
n
(
β̂GMV − βGMV

)
for k ∈ {5, 10, 15, 20, 25, 30} equally weighted portfolios taken as benchmark and GMV

portfolios taken as target.

k = 5 k = 10 k = 15 k = 20 k = 25 k = 30

n = 120
Mean -0.2424 -0.4017 -0.6515 -0.8492 -1.1155 -1.2746

Variance 0.5557 0.4983 0.4766 0.4334 0.4268 0.3749

n = 250
Mean -0.1664 -0.2733 -0.4445 -0.5859 -0.7675 -0.8757

Variance 0.5586 0.5176 0.5056 0.4715 0.4775 0.4351

n = 500
Mean -0.1153 -0.1929 -0.3097 -0.4119 -0.5374 -0.6137

Variance 0.56764 0.5247 0.5175 0.4880 0.4991 0.4648

n = 1000
Mean -0.0839 -0.1377 -0.2251 -0.2889 -0.3825 -0.4318

Variance 0.5622 0.5285 0.5255 0.4977 0.5116 0.4804

n = 2000
Mean -0.0601 -0.0954 -0.1568 -0.2012 -0.2725 -0.3059

Variance 0.5652 0.5298 0.5264 0.5047 0.5155 0.4792

n = 3000
Mean -0.0504 -0.0819 -0.1272 -0.1657 -0.2187 -0.2496

Variance 0.5652 0.5295 0.5291 0.5083 0.5146 0.4849

n = 5000
Mean -0.0366 -0.0635 -0.0982 -0.1243 -0.1694 -0.1959

Variance 0.5632 0.5270 0.5247 0.5090 0.5211 0.4860

Asymptotic
Mean 0 0 0 0 0 0

Variance 0.5639 0.5311 0.5309 0.5083 0.5212 0.4900

In practice an investor should use the estimator of asymptotic variance (6), i.e.

σ̂2 =
4

(1′Σ̂
−1

1)2(w′
bΣ̂wb)2

− 4

(1′Σ̂
−1

1)3(w′
bΣ̂wb)3

, (10)

but the theorem 1.14 [23] implies that the sample estimator of σ (10) is consistent, i.e. for n→ ∞

σ̂ → σ.

The result of Theorem1 provides the statistical test for significance of difference between charac-
teristics of portfolios with the weights wb and wGMV . If (1 − γ)-confidence interval

[

β̂GMV − σ̂√
n
z1−γ/2, β̂GMV +

σ̂√
n
z1−γ/2

]

,

where zγ stands for γ-quantile of the standard normal distribution contains one, than the risks of both
portfolios do not significantly differ. In this case, an investor has the possibility to use a portfolio with
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the nonrandom weights and the portfolio risk does not significantly differ from the minimum portfolio
risk available for the chosen set of assets.

 

 

 

 

 

  

  

  

 

 

  

Fig. 1. Kernel density estimators for n ∈ {500, 1000, 2000, 5000} and asymptotic density of
√
n
(
β̂GMV −βGMV

)

for different values of k.

3. Empirical study

In this section, we provide an empirical presentation of the results from the previous section. First,
we investigate the convergence of the distribution of the random variable

√
n
(
β̂GMV − βGMV

)
to

the asymptotic normal distribution provided by the Theorem 1. For this purpose, we use the daily
returns on the assets included into the DAX index for the period from 01.01.2018 to 30.09.2019 (440
observations). We consider six GMV portfolios with dimensions k ∈ {5, 10, 15, 20, 25, 30} included
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Properties of the beta coefficient of the global minimum variance portfolio 17

corresponding k assets included into the DAX index in alphabetical order. We take these portfolios
as target portfolios. As a benchmark portfolio in every case, we use the equally weighted portfolio
consisting of k corresponding assets. To provide empirical distributions of

√
n
(
β̂GMV −βGMV

)
, we use

the Monte Carlo study. We draw a random sample of size n ∈ {120, 250, 500, 1000, 2000, 3000, 5000}
from k-dimensional normal distribution with the parameters equal to the sample mean vector and to the
sample covariance matrix computed from the daily returns on the assets included into the DAX index
for the period from 01.01.2018 to 30.09.2019 for the corresponding values of k. Based on simulated
data the value of

√
n
(
β̂GMV − βGMV

)
is computed and this procedure is repeated 100000 times for

different values of n and k. We use the samples of values of
√
n
(
β̂GMV − βGMV

)
to estimate the

corresponding distributions. The results are summarized in Table 1 and Fig. 1. In Table 1 we present
the empirical means and variances of the random variable

√
n
(
β̂GMV − βGMV

)
. In Fig. 1 we plot the

empirical densities together with the corresponding asymptotic density. From the results presented in
Table 1 and Fig. 1, we conclude that the empirical variances converge fast enough to the asymptotic
ones but the bias goes to zero slowly, especially for larger values of k.

Table 2. Empirical n ∈ {120, 250, 500, 1000, 2000, 3000, 5000} and asymptotic means and variances of√
n
(
β̂GMV ;adj − βGMV

)
for k ∈ {5, 10, 15, 20, 25, 30} equally weighted portfolios taken as benchmark and GMV

portfolios taken as target.

k = 5 k = 10 k = 15 k = 20 k = 25 k = 30

n = 120
Mean -0.1040 -0.0539 -0.0554 -0.0480 -0.0508 -0.0504

Variance 0.5757 0.5648 0.5918 0.5981 0.6435 0.6264

n = 250
Mean -0.0711 -0.0353 -0.0296 -0.0324 -0.0363 -0.0339

Variance 0.5702 0.5406 0.5568 0.5493 0.5719 0.5432

n = 500
Mean -0.0501 -0.0293 -0.0259 -0.0230 -0.0256 -0.0210

Variance 0.5648 0.5360 0.5407 0.5224 0.5488 0.5152

n = 1000
Mean -0.0348 -0.0196 -0.0191 -0.0180 -0.0186 -0.0122

Variance 0.5637 0.5330 0.5343 0.5189 0.5339 0.5026

n = 2000
Mean -0.0219 -0.0142 -0.0135 -0.0126 -0.0131 -0.0100

Variance 0.5672 0.5356 0.5306 0.5127 0.5247 0.4966

n = 3000
Mean -0.0182 -0.0080 -0.0109 -0.0098 -0.0107 -0.0080

Variance 0.5653 0.5366 0.5336 0.5076 0.5267 0.4927

n = 5000
Mean -0.0163 -0.0075 -0.0075 -0.0061 -0.0051 -0.0037

Variance 0.5649 0.5340 0.5313 0.5102 0.5217 0.4968

Asymptotic
Mean 0 0 0 0 0 0

Variance 0.5639 0.5311 0.5309 0.5083 0.5212 0.4900

We present an adjusted estimator of the β coefficient. Note, that the random variable (n−1)1
′Σ

−1
1

1′Σ̂
−1

1

is χ2
n−k distributed [17] and the random variable (n − 1)

w′
bΣ̂wb

w′
bΣwb

is χ2
n−1 distributed [24]. If these two

random variables are independent then the finite sample distribution of β̂GMV /βGMV is Fn−1;n−k

with Eβ̂GMV = n−k
n−3βGMV . We consider the adjusted estimator of the beta coefficient of the form

β̂GMV ;adj = n−3
n−k β̂GMV . In Table 2 and Fig. 2 it is presented the empirical and the corresponding

asymptotic means, variances and densities of the random variable
√
n
(
β̂GMV ;adj − βGMV

)
. From the

results of Table 2 and Fig. 2 we conclude that the performance of the adjusted estimator is better than
the sample one. The convergence of empirical variances to the asymptotic ones is not significantly
slower than for sample estimator but the bias of the adjusted estimator is significantly smaller.

Secondly, we construct the asymptotic confidence intervals at significance level (1 − γ) ∈
{0.9, 0.95, 0.99} for six beta coefficients (six GMV portfolios with dimensions k ∈ {5, 10, 15, 20, 25, 30}
taken as target portfolio and six equally weighted portfolio consisting of k corresponding assets taken
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Fig. 2. Kernel density estimators for n ∈ {500, 1000, 2000, 5000} and asymptotic density of
√
n
(
β̂GMV ;adj −

βGMV

)
for different values of k.
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Properties of the beta coefficient of the global minimum variance portfolio 19

as benchmark portfolio). We use the running window with the length n = 250. The results are
presented in Fig. 3 for the sample estimator. We observe that in almost all cases the value of beta
coefficient deviates significantly from one. Based on this observation we conclude that GMV portfolio
risk is significantly smaller than the risk of the equally weighted portfolios. The results for the adjusted
estimator are quite similar and the plots are not included in the paper. They are available from the
authors for request.

 

 

 

 

 

 

  

  

  

 

 

  

  

  

  

 

Fig. 3. Sample estimator and confidence intervals for βGMV for different values of k.
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4. Conclusions

In the paper, we consider the properties of the sample estimator of the beta coefficient in the case where
the weights of the benchmark portfolio are constant and the weights of the target (investor’s) portfolio
are random. We deal with the situation when investor choose a global minimum variance portfolio.
We provide an asymptotic analysis of the sample estimator by deriving its asymptotic density. Based
on the asymptotic distribution of the sample estimator we construct an asymptotic interval estimator
for the beta coefficient.

We provide empirical presentation of the theoretical results. Based on the daily returns on the
assets included into the DAX index for the period from 01.01.2018 to 30.09.2019. We conclude that
departures from asymptotic density, mean and variance are small compared to the empiric values
even if the sample size is relatively small. We obtain that the bias of the sample estimator remains
significantly different from 0 even for large sample size and it increases with the number of assets in
portfolio. For example, for sample size n = 5000 and number of assets k = 30, the bias is equal to
−0.1959. We present the adjusted estimator of the beta coefficient for which the bias is significantly
smaller than in the case of the sample estimator and its values do not depend on the number of assets
in portfolio. In the case of sample size n = 5000 and number of assets k = 30 the bias of the adjusted
estimator is equal to −0.0037. Note that in practice this adjusted estimator should be used very
carefully because its performance is not strictly substantiated.
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Властивостi бета коефiцiєнта портфеля з найменшою дисперсiєю

ЯрошкоС.М.1, ЗаболоцькийМ.В.2, ЗаболоцькийТ.М.2

1Нацiональний унiверситет “Львiвська полiтехнiка”,
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2Львiвський нацiональний унiверситет iменi Iвана Франка,
вул. Унiверситетська, 1, 79000, Львiв, Україна

Стаття присвячена дослiдженню статистичних властивостей вибiркової оцiнки бета
коефiцiєнта у випадку, коли ваги еталонного портфеля є постiйнi, а цiльовим є порт-
фель з найменшою дисперсiєю. Знайдено асимптотичний розподiл вибiркової оцiнки
бета коефiцiєнта за припущення, що вектор дохiдностей активiв має багатовимiрний
нормальний розподiл. На основi асимптотичного розподiлу побудовано довiрчий iн-
тервал для бета коефiцiєнта. Використовуючи щоденнi дохiдностi акцiй, включених
до iндексу DAX за перiод з 01.01.2018 по 30.09.2019, порiвняно емпiричнi та асимп-
тотичнi середнi, дисперсiї та щiльностi стандартизованої вибiркової оцiнки бета ко-
ефiцiєнта. Зауважено, що для великої кiлькостi активiв у портфелi змiщення стан-
дартизованої вибiркової оцiнки бета коефiцiєнта збiгається до нуля дуже повiльно.
Представлено скориговану оцiнку бета коефiцiєнта, для якої збiжнiсть емпiричних
дисперсiй до асимптотичних не є значно повiльнiшою, нiж для вибiркової оцiнки, але
змiщення скоригованої оцiнки є iстотно меншим.

Ключовi слова: портфель з найменшою дисперсiєю, бета коефiцiєнт, теорiя те-
стування, асимптотичний розподiл, невизначенiсть параметрiв.
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