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This paper studies a finite-dimensional discrete linear system whose initial state xg is
unknown. We assume that the system is augmented by two output equations, the first
one z; being representing measurements made on the unknown state of the system and
the other y; being representing the corresponding output. The purpose of our work is to
introduce two control laws, both in closed-loop of measurements z; and whose goal is to
reduce asymptotically the effects of the unknown part of the initial state xg. The approach
that we present consists of both theoretical and algorithmic characterization of the set of
such controls. To illustrate our theoretical results, we give a number of examples and
numerical simulations.

Keywords: discrete-time, relatively insensitive, linear system, observability, stability,
uncertainty.
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1. Introduction

When mathematically modeling a system, one is always confronted with disturbances mainly caused
by the natural environment of the latter or due to poorly identified parameters. The problem of
sensitivity, in which we are interested in this work, is a general concept that is often defined according
to the considered system. But one common thing between almost all works studying the notion of
sensitivity is the study of variations of an output function or a response function relative to one or
more parameters acting within the model.

To give an idea of the various definitions of sensitivity, let us quote, for example, the work of
R. Silvério and al [1], in which they consider an epidemic model of HRSV in Florida and study the
sensitivity of the basic reproduction number with respect to a certain parameter of the model; also the
work of J.Y.Semergui et al [2|, where they consider an HIV/AIDS model and study the sensitivity
of optimal control against some model parameters. In [3], S. A. Soldatenko and al consider an Earth‘s
climate mathematical model where they study the sensitivity of a response function with respect to the
parameter o around the unperturbed value 0. Another example is that of the work of A. Kowalewski
et al [4], in which the sensitivity analysis is performed for a class of optimal control problem with a
time lag parabolic equation in which delay argument appears in the state of the system and in the
Neumann boundary conditions. Here again, the authors have studied the sensitivity of the optimal
control compared to small variations of the delay parameter. In all the works we have quoted, the
sensitivity goes through an adequate directional derivative or an appropriate gradient.
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On the asymptotic output sensitivity problem for a discrete linear systems . .. 23

The main goal of this paper is to present a contribution to the study of the sensitivity output
problem for discrete linear system. That means we consider the discrete linear system

i1 = Az + Bu,,
S (1)
To = Y Biej,
j=1

where x; is the variable state, u; is the variable control, 8; are the components of the initial state in R"
with e; being a canonical basis of R™. We suppose that the parameters (f1,..., 3;) are unknown and
(Br41,---,8n) are known. As the initial state xg is unknown, we consider the measurement function
given by

zi = Mux;, Yi=D0. (2)

The associated output function is given by
y;i = Cx; + Dv;, Vi >0, (3)

where A, B, C, M and D are, respectively, (n,n), (n,m), (p,n), (n,n) and (p,l) matrices. We assume
that the matrix M is not invertible, and the controls law, stabilizing the output of system, are given
by

w; = Lz; and wv; = Kz (4)

with L € M, (R) and K € M, (R).

Our main objective in this work is to determine the L and K gain matrices in order the impact of
unknown parameters (31,..., 3, on the output y; to disappear asymptotically, to achieve this goal we
take inspiration from J.L.Lions [5-7] on the notion of sentinels to determine the matrices L and K
such that

lim 0yi

<s<r.
Jm as =0 Isssr (5)

To establish a more general result than (5), let us consider a real positive sequence («;) tending
towards 0, for example a; = (%) , (%2) ,e~% ..., we will propose a technique to describe the controls

law defined by (4), which achieves the following predefined mode of stabilization

Oyi
%

The sequence («;); can be interpreted as a desired degree of stability. That means, we focus our
interest on determination of the set of gain matrices K and L defined by

<a;p, Viz0,1<s<r. (6)

S:{KGMM( ), L € My (R /Hayz

<o Vi> 1<s<r}. (7)

Inspired by the approach using for the output admissibility and the maximal output admissible
sets for initial states [8-20] and under some assumption, we establish that set (7) can be described by
a finite number of inequalities and an algorithmic determination of each gain matrices is presented.

This paper is organised as follows: in section 2, the characterization of the gain matrices is presented.
An algorithmic determination of the characterization of the tolerable set for each gain matrices will
be presented in section 3. Some sufficient conditions for the characterization of the tolerable set are
described in section 4 and numerical simulations are given to illustrate the obtained results. A discrete
delayed system is also considered in section 5 and a conclusion is given in section 6.
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2. Characterization of the tolerable sets

Consider the discrete controlled linear system described by

i1 = Az + Buy,
n

zo = ) Bje;,
i=1
the corresponding output is
y; = Czi + Dy,
where z; € R" is the state variable, (1,0s,...,05, are unknown components of initial state and
Brits- .., Pn are supposed known, e;, i = 1,...,n is the canonical basis of R”, u; € R™ and v; € R are

the input variables and y; € RP is the output vector. A, B, C' and D are real matrices of appropriate
dimension.

Definition 1. Output function is insensitive to the effects of the uncertainties, if the corresponding
output satisfies the following condition

yi
9B

Let (o;)i>0 be a positive decreasing sequence which verifies

<a; Viz20, 1<s<r.

67} Q-1

it o
As examples of such sequences we cite

1 1

) P = s € (1, 5 P = i, < 1.

ay =

The controls law
u; = Lz; and v; = Kz

stabilizing the output of system are introduced in order to make the system insensitive to the effects of
all unknown uncertainties components of initial state. To characterize the set of all control law which
make the output insensitive to the effects of uncertainties, we consider the set noted the tolerable set
given by
T(L,K) = {z € R"/|[(C + DKM)(A+ BLM)'z| < o;,Vi >0}

Now for every i > 0, we have

i1 = Ax; + Bu,,

Ti+1 = (A + BLM)(/UZ',

hence
x; = (A+ BLM)'x,

then
yi = (C+ DKM)(A + BLM)"zy,

yi=»_ B;i(C+DKM)(A+ BLM);,
j=1
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and

0yi _ (C+DKM)(A+ BLM)'e;. (9)
dB;

Using (6), we can write S as follows

S = {K e R L e R™™ | ||(C + DKM)(A+ BLM)'e,|| < v, for Vi > 0,1 < s < r}

:{KGRW,LGRW"|eSeT(L,K),1<s<r}. (10)

We note that the set T'(L, K) of all gain matrices K and L is defined by an infinite number of
inequalities. We will establish sufficient conditions which allow us to describe it by a finite number of
inequalities.

Let rewrite the set T'(L, K) as

T(L,K) = {o € R"/|CA'] < i, Vi > 0} (11)

where A = (A+ BLM) and C = (C + DK M).
In order to characterize T'(L, K), we introduce for each integer k the set Ti(L, K) defined by

To(L, K) = {xeR"/HéAixH ga,-,wzo,...,k}. (12)

If there are no confusion, we note T'=T(L, K) and T}, = Ty(L, K).

Theorem 1. i) The set T is a closed, convex and symmetric set.
ii) If we suppose that klim sup || A¥|| /oy < &, where & > 0, then 0 € int 7.
—4-00

Proof. i) The results are easily checked from the definition of 7. The assumption in ii) implies that
there exists a constant > 0 such that, for all z € R and i € N, ||CA%z|| < yoy|z||. Then, |z|| < 1/~
implies |CA'z| < a; for all i € N. Hence B(0,(1/)) € T where B(0, (1/7)) is the ball with center 0
and raduis 1/, and consequently 0 € int 7. ]

Remark 1. The condition klim sup ||A¥||/ax < e in the previous proposition is equivalent to
—+00
|C A?|| < yay; for all i > 0, where v is a positive constant.

Definition 2. The T set is said to be finitely determined, if there exists an integer k such that
T="T;.

The finite determination of 7" is characterized by the following proposition.

Theorem 2. Suppose that T, = Ty for some integer k. Then the set T}, given by (12) is described
by a finite number of equations; more precisely, we have T' = Tj,. Conversely, if T' = T}, for some integer
k, then Ty, = Ty 41 =Ty, for all j > k.

Proof. Suppose the existance of an integer k such that T, = Tp4q then = € Ty (K, L) implies that
CN’A]H_I:E €B (07 ak-i—l) ’

thus

C A* <a‘zllx> € B(0,a3), (13)

where B(0, a) is the ball with center 0 and radius ay, and for ¢ € {0,...,k — 1}, we have

O A (&A;C> _ % Aditl, e p (07 M)
Ok+1 Ok+1 Ok+1
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. . Qg Qj—1 .
since (ayj) ;- verfies an S o for j > 1 then

[0 (673
k < 7

~X
Ok+1 Qit1

, Vie{0,...,k—1},

which implies that

CA (ﬂ/@ € B(0,a;) Yie€{0,...,k—1}. (14)
Ok+1

Consequently, from (13) and (14) we deduce that

il A~1' e Ty

Opt1

and, by iteration, (aa’“ )] Al e Ty, for all 7 = 0. Then

k+1

~ o~ Oé'Oéj
CAJ+Z:EGB<0,17W> Vie{0,....,k—1}, Vj > 0.
%

So, for i = k, we have

WV
—

-~ ~. Oéj
CAtky e B (0, ’;j}) Vi
QO

as (ay); = 0 verifies (8), then we easily establish that

O‘{c 1
+ .
o

thus L
CArg € B(0,ap44) Vj>1.

Therefore x € T, hence T, C 1. But T is a subset of T}, consequently T = Tj. Conversely, if
T = Ty, for some integer k, then we deduce that T C Tp41 which implies that T = Ti41 (because
TCle CTijjl 2]2) n

3. Algorithmic determination

In order to describe the tolerable set T' by a finite number of inequalities, i.e., T = T}, we suggest an
algorithm stated as follows: Let RP be endowed with the following norm

lz|| = ila"ilaxp|:ni|, Vo = (z1,...,2p) € RP.

ey

The set T}, is then described as follows

1 -~
Tk:{meR”; hs <—C’A’:E> gOfors:l,...,Zpandz'zO,...,k:}

67}
where hR? — R are defined for every x = (z1,...,2p) € RP by

h2j—1 (‘T):xj_la for j€{17'--7p}7
hoj () = —x; — 1, for je{l,...,p}.
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It follows from Tjy1 C T} that Ty = T} if and only if T}, C Tj41. So

1

Opt1

Ve € Ty, h5< C’Akﬂa:)SO fors=1,...,2p

or equivalently

1 - -
sup hg <—C’Ak+1:p> <0 fors=1,...,2p.
z€Ty, k41

Algorithm:

Step 1: Set k = 0.

Step 2: Solve the following optimization problems for s =1,...,2p.
. . . _ 1 = ~k+1
Maximize js(z) = hs (mCA ac)
Subject to the constraints

h; (%C’A%) <0 for 5=1,...,2p and VI=0,...,k.

Let j¥ be the maximum value of js(z).
If 7* <0, for s=1,...,2p then set kg = k and stop.
Else continue.

Step 3: Replace k& by k£ + 1 and return to step 2.

The optimization problem cited in step 2 is a mathematical programming and can be solved by
standard methods.

4. Conditions for finite characterization

It is clear that the above algorithm converges if and only if there exists an integer k such that Ty, = Tjy1.
So it is desirable to establish simple condition which allows us to characterize the set T by a finite
number of inequalities. Our main result in this direction is the following.

Theorem 3. Suppose the following assumptions hold

1. The pair (A,C) is observable, i.e., [C’T|ATC~'T| e |(AT)"_1C~'T] has the rank n.

?~ —
C~
2. lim supl||A¥||/ax < Xo(|C||| H||M), where \g = inf A >0and H= cA?
k—+00 Neo(HT H) .
| CAn! ]

Then there exists an integer k such that T = Tj,.

Proof. By the observability of (fl, é), the rank of the matrix H is n, where

!

e
C

H—| CA?

| CA! ]
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which implies that HT H is invertible, so there exists a constant ¢ = infT A > 0 such that
Xeo(HT H)

cl|z?|| < <HTH:E,:E>, Ve € R", (15)
which implies that
cllz?®|| < |H T |[[|Hz||[l«], Vo € R

and we have
n—time

Hz € B(0,ap) X B(0,1) X ... x B(0,p—1), Va € Tp,1,
n—time

where B(0, «;) = {Vz € R"/||z|| < ay} since B(0,ap) X B(0,c1) X ... X B(0,,,—1) is bounded, then

cllz?|| < MIIH ||, V& € Ty (16)
< ) = — . Py
(because ||Hz|| < 0<I1Za<a;<_1(a2) ap and ||z| OIEZ?L};(M’ZD,VJ} € RP)
So -
oM .
el <v= 2 v ey, (17)
Hence

Th1 C B(0,7) = {Vz e R"/||z] <~} .

The fact that lim sup ||A*||/ay, = p implies that
k—+o00
IA°)
VB >0, 3k, Vk > kg sup —— < B+ p,
ik Qi
then for 8 = 1/||C|| — p > 0 there exists an integer kg > n — 1 such

|C Ak < Lot

For every z € Ty, we have s s
ICAR || < [|C ARz,

but Ty, C T,,—1 C B(0,7), so we deduce that
Hé'flko“xH < €kot1, VX € Ty,

consequently, CAkotiy € B (0, gy, ), for all x € Ty Thus, T, C Tgy+1, which implies that Ty, =
Tk)()-i-l == T ]

Remark 2. The observability assumption is not really a limitation. To show this, let us suppose
that (A, C) is an unobservable pair. Let U be the nonsingular matrix which describes the change in
state coordinates. Thus, systems (1) can be described by

Ziy1 = Ay + By,
n
To = ). Bjej,
j=1
where #; = Uz; and A = UAU L. Consequently, y; are given by
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where ' = CU~!. Now choose U in the usual way so that:

- (E 0 o\
A_<E2 E3>’ C = (G1,0)

and (G1, E1), an observable pair. Note that (G1) is a p X r matrix, Fj is an r x r matrix and r is an
appropriate integer. Recall that & = Uw, if we set & = (w1, w2, ), where &1 € R”.
Then we have

zeT(AC, o) & |CAw| < a;, Vi >0
zeT(AC o) e |CAG| < o, Vi >0
zeT(AC, o) & ||GiEid | < oy, Vi > 0.
Hence o
re€T(AC ) & & eT(E,Gya) x RV
thus

T(4,C0;) = U™ (T (By,Gryaq) x R™). (18)

Since (Gi,E7) is observable, it is sufficient that the matrix A be asympotically stable to have
T(E1, Gy, ;) finitely determined. Consequently, if A is asympltotically stable and (A, C) is unob-
servable, then (18) gives a characterization of T'(4, C, ;).

Example 1. Consider the following series of the RLC circuit. It is having an input voltage v*(t) and
the current flowing through the circuit is I(¢).

There are two storage elements (inductor I(t) R L
and capacitor) in this circuit. So, the state vari- —Z AN m\
ables are the current flowing through the induc- t t ‘
tor I(t) and th§ Vo.ltage across capacitor, v¢(t). V(1) W) =C
From the circuit, the output voltage v°(t)
is equal to the voltage across capacitor, v¢(t): — —
VO(t) = ve (). Fig. 1.
OI(t) oI(t) RI(t) ve(t) k()
k c
t) = RI(t) + L7 t =— -
SO =RIO+ L5400 = L I "1
ove(t) _ I(t)
o C

I(t)
ve(t)

standard form of state space model as,

- [ o ] -1 F A ][5 ] e

ot

State vector, X = [ } . We can arrange the differential equations and output equation into the

The discrete form of the RLC circuit

R A R RO I;
s =1 L]
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=t 0|

Yiz[o,l][li]-

[

Let L = 2.2mH, C = 0.23uF, R = 0.6w, a; = 1/2!. With the gain matrices selected L = [0.3 0.4],
K =0, we find that the pair (A, é) is observable and theorem 3 assure the convergence of algorithm,
which gives the index of determination k* = 1. Then the corresponding control laws could reduce
the effects of all unknown uncertainties. Fig.2 gives a presentation of the set T corresponding to this

example.

A N ——

dmm——

[ SR
\CY S
o K-
NS

Fig. 2. The set T' corresponding to Example 1.

Example 2 (Damped spring mass system). Using Hooke’s law to model the spring and assuming
that the damper exerts a force that is proportional to the velocity of the system, we have

Q

\
= %F_—lﬁ

Fig. 3.

mg+cq+ kq =u,

where m is the mass, ¢ is the displacement of the mass, ¢ is the
coefficient of viscous friction, k is the spring constant and u is the
applied force. In state space form, using z = (q,q) as the state, u
as the input, choosing z = ¢ as measurement function and y = ¢ as
the output, we have

We consider the discrete form of system

Tip1=\| & ¢ JTit| 1 |u,
m m m
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Let m = 166.6g, ¢ = 0.070kgs™!, k = 85Nm™', oy = 1/i + 1. With the gain matrices selected
L = (02 —1] and K = 0, the conditions of theorem 3 are sufficient for the convergence of the
algorithm, and the algorithm gives the index of determination k* = 3. We conclude that the gain
matrices selected K and L makes the system insensitive to all unknown uncertainties. Fig.4 gives a
presentation of the set T' corresponding to this example.

2

Fig.4. The set T corresponding to Example 2.

5. Output sensitivity delayed system

In this section we consider the linear discrete delay system described by

! n(t+1) (19)
(0, x_1,...,x—) = Y. Bjej € R+
j=1

t
Ti+1 = iji_j + Bui,
=0

where z; € R" is the state variable, r and ¢ are the integers such r < t. 3; are the components of initial
state in R™H1) with ej are a canonical basis of R™(+1)  We suppose that the parameters (B1y---y Bs)
are unknown and (Bs11, ..., Bn41)) are known. As the initial state (zo,7_1,...,2—;) is unknown we
consider the measurement function given by

t
5= Mjxi_j, Vi>0, (20)
j=0

where M; are (n x n) real matrices, the corresponding output is

yi=Y Cjzi_j+ Du;. (21)
=0
And the out variable y; € RP satisfies
Jyi :
PR <q4 for Vi>0,1<s<r, (22)
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where C; are (p x n) real matrices. As previously, the output admissible if the resulting output (21)
satisfies (22). In order to characterize the set of all possible gain matrix T'(L, K), we define the new
state variable X; € R"™ for ¢ > 0 such that

Xi = (T, @ity i)

And the matrices A € M,141)(R), C € My, 141y (R), B € Myy(41),m(R), and M € M,, .11y (R) by

B
Ay Ay ... A 0
I 0, 0, _ ,

A= . . . . 5 B = : y
0, ... I 0, :
O

M = (M07 M17 s 7Mt) ) C= (C07 Cl7 s 7C7“77 Op,na s 7Op7n)7
N —
(t—r)—times
where I, is the (n x n)-unit matrix, 0, is the (n X n)-zero matrix and 0,, is the (m x m)-zero matrix,

0p,1 is the (p x [)-zero matrix. Then the system (19) can be equivalently rewritten in the form

Xo = (z0,7-1,..-,T¢).
The measurement function and the output delay function can be expressed as follows
Zi = M XZ',

yi = CX; + D,

where the controls law
u; = Lz; and v; = Kz;.

Thus, the admissible set is given by
T(L,K)={X e R"/||(C + DKM)(A+BLM)'X| < a;,Vi > 0} .

Thus,it is obvious that Theorem 3 gives sufficient conditions to characterize the set T'(L, K,¢) by a
finite number of functional inequalities.

Example 3. Consider the discrete delayed system described by

{ Tit1 = 1.22; + 092,71 + u,, (24)
ZTo = T,
the corresponding output is
Y; = Ti + ;.
We take
U; = L(ZE@,JEi_l)T and V; = K(ZE@,JEi_l)T,
where L = [ __06755 :8; ] and K = [ (11 __112 ] , then we use the algorithm described in the previ-

ous section, to establish that £* = 5. Fig. 5 gives the representation of the set of outputs corresponding
to this example.
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e ) Ry S

D) R S R AEEE R FEE T
i i
i i
-3 :r ”””””””” :r ”””””””
1 1
4 : :
-4 -3 2 4

Fig. 5. The set T' corresponding to Example 3.
6. Conclusion

In this paper, we have studied the asymptotic output sensitivity problem of discrete-time linear systems
with perturbed initial state, and we focus our interest in this work on determination of the set of possible
gain matrices whose role is not only to make the system insensitive to all disturbances but to achieve
a predefined stabilization mode. The necessary conditions have been obtained. The case of delayed
system is also considered and numerical simulations have proven the effectiveness of our results.
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Flpo 3aa4yy aCMMNTOTUYHOI ‘-IyTJ'Il/lBOCTi 3a BUxXoaomMm AOnsa ONCKpeTHunX

NIHINHNX CUCTEM 3 HEBU3HAY€eHUM MNO4YaTKOBUM CTAaHOM

Ben Pina C.', Jloyc M.?, Paunk M.!

L Tabopamopisa amnanisy, mMo0es06aHMA MA CUMYAIOEANNA,

Kagedpa MAMEMAMUKY Ma 064UCAI08AALHUT HaYyk, dakysvmem nayk Bew Mcix,
Vuisepcumem Xacawa II Kacabaanku, BP 7955, Cidi Omman, Kacabaranka, Mapokko
2 Jlabopamopis modentosarms, anarisy, KOHMPOAIO Ma CMAMUCTUKY,
rxadedpa mamemamuru ma ingopmamuru, garysvmem wayr Atn Yox,
Vuisepcumem Xacana II Kacabaanku, BP 5366, Mapip, Kacabaarxa, Mapoxko

VY 1iit poboTi OCTIIKYEThCsT CKIHIEHHOBUMIPHA JUCKPETHA JIHIfiHA cucTeMa, TO9IaTKOBHUI
cTaH xg kol HeBimomuii. Ilpunyckaerbes, MO cucTeMa JIOMOBHEHA JBOMA, BUXITHUMU PiB-
HAHHSMU, TIEepITe 3 sKUX z; 300parka€ BUMIPIOBaHHS, fKi 3po0JieHi B HEBiIOMOMY CTaHi
cucreMu, a iHIme y; — BiamoBimHmit Buxin. Merorw pobOTH € BBEIEHHS JIBOX 3aKOHIB KEpy-
BaHHS, IK Y 3aMKHEHOMY ITUKJII BUMIPDIOBaHb 2;, TaK 1 JJIT ACHMITOTHIHOTO 3MEHITTEHHS
BIJIUBY HEBIIOMOI YaCTUHU MOYATKOBOTO CTaHYy To. JAIPOIIOHOBAHUN MiAXis mojsrae y
TEOPETUYHIN Ta aJrOPUTMIYHINl XapaKTEPUCTUIl MHOXKUHHM TAKUX €JIEMEHTIB KePYBaHHS.
Jutst LmrocTpariil TeOpeTUIHUX Pe3yJIbTATiB HABEJIEHO JEKiIbKa MPUKJIA/IIB Ta TUCETbHE MO-
JEeTIOBAHHSI.

Kntouosi cnosa: duckpemmnutl wac, 6i10HOCHA HEYYMAUBICMY, NHITHA CUCTEMA, CNO-
CMEPENCYBAMICMD, CTNADIALHICTID, HEGUIHAYEHICTND.
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